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In this paper, we explore some aspects of the gravitational lens effects due to a Kerr black hole. Un-
der the eikonal approximation of the Maxwell equations in curved space, the spin function of a photon
in the degenerate metric is determined. Furthermore, we present an investigation of the phase factor
that a photon acquires in Kerr spacetime. The resulting phase consists of two parts: a real and an imag-
inary one. The real part has been interpreted as contributing a rotational angle of the plane polarization
for linearly polarized light, and the imaginary one results in the light intensity amplification along with
the photon’s trajectory in the gravitational field. Finally, we provide the so-called “Sagnac factor” relat-

ed to the phase shift.

PACS number(s): 04.40.+c, 03.50.De, 03.65.Sq

1. INTRODUCTION

With Berry’s elegant analysis, a new nonintegrable
phase factor was recognized in an adiabatic process of a
quantum system [1]. Recently much attention to this
phase and its analogies has been paid [2]. In fact, it has
been realized that Berry’s phase is, in essence, topological
and it is related to the holonomy group of a line bundle
over the space of parameters [3]. The first experimental
suggestion was proposed by Chiao and Wu [4]. In their
proposal, a laser beam propagating down a helical
single-mode optical fiber will acquire Berry’s phase; this
phase contributes a rotation angle for a linearly polarized
electromagnetic wave. Subsequently, the experiment per-
formed by Tomita and Chiao [5] justified this expected
optical activity.

Another phase factor concerned with the dragging
effect of an inertial frame, called the Sagnac factor, was
noted more than 70 years ago [6]. In general relativity, in
a stationary gravitational field, a clock cannot be unique-
ly synchronized for accelerated observers at different
points; thus, as one proceeds along any closed path, the
Sagnac factor appears due to the time delay. By
definition of synchronization, the phase is [7]

ys=co¢§ﬂ-dx" ,
goo

(1.1)

where o is the frequency of the photon. In the simple
case of a uniformly rotating disk, two beams of light
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propagating along two lines which form a certain contour
will interfere with each other since each beam gets a
different extra phase. The net phase received by a photon
after it follows a loop is proportional to the area of the
loop projected onto the plane perpendicular to the direc-
tion of the angular velocity. Namely, the phase is
40Q- A, where Q is the angular velocity and A is the
surface area vector. The Sagnac factor is, in fact, the
coupling effect between the classical angular momentum
of the photon and the rotation of the reference frame.

On the other hand, the phase shift of photons in a ro-
tating frame of reference has been discussed by Feng and
his colleague [8]. It is shown that, apart from Berry’s
phase and the Sagnac factor, the coupling of the intrinsic
spin of the photon with the rotation gives rise to an extra
phase shift

(1.2)

where g ={g;}, « is the unit wave vector, and * corre-
sponds to the two helicity states of the photon. Similar to
Berry’s phase, this phase induces an optical rotation for
linearly polarized light. It is reasonable to expect that
this term will be significant in a strong rotating gravita-
tional field.

The gravitational lens effect due to a Kerr black hole
has been widely discussed in the current literature. The
majority of works done so far were mainly concerned
with problems such as deflection of light rays,
amplification of intensity, and differential phase shift. In
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this paper, we develop a unified scheme to deal with these
problems.

In Sec. I1, adopting Hanni’s definition [9], we write the
Maxwell equations and cast them into a Schrodinger-like
equation in three-dimensional curved space and then in
the degenerate metric [10].

Although in the particular situation when the typical
wavelength is much less than the inhomogeneous or an-
isotropic length scale of the medium, the wave theory
provides a complete description of physical phenomena
in nature; the correspondence principle permits us to
make a simple analysis in terms of particle interpretation.
The traditional approach is based on the eikonal approxi-
mation [11], well known as the WKB method or geome-
trical optics approximation. The procedure of the eikon-
al approximation may be simply summarized as follows:
(1) the zero-order approximation gives a disperson rela-
tion which induces a Hamiltonian structure that deter-
mines the ray system associated with the wave, and (2)
the equation at the first order determines the evolution of
amplitude, phase, and polarization of the wave along the
classical trajectory of the particle. In the spirit of this
method, Sec. III begins with the derivation of the
effective Hamiltonian for a photon in the eikonal limit
and of its eigenstate. From the dispersion relation we
derive the Hamilton-Jacobi equation for calculating the
photon’s orbit in the degenerate metric. Section IV is de-
voted to finding the overall phase factor of a photon. In
Sec. V, we summarize the paper, make some comments,
and provide discussion. Throughout the present paper
we use the natural units in which #i=c =1 and we take
the signature (1, —1, —1, — 1) for the spacetime metric.

II. THE MAXWELL EQUATIONS IN CURVED SPACE

A. General form in curved space

According to different definitions of electromagnetic
vectors, -there have been several ways to write the
Maxwell equations in curved space. In this paper, we
adopt Hanni’s definitions in which the spatial metric is
defined as

vi=—8y, vY/=—8"+g%% /g%, 2.1)
and the three-dimensional (3D) dragging vector is
§'=¢"78%, &=gu - (2.2)
Identifying electromagnetic vectors as
E;=F,, B'=€*F; /2Vy,
(2.3)

Di=F%/\/g® Hiz\/;eiijjk/z‘/g_oo )

where y is the determinant of the 3D metric y;;, we may
write the Maxwell equations in the noncovariant form
VXE=—(VyB),/Vy, V-B=0,
— _ 2.4)
VXH=(VyD),/Vy, V-D=0,

with the constitutive equations

D=(g®)"X(E+gXB),

(2.5)
B=(g")""*H+DXg) .

Formally, the Maxwell equations (2.4) in curved space
may be understood to describe an electromagnetic wave
propagating in an inhomogeneous medium while the
dielectric tensor of the medium is given by the constitu-
tive equations (2.5) [12].

By defining the wave function of the photon as
|¥)=D+iB, Eq. (2.4) is cast into the form of a
Schrddinger-like equation,

i%|w>=VX(|W)/VE®+igX1W>), (2.6a)
together with the transverse condition,
V- ¥)=0, (2.6b)

where the constitutive equations have been used. It must
be noted that all of the above equations were calculated
working in the three-dimensional curved space with
metric y ;.

By denoting g =(g®y )~ !/ and by making the replace-
ment |¥) —|¥) /V'y, it follows from Eq. (2.6) that

1

i%l\ll)=g(K-s)|\ll)C+(g~K)l\P) Vg X | W)

+i(|W)-V)g—i(V-g)|¥), 2.7

where k= —iV is the momentum operator, s ={s'} is the
photon’s spin operator given by the adjoint representa-
tion of SO(3), i.e., (s')*=—ie’*, and |W)* is the contra-
variant three-vector corresponding to |¥), namely,
|W)i=y,;|¥)/. The transverse equation then takes the
form x-|W¥ ) =0.

B. The Maxwell equation in the degenerate metric

For the purpose of the present paper, it is convenient
to use the degenerate metric
n*,l,=0,

8uv=Muy—2ml, 1L, , (2.8)

where m is an arbitrary constant. For Kerr spacetime,
we choose m as the mass of the central compact object.
Hereafter we set R, =2m =1.

Let us briefly review some useful properties of the de-
generate metric. For a detailed discussion see Ref. [10].

It is easy to see that the matrix g#¥ is given by
gtr=n*r+IHlY (2.9)

where the contravariant four-vector /# corresponding to
l,is

I
=gkl =ni], . (2.10)

In the stationary case, one may introduce a three-
vector A; via the equation

1,=1lo(1,A), 2.11)

where A is a flat-space unit vector, i.e., A?=1. From
Einstein’s equation it follows that



46 PHASE EVOLUTION OF THE PHOTON IN KERR SPACETIME

A =aldy;—AA;)—Bey Ay (2.12)

where two parameters a,f8 have been introduced. From
(2.12), we have

V-A=2a,
VXA=—=2B\.

(2.13)
(2.14)

Defining a complex function I'=a+if, we may show
that Einstein’s equation reduces to a simple partial
differential equation for T,

VI'=—T%+4i(V['XA), (2.15)

or, equivalently, in the form of Laplace and eikonal equa-
tions,

1

Vr=0, (Vyx)?=1, X=t - (2.16)
Meanwhile we have
I3=Re(l')=a . 2.17)

Using the above algebraic properties of the degenerate
metric, we have g=QA, Q=g —1, g=1/(1+a), and
|W)=|¥)+aA(A-|¥)). Finally, Eq. (2.7) can be writ-
ten in the explicit form

i%l‘l’)=g(x~s)!‘l’)+g-x\\l’>

+iag(kXA)A- W)+ H |¥) , (2.18)

where
H |W)=VgX|¥)+gVBA-[¥))+i(|¥)-Vg)A
—i(A-Vg)|¥)+QT*(AX|¥))
—iQT*|W) —iQTAA-|¥)) . (2.19)

The Kerr geometry may be described by one of the
solutions of Eq. (2.16):
[=[x2+y*+(z —ia)?]" /2. (2.20)

The scalar functions a,8 and the 3D unit vector A are ob-
tained by straightforward algebraic calculations:

_ P _
a= , B= , (2.21)
P2+0_2 B P2+02
where
172
2_ 2 2 2
2t —a (r°=—a”) 22
= +
P 5 [ 2 +a‘z ,
(2.22)
=_ 9z
p b
and A may be written in the quite simple form
A= r+ %%, + % (rxe;) 2.23)
p*+a? p? k p L ’

where e, is the unit three-vector along the z axis (0,0,1).
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III. HELICITY STATE OF THE PHOTON
IN THE DEGENERATE METRIC

A. Geometrical optics approximation

Under the geometrical optics approximation, the wave
function W(x,?) of photons characterized by a typical
wave number k and a frequency o, which are large
enough in comparison to the spatial and temporal rates
of variation of the propagating medium, can be regarded
locally as a plane wave. For a Kerr black hole, the length
and time scale of the variation of the gravitational field
are, respectively, the radius of curvature, i.e., the
Schwarzschild radius R, and the spin-rotation frequency
Q, of the black hole. Introducing a small dimensionless
parameter €,

kR,~-2 =1,

Q (3.1)

s

we can expand W(x,?) in the powers of €,

W)= €"|¥,)exp

id
n=0 €

) (3.2)

and then define the local wave vector and frequency as
k(x,t)=Vd(x,?),
o(x,t)=—3,D(x,t) .

(3.3)

Substituting the expansion in (3.2) into the Maxwell
equation (2.18) and keeping the leading term only, we
have

Hol\l’o):a)l‘l’()) . (3.4)
Here H, is the matrix operator Hy={H¥},
Hi=gk's/+g-k87+iag(k XA)A , (3.5)

where the definitions (3.3) have been used. The above
equation is the eigenstate equation for a photon in the de-
generate metric. In the case of flat space, a=0, g=0, Eq.
(3.5) reduces to the familiar form

(k‘S)I‘l’0>:0)|\I’0> ’

and we find two eigenstates, the positive helicity state
with the energy eigenvalue o= |k| and the negative one
with @= —|k|. These two helicity states correspond to
the right and left polarization states of the photon, re-
spectively. However, the positivity of energy allows us to
have only the positive state. For the negative-energy
state one may redefine the wave function as [¥)=D—iB
and obtain the equation k-s|¥,) =—w|¥,). According-
ly, the opposite helicity states are mutually complex con-
jugates. The zero helicity state is eliminated by the trans-
verse condition.

Let the unit vectors {e;}, i =1,2,3 form an orthogonal
tetrad with e; along the direction of the wave vector k.
Denoting the helicity states e, as those states which
satisfy the helicity eigenstate equation

(63's)ei=iei ) (3.6)
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we may express €. in terms of the real vector basis {e;},

e, =T —L (e, tie,) . (3.7)

V2
Because of the transverse condition, e, span a Hilbert
space for the photon’s states. Thus, the wave function of
the photon may be written as a linear superposition of the
two helicity states e,

|W,)=¢Ee, +7ne_ . (3.8)

Here we introduce some useful notations. For an arbi-
trary 3D vector v, we make component expansions in
terms of bases {e;}] and {e,,e;}, respectively. Define
v;=v-e; and v, = Fv-e,. We define

o, P=v,v_=1[v-v—(v-e;)v-e;)]

and introduce an angle variable y, defined by
vy =|v, | exp(xy, /2).
Inserting (3.8) into the eigenstate equation (3.4) and

taking the inner product of both sides by e.., we have
(gk tagk|A |*—w,)é=agkArn ,
(3.9)
(gk +agk|r | +w, )n=agkAL £,

where k = k|, @, =0—g-k. From Eq. (3.9), we have the
dispersion relation

(gk +agk|A,|?)?—w} =a’g?k?[A|*
or, in another form,

o'~ k?’+alo+Ak)*=0. (3.10)

By defining a covariant four-vector k,=—9,P
=(w, —Kk), it is easy to check that the above equation is

the null wave-vector equation
gk, k,=0 (3.11)

from which we get the geodesic equation V k=0.
We may solve Eq. (3.9) for §,9:

§=cos§e_%‘/2 ,
0 v (3.12)
n=sin—e """,
2
where 6 is given by
k +agk|r >~
tand =88 o, (3.13a)
2 agk|A,|?
or, in an equivalent form,
agk|A,|?
tand = gk, (3.13b)

2 gk+agklr P tao,

B. Photon’s orbit in Kerr spacetime

In the usual eikonal approximation scheme, the disper-
sion relation generates a Jacobi-Hamilton structure,
which, in turn, is used to derive the particle trajectory in
phase space. Here we do not use this approach but an al-
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ternative equivalent method. By introducing a super-

Hamiltonian [13]
H=1g"k,k,, (3.14)

the photon geodesic is determined by the Hamilton-
Jacobi equations

JoH
v H—
ek,
(3.15)
g —=—OH
# ox#

where the overdots stand for differentiation with respect
to an affine parameter. Note that, meanwhile, we also
have an on-shell condition H =0 for the photon.

From Eq. (3.15), we find the equations of motion for
the photon

x=k—aMo+Ak), (3.16a)
k=—1Va(o+Ark)
+talwo+A-k){a[k—A(A-k)]+Bk XA}, (3.16b)
and
w=const . (3.16¢)

Since the super-Hamiltonian H is the constant of motion,
the constraint condition H =0 can be automatically
satisfied as long as we properly select the initial momen-
tum of the photon to satisfy H =0. If the photon were
set off at infinity where spacetime is asymptotically flat,
we would simply have o =k there.

As it was shown by Mashhoon, the photon’s trajectory
is independent of its polarization state. That is, the spin-
spin coupling between the photon and the rotation of the
black hole will not make the photon’s trajectory deviate
from its null geodesic in the regime of geometric optics.
Actually, we may consider the classical force f*
=Dp?/Ds due to the coupling of spin to spacetime cur-
vature, which is written as [14]

fa=1RES, 00, , (3.17)
where R is the Riemann curvature tensor, v, is the
four-velocity of the particle, and S, is the spin vector.
For a massless particle, its spin orientation must be paral-
lel or antiparallel to its velocity; that is, S’=av? It fol-
lows from Eq. (3.17) that f°=0, which means that the
world lines of the massless particle are geodesic. Finally,
from the condition S°,=0, we have v, =0 Gf S? is
nonzero), namely, the world lines of a massless spinning
particle are null geodesics.

IV. PHASE FACTOR OF THE PHOTON
IN KERR SPACETIME

Under the geometrical optics approximation, the wave
function of a photon depends only on its propagating
path length. Let C be the integral curve of k and let the
path length s parametrize this curve. Introducing a
phase factor term @, the wave function is written in the
form
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(W) =q(s)|¥,) .

Using V=n,(9/3s), where n; =Vs is the unit wave vec-
tor, we may check that the above form of the wave func-
tion satisfies the transverse condition. Substituting (4.1)
into Eq. (2.18), we obtain

4.1)

) Gl . d
ign, -sa—s( |‘l’0>¢)+lg'nkg( |¥o) )

—ag(n, XA) =H |¥,)p. 4.2)

d
A- as(l\llo)qJ)B

Using the zero-order Hamiltonian (2.3), this can be
rewritten as

iHo%}‘l’o)qJ:kHsl\l’o)zp ) 4.3)

Taking the inner product of both sides of the equation
with (¥,|, we have

de _ (WolH,l(d/ds)¥,)
ds (WolHy|W,)

. (WolH,|¥,)
R TA-AT R
4.4)
By letting ¢ =exp(iy ;’ ) and integrating, we finally find
(Wo|H,|(d /ds)¥,)
(WolHo|¥,)

yp+=ifosds

s (WolH,|¥,)
— [ds . .5)
0 gng+gV 1+2alr,[?

The first term on the right-hand side is clearly Berry’s
phase. In this paper, we will not discuss this phase in de-
tail. Berry’s phase of quantum systems in the presence of
gravitational and inertial fields has been extensively dis-
cussed by Cai and Papini [15]. In their approach, Berry’s
phase in a covariant form is given by using the proper-
time method. The second term is the phase factor arising
from the higher-order corrections of the Maxwell equa-
tion under the geometrical optics approximation. It will
be shown that this term corresponds to the gravitational
lensing and the spin-rotation coupling effect.

Now we turn to calculating the matrix element
(WolH,|¥,). At first, we note some useful formulas.
For any 3D arbitrary vector v, it can be proved that

(WolvX|Wy)=—i(¥ylv-s|¥,)=—iv-n, cosd (4.6)
and
v-¥o=|v,| —cos§+sin§ cos _‘J/_u%ﬁ
—i sing—kcosg sin —Yu;_h , (4.7
where
oo [ 72772 | A (vnpen)
2 2]v, ||Ayl ’
(4.8)
.| Yo~ Ya | (AXv)ny
T T 2 Al

After using the above formulas, we may get the explicit
form of the matrix element

(WolH,|W,)=E,+iE, , (4.9)
where
E,=—0QB[sin0+(A-n; ) cosf]++ cosd(Vg XA)n,
+1g(1—sin@)[VB-A— (A0, NVBn,)], (4.10a)
E,=—Qa[2—sinf+(A-n;)cosO]—A-Vg
—(Vg-n;)cosf+1g cosB(VBXA)n,
+1(1—sinf)[Vg-A—(A-n; X(Vg-n,)] . (4.10b)
Defining
s S5
ys_f°dsg'nk+g\/_1+2a|kl|2 : (4.11a)
s =
ya_fodsg-nk+g\/—1+2alkl|2 , (4.11b)
we can write the phase factor as
Yo =—Vs— iV, - 4.12)

The phase factor of the photon then consists of two parts:
a real one and an imaginary one. Evidently, the imagi-
nary part causes an inherent amplification of the light in-
tensity along the photon’s path of propagation. This is
the gravitational lens effect of the photon. The real phase
contributes a rotation angle for a linearly polarized light.
From Eq. (4.10), we note that the real phase factor de-
pends on the scalar function . Recall that B describes
the rotation of a black hole, thus, this real phase emerges
from the coupling of the rotation of a black hole with the
photon’s spin.

For the negative helicity state of the photon, we may
get a phase factor by using the definition |¥)=D—iB
and proceed in the same manner as we did for the posi-
tive helicity state. Alternatively, since the opposite heli-
city states are mutually complex conjugates and y ; is in-
variant under the replacement k— —k and 6 —7—0, we
may simply deduce the phase factor of the negative heli-
city state from the above result to be

Yp =Vs— iV, - (4.13)
The imaginary part is then invariant and the real one has
an opposite sign with respect to the positive helicity state.
Suppose that a beam of linearly polarized light, emitted
by a steady radiation source at infinity, goes through a
gravitational field produced by a Kerr black hole. Since
the linear polarization state is the superposition of the
two helicity states, at any time, the spin function of the
photon will be of the form e; cosy, —e,siny, (assuming
the initial light was polarized along the direction e;).
Consequently, the polarization plane of the light rotates
by an angle y,. Meanwhile, the amplitude of the wave
has grown by the exponential factor y,,.

Finally, we consider the dynamical phase factor ®.
From the definition in Eq. (3.3), we have
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do
£Z =k . 4.14
ds (4.14)
Integrating the above equation gives
o=—wt+o [’ ds (4.15)

0 g, +gV 1+2alA '

The phase shift relative to the photon’s dynamical phase
in flat space is given by
AP=w f * ds______ —ws ,
© g-n,+gV 1+2alr|?

(4.16)

which is the Sagnac factor of a photon in the Kerr space-
time.

V. DISCUSSION

As discussed in the previous sections, the angular
momentum of a Kerr black hole gives rise to a rotation of
the plane of polarization of a linearly polarized light. In
fact, according to a rotating observer within the frame-
work of quantum mechanics, this effect could be inter-
preted as the coupling of the intrinsic spin of the photon
with the rotation of a black hole.

The basic consideration has been given by Mashhoon
[16]. The Hamiltonian associated with this effect is sim-
ply given as

SH,=yQ-S , (5.1)

where the relativistic factor ¥ has been introduced to in-
dicate the strength of “interaction” as determined by the
rotating observer. As a direct application, he considered
the neutron interferometry experiment in a rotating
frame of reference where the phase shifts of neutrons
both from the spin-rotation coupling and the Sagnac fac-
tor give the interference pattern. A similar result of opti-
cal activity in a rotating frame of reference was given in
Ref. [8] [see Eq. (1.2)]. In the case of a photon propaga-
ting through the gravitational field produced by a Kerr
black hole, the interaction term describing the coupling
between the photon’s spin and the rotation of the black
hole is included in Eq. (2.19).

Although the expression for y is apparently complex,
we may consider a special case to show that this formula
is, in fact, consistent with the simple version of the Ham-
iltonian (5.1) associated with the spin-rotation coupling.
For instance, we may consider a photon passing through
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the gravitational field produced by a Kerr black hole. If
the wave vector of the photon is perpendicular to the an-
gular momentum vector of the black hole, the straight-
forward computation from the geodesic equation of Egs.
(4.12) and (4.13) gives y,=0. This result can simply be
interpreted using Eq. (5.1), that is obviously Q-S=0.

In this paper, we have developed a unified scheme to
deal with the gravitational lens effect due to a Kerr black
hole. Usually, the procedure devoted to the same prob-
lem is based on the application of the Walker-Penrose
constant [17] to the parallel transport along a geodesic in
a rotating gravitational field. By this method, the propa-
gation of the parallel transported vector of polarization is
determined. As it has been discussed by Connors et al.
[18], there are two factors affecting the change of the
direction of the polarization vector. One is due to the
deflection of the light ray, the other is the additional rota-
tion around the propagation vector caused by the angular
momentum. It is noted that the rotation of the polariza-
tion plane induced by the angular momentum of a central
gravitational source is analogous to the well-known Fara-
day effect of an electromagnetic wave propagating
through a magnetized plasma and thus may be referred
to as the “‘gravitational Faraday rotation.”

Attention is called to the difference between the Fara-
day effect and the spin-rotation coupling. In the latter
case, the rotation angle is independent of the frequency of
the light. Thus, the gravitational Faraday rotation can
be observed only by comparison between two images pro-
duced by the gravitational lensing. However, even in this
case the complete information about the initial polariza-
tion state of the photon is required. The rotation angle of
the plane of polarization in the particular case of a linear
polarized light ray propagating in a weak gravitational
field has been calculated in Ref. [19]. Though it is techni-
cally difficult to detect directly this gravitational Faraday
rotation from the observational views, this effect is of
great interest from a theoretical point of view and also
for possible applications to the astrophysics of compact
objects. For example, in the context of x-ray astrophy-
sics, the rotation of the plane of polarization induced by a
rotating object has been used to investigate the total po-
larization degree of x-ray radiation emitted from an ac-
cretion disk surrounding a Kerr black hole [18,20].
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