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Horizons inside classical lumps
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%'e investigate the possibility of having horizons inside various classical field configurations. Using
the implicit function theorem, we show that models satisfying a certian set of criteria allow for (at least)
small horizons within extended matter fields. Gauge and global monopoles and Skyrmions satisfy these
criteria. Q balls and boson stars are examples which do not and can be shown not to allow for horizons.
In examples that do allow for horizons, we show how standard "no hair" arguments are avoided.

PACS number(sj: 04.20.Jb, 97.60.Lf

I. INTRODUCTION

Black holes are intriguing objects and worth studying
in all their possible varieties. In this paper we will study
the possibility of having black holes inside various classi-
cal field configurations. Examples we consider include
gauge and global monopoles, Skyrmions, Q balls [1],and
boson stars [2].

In addition to the basic search for black hole solutions,
there are a number of physically motivated questions one
can ask in this context. For instance, what happens when
you drop such an object into a Schwarzschild black hole?
For a gauge or global monopole the result should be a
black hole with the appropriate kind of hair, since these
both involve nontrivial behavior of the fields at infinity.
But in the case of a Skyrmion, one might think that the
only possibility would be its vanishing without a trace.
Our results show that there is another possibility, at least
for horizons very small compared to the Skyrmion ra-
dius. ' In the case of gauge monopoles, Lee et al. [7] have
argued that, in addition to the Reissner-Nordstrom-type
solutions [8], there also exist, for sufficiently small hor-
izon radius, solutions in which the Higgs field and gauge
field behave more like an extended monopole outside the
horizon. Our results confirm their arguments, and show
that global monopoles can also have horizons inside
them.

Horizons inside extended field configurations may also
be relevant in the late stages of black hole evaporation by
Hawking radiation. Lee et al. [19] have shown that ex-
treme, magnetic Reissner-Nordstrom-type black holes
are unstable in a theory with extended monopole solu-
tions. They conjecture that the extended solution dis-
cussed above is stable and that evaporation of the black
hole proceeds through this configuration, leaving a non-
singular magnetic monopole as the end state. Perhaps a
Schwarzschild black hole in a Skyrmion theory, for ex-
ample, similarly becomes unstable (or metastable) when
its radius is less than the characteristic Skyrmion radius.

The evaporation process may then leave behind other
stable remnants.

Finally, in the literature Q stars (large Q balls} [10,11]
and boson stars (see [12] and references therein}, as well
as strange matter [13] and other types of nontopological
solitons, are discussed as candidates for compact astro-
physical objects. We can ask what the possible final col-
lapsed states of such matter are.

II. EXISTENCE OF SOLUTIONS WITH HORIZONS

ds = —8(r)dt + A (r)dr +r dQ

It is often convenient to define the function m (r) by

1
1

2Gm {r)
A(r) r

A horizon occurs at coordinate rH if

2Gm (rIt)=rH

(2.1)

(2.2)

(2.3)

When a horizon is present, one also expects that
mo —=m (0)%0, so that the metric is not well behaved at
the origin. This is like having a seed mass at the origin.

Let us agree to call a star a configuration of rnatter
fields P (not necessarily scalar) such that the stress energy
is static, spherically symmetric, and localized. Suppose a
particular matter field theory has star-type solutions,
without gravity. There is some force balance, without
gravity, which keeps the field configuration from either
collapsing to a point or expanding to infinity. One might
expect that weakly gravitating solutions would then exist,
and that even placing a small seed mass inside the star
would not disturb the balance too much. This can be
made more precise by considering the Oppenheimer-
Volkoff (OV) equation of hydrostatic equilibrium, which
states (in the case when the three principal pressures are
not necessarily the same)

We will be looking for static, spherically symmetric
solutions to Einstein s equation, which have nonsingular,
nontrivial matter fields outside a horizon. The form of
the metric will be taken to be

~Numerical results on extended Skyrmion fields around a
black hole are given in Refs. [3-6].

dp~ m (r)+4trr p~ 2
dr r {r—2Gm) ~ r

= —6 (p+p )+—(p- —p ) . (2.4)
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In the absence of gravity, only the second term on the
right-hand side is present, and for weak gravity this term
may still dominate. However, from the first term in (2.4),
we see that at a horizon the sum of the radial pressure
and the energy density must vanish. In a normal, burn-
ing star, both these quantities are positive and a horizon
is not possible. On the other hand, for many field
theories, it happens quite naturally that (p+p~) ~, =0.

Our main result will be to show that given a matter
theory which (1) has star-type solutions without gravity
and (2) satisfies (p+p~)~, =0 "automatically" (in a sense

defined below), then there exist star solutions when the
matter theory is coupled weakly to gravity, and there also
exist solutions with horizons inside.

More precisely, the nongravitating matter theory is de-
scribed by a Lagrangian L . A star solution is formed by
evaluating the action on field configurations consistent
with a particular static, spherically symmetric ansatz.
The Lagrangian restricted to this class of fields will be
written L (P). We will assume that L(P)—is positive
definite. When the matter theory is coupled to gravity,
we will assume that the sum of the energy density and ra-
dial pressure is given by

(p~+p) =—K (P),1
(2.5)

e"=&B/A and e~ & AB (2.6)

The action for fields outside a horizon is then taken to be
S =S~+S,with

oof dr y'[(r rH )e~—re"], —
8mG

S (P„,x,y)= f dr r e~L
'a

(2.7)

SE differs from the usual Einstein action by a boundary
term, which has been chosen so that varying SE imposes
the correct boundary condition at the horizon (see Ref.
[14]). Varying the action with respect to x and y gives
the equations of motion

where E is a functional of the matter fields only. Then
there exist regular star-type solutions to the Einstein
equation, and there also exist star-type solutions with
horizons, which have nontrivial, nonsingular matter fields
outside the horizon for 6 and rH sufficiently small. The
argument, as follows, is an application of the implicit
function theorem.

First define the new gravitational variables

used to solve for the gravitational fields x and y in terms
of the matter fields alone if and only if p~+ p
=(I/A)K(t))), where K is a function of the matter fields
alone. This was one of our assumptions. This is
equivalent to the matter Lagrangian having the form

L (P)= ——K(P) —U(P, AB) .1 (2.11)

We can then define a positive-definite functional of the
fields, E (P, G, rH ), by

E(P;G, rH)= —S=f dr e~[r(r rH)K+—r U] . (2.12)
H

In (2.12), y (r) is given in terms of the matter fields by

y(r)= —8mG f dr'r'K(P) . (2.13)

F(p;G, rH)= =0,5E (2.14)

which by construction will satisfy the equation of motion
with the correct boundary conditions. By assumption
F($0;0,0)=0. The implicit function theorem for Banach
spaces [15] can then be used to show that, for G and rH
sufficiently close to zero, there exist functions P(G, ri, )

satisfying (2.14), such that $(0,0)=$0. This can be seen

by expanding (2.14),

0= (p —po)+ G+ I, +5$ BG dr
(2.15)

with all the derivatives evaluated at /=go, G =0, and
rH=O. There will be a solution for P as long as the
operator 5F/5$ in (2.15) is an isomorphism between two
Banach spaces H, and H2, and the two functions BF/BG
and dF/drI, belong to the space H2. The choice of par-
ticular function spaces depends on the system under con-
sideration. However, roughly speaking, we can see that
this will be true in general given that the Hat-space solu-
tion $0 is a minimum of the energy functional (2.12),
which is equivalent to

5$&0.5F
($0,0,0)

(2.16)

Note that for a given configuration of the fields

P, E(P;G, rH) is a continuous, differentiable function of G
and rH.

We assume that for G = rH =0, the functional
E(P;0,0) has a minimum $0. This is our nongravitating
star. For G and rH nonzero, we seek solutions P to

6I.y'= —8m Gre~
6x

5I. M,
(r(e —e")]=—r e~ e~ +L +

dr 6x 5y

and the boundary condition

re ~„=r&B/A ~„=0.

(2.8)

(2.9)

(2.10)

Hence 5F/5$ has no zero modes and is invertible. In the
next section we indicate how to choose appropriate func-
tion spaces for global monopoles.

The OV equation implied that (p~+p) ~ 1/A at a hor-

izon. Above, we found that this same condition was

Note that from the definition of the stress tensor—25L /5x =p~+p. Equations (2.8) and (2.9) can be
~In the Appendix we sketch a finite-dimensional version of the

theorem, which illustrates the relevant points.
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needed to integrate out the metric coefficients A and B
from the action. This allowed us to use the existence of
nongravitating solutions to imply via the implicit func-
tion theorem the existence of gravitating solutions and
solutions with horizons. If we take a theory, such as Q
balls, in which, as we will see below, A and B cannot be
eliminated from the action, then to use the implicit func-
tion theorem one would have to compute the variation in-
cluding all the dependent functions P, A, and 8. But
knowledge of the flat-space solutions gives us no informa-
tion analogous to (2.16) about variations in the A or 8
directions, so the argument cannot proceed.

III. GLOBAL MONOPOLKS

In this section we demonstrate the use of the implicit
function theorem and selection of appropriate function
spaces for global monopoles The matter field theory for
the basic global monopole is given by an SO(3)-invariant
Lagrangian for a triplet of scalar fields P':

X =-'V'"P'V' P
—-'A, (P'((} —u ) (3 1)

where V„is the covariant derivative operator. The scalar
field configuration for the monopole has the spherically
symmetric form

P'=uP(rF ' . (3.2)

For solutions without horizons, P(r) interpolates between
0 at the origin and 1 at infinity. Evaluated on such field
configurations [with the covariant derivative operator ap-
propriate for the spherically symmetric metric (2.1)] the
Lagrangian has the form L =(I/A)K+U, where the
kinetic and potential terms are given by

1 2 2 v 1Z =—u2P, U= +—Xv4(y2 —1)2. (3.3)

Here P'=dP/dr. The equations of motion for the metric
coefficients are

1m'(r)=4nr —K+ U.

A

(AB)'
=16m'GrK .

(3 4)

The flat-space global monopole solution has the asymp-
totic behavior

P (r)—0

ar, r~0,
1 r~oo

2kv r

(3.5)

lim m(r) 4nv r . -
f'~ 00

(3.6)

Hence the spacetirne of a global monopole is not asyrnp-

where a and b are constants (the slope a at the origin
must be determined numerically). From (3.5) and (3.3),
one can see that the energy density for the global rnono-
pole falls off only as 1/r, so that the total energy of a
global monopole diverges:

totic to flat spacetime, but rather to flat spacetime minus
a missing solid angle [16]:

~ 1
lim —= 1 —8vrGv

phoo A
(3.7)

In order to avoid a horizon at large radius (which is not
of the sort we are interested in), we will keep 8m Gu ( l.

The quantity 5F/5$ in (2.15) for the global monopole
is given by

5$= — r 5$ +(2+r [6$ —2])5$ .
5$ dr dr

(3 8)

Here we rescale lengths by a factor +A,u . The variations
BF/BG and BF/Br& evaluated on the background solu-
tion can be seen to have the forms

BF
BG

r, r —+0,

1/r, r~ 00,

const, r ~Q,
1/r', r~~ .

(3.9)

If we take the variation 5$ to have the asymptotic behav-
ior

const, r ~0,
5 —'

4I/r, r~ oo
(3.10)

(with the standard L norm in three dimensions), then we
can accommodate the variations induced by (3.9). This
can be seen by examining the asymptotic behavior of
5F/5$ in (3.8). We then have to show that the operator
L=5F/5$ is an isomorphism between these spaces.
Since the operator is elliptic, this will be the case if either
it nor its adjoint have zero modes. Suppose that L has a
zero mode, then we can write

5 U0— dr r2 +r2 2

o dr dr
(3.11)

Integration by parts yields
00

0= —r f f + drrd 00

dr 0 0

2
2d 5 U

dr

6 U

5$' ($0,0,0)
(3.13)

holds everywhere. We have checked numerically that
(3.13) is satisfied for the fiat-space monopole. Therefore
the operator L, which is self-adjoint, has no zero modes.

IV. EXAMPLES

Three examples of field configurations which a11ow
horizons inside are Skyrmions, gauge monopoles, and

(3.12)

The boundary term vanishes for functions f having the
behavior (3.10). Equation (3.12) then leads to a contra-
diction if
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2

L = (f') +—m — f +U(f2),
2A 2 B

(4.1)

where the mass term in the potential has been separated
out. The frequency co must satisfy co )m for stability.
From the definition of the stress tensor we then have

2 5Lm 2 5Lm
+p — + —

(f I )2 ~2f 2

A 51/A B 51/B A B

(4.2)

We see that to satisfy (p+ p~ )
~
„=0,f must vanish at a
H

horizon. But this means that the field is in its vacuum
both at the horizon and at infinity, which is not a Q-ball-

type solution.
Boson stars (see [12] for a review) are localized scalar

field configurations which exist only with gravity. The
matter Lagrangian again has the form (4.2) (with different
potential terms and with co )m ). Hence boson stars
satisfy (p+p~)~„=0only for f (rH)=0, implying again

that the field be in its vacuum at the horizon, as well as at
infinity.

A third example which probably does not allow hair is
the Abelian-Higgs model [17]. If the scalar field has the
form f (r) and the gauge field is given by A, (r), then the
matter Lagrangian is

global monopoles. These three examples span a range of
types: gauge monopoles have both a long-range magnetic
field and topological winding, global monopoles have
only the topological constraint, and the Skyrmion field
winds but is not topological. These all have L (P) of the
form (2.11), and so satisfy the condition (p+ p~) ~

„=0at
a horizon. The implicit function theorem argument
shows that solutions with hair exist for G and rH in some
range about zero, but gives no information about how
large this range is. One can deduce more information
about the range from arguments based on the traditional
positive "no-hair" integrals, which we do below in Sec. V.

Field configurations which cannot support horizons in-
clude Q balls [1] and boson stars [2]. Q balls are star-type
configurations that exist without gravity [1], but, as we
will see, fail to satisfy the condition (p+p~)~„=0at a

H

horizon. The simplest Q balls occur in the theory of a
single complex scalar field [1]. The Q ball field has the
form P=f(r)e ' ' where f(r) vanishes at infinity. The
Lagrangian evaluated on such configurations is

this in itself is not enough to rule out solutions, it clearly
makes it "harder" to satisfy the equations given this addi-
tional condition on the fields. Indeed, the "no-hair" in-
tegrals discussed in Sec. 5 further imply if A, (rH)=0,
then the fields are in their vacuum states everywhere out-
side the horizon. Adler and Pearson [17] explicitly ana-
lyzed the Einstein equation for this system further, and
have shown that this is indeed the case.

Finally, it is interesting to think about the case of a
Coulombic electric field due to a point charge. This is
outside the framework of the present discussion, because
the nongravitating configurations are singular, A, =q/r.
However, the Reissner-Nordstrom charged black holes
are solutions with nonzero, nonvacuum, regular matter
fields outside the horizon. In this case, it easy to check
that the electromagnetic (EM) Lagrangian reduces to

1
LEM =

AB
(4.4)

which has the form (2.11) and that, in fact, the combina-
tion p~+ p vanishes everywhere.

In looking at these various examples, one notices that
different kinds of mass terms play quite different roles. A
"true" mass, or any potential U which is independent of
the metric, makes no contribution to the sum p&+p, as in

inAation. A dynamical mass which comes from the cou-
pling to the time component of a gauge potential, con-
tributes a term to p~+p~(1/B)f A, , which tends to
rule out hair. A dynamical mass which comes from cou-
pling to the spatial components of a gauge field contrib-
utes zero, and contributes a winding term ~ llr to

p&
—

p&, which is important in the OV equation (2.4).

V. "NO-HAIR" INTEGRALS

It is interesting to see how the black hole solutions dis-
cussed above avoid being ruled out by standard "no-hair"
arguments. In the case of extended-gauge monopole
solutions, this was discussed in Ref. [7]. We will see that
Skyrmions and global monopoles escape in basically the
same way. The necessary conditions for the existence of
black hole solutions in a given field theory can be derived
by constructing energy integrals from the equations of
motion (see, e.g. , [17,19]). If the action in the region out-
side the horizon is given by

S = —I drJ(r), (5.1)
H

an extremum occurs when

(4.3)

d 6J
dr 6$' (5.2)

This again is not of the form (2.11), and satisfying
(p+p~)~„=0 requires that A, f =0 at r =rH While.

3We assume that the volume element & AB is well behaved at
a horizon, which implies that B-r —rH near the horizon.

4Visser [18] has independently studied the condition

(p+p-, )~„=0in the context of various recent black hole solu-

tions in field theories, such as dilatons and axions, coupled to
gravity. He has also looked at the thermodynamics of such
solutions.
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with the boundary conditions 5J/5$'=0 at r =rH and
the fields going to their vacuum values at infinity. There-
fore

f„«4'5,+(4' —0 )
5H H

(5.3)

Consider the case at hand (2.12), where S = Ea—nd J is
the positive-definite integrand. Since we are assuming
that regular solutions exist when 6 = rH =0, the above is
true with r& =0 and e =—1 in J. Since typically the gra-
dient term in the integrand is of the form C (P)(P'), this
requires that, as r ranges from zero to ao, there be posi-
tive and negative contributions to the potential (the
second) term in the integrand. Now, if the lower limit is
taken to be rH, there is still a possibility for positive and
negative contributions to sum to zero above, if rH is small
enough. This point was discussed in [7] in reference to
gauge monopoles, noting that the fields had to be
Reissner-Nordstrom outside the horizon if rH were
sufBciently large. For Skyrmions, the structure of the
no-hair integrals depends on what the response is of the
Skyrmion field to gravity. But assuming that the effect of
gravity is to further concentrate the energy density, again
there will be a critical value of rH such that if the horizon
is larger the field must be in its vacuum outside the hor-
izon. On the other hand, global monopoles have no such
restriction on the value of rH.

APPENDIX

Here we recall the argument for the implicit function
theorem for a system of N equations in N unknowns, and
the limit as N becomes a continuous variable. Let g be
the independent variable, and m., i =1, . . . , N be
dependent variables. (These are numbers, not functions. )

We seek solutions m. =((),.(g) to the system

F~ (m, g.)=. 0, j=1, . . . , X, (Al)

given that P;o is a solution when g =0, F(P;&,0)=0. Let
n.—P;c=5sr and denote the matrix of first derivatives
with respect to the independent variables by 0;

dF /B—n, evaluated at P;c, g =0. Then Taylor ex-
panding the equation F =0, to linear order one needs to
solve

(A2)

There is a solution 5vr for any "source" on the right-hand
side of (A2) if the matrix O,J has no zero eigenvectors,
i.e.,

0;,v'vJAO for all v'. (A3)

For an implicit functional theorem, we would like the
limit where the discrete index i becomes a continuous
variable x, with F ~F(x), sr~P(x). Let IP;(x)J be a
set of basis functions, and let P(x) =g; A; P; (x) and
5$(x) =g;5A;P;(x). Then in this limit,
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5~~ f dy 5$(y)=g 5A; . (A4)
I

Hence for a solution it is necessary that this last quantity,
evaluated at the known solution, have no zero modes. In
the main part of the paper, this condition was met since
the second variation of the energy functional was nonzero
at the nongravitating solutions.
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