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Spin- —perturbations of the Kerr-Newman solution
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The equations for the spin-2 perturbations of a rotating charged black hole given by the linearized

O(2) extended supergravity model are solved, expressing their complete solution in terms of two Debye

potentials that obey the same differential equation. The equation governing the radial parts of the Debye

potentials is transformed into a Schrodinger-type equation with a short-range real potential. It is also

shown that there exist spin- —, perturbations corresponding only to ingoing or only to outgoing waves.

PACS number(s): 04.20.Jb, 04.40.+c, 04.65.+e

I. INTRODUCTION

The O(2) extended supergravity field equations [1] give
a consistent coupling of an O(2) doublet of spin —', fields,

electromagnetism, and gravity, and they reduce to the
usual Einstein-Maxwell equations when the spin- —', fields

vanish. By linearizing the O(2) extended supergravity
field equations with respect to the spin- —,

' fields about a
solution with vanishing spin- —, fields, one obtains a con-
sistent set of equations for an O(2) doublet of spin- —,'fields
on a background solution of the Einstein-Maxwell equa-
tions [2]. In this approximation, the torsion vanishes, the
supersymmetry transformations affect only the spin- —,

'
fields, and the anticommutative character of the spin- —,

'
fields does not show up. This framework has been em-

ployed by Aichelburg and Giiven [2] to examine the
spin- —,

' perturbations of the Kerr-Newman solution; by
analyzing two gauge-invariant scalars made out of the
spin- —,

' fields, they showed that there are no nontrivial,

stationary, regular spin- —,
' perturbations of the charged

black holes, except in the case of the extreme Reissner-
Nordstrom solution [3].

In this paper we give the expression for the complete
spin- —,

' perturbations of the Kerr-Newman solution using
the fact that the solution of the equations for the spin- —,

'
fields can be written in terms of two Deybe potentials
that satisfy identical differential equations, provided that
one principal null direction of the background elec-
tromagnetic field is geodetic and shear free [4]. In Sec. II
the basic equations are given and the equation for the De-
bye potentials is solved by separation of variables. In Sec.
III the equation governing the radial parts of the Debye
potentials is transformed into a wave equation from
which the reflection and transmission coefticients for in-
cident waves can be obtained. In Sec. IV it is shown that,
for certain complex frequencies, the charged black holes
admit spin- —, perturbations that are purely ingoing or
purely outgoing. In order to facilitate the comparison

with previous works, we follow closely Chandrasekhar's
[5] notation.

II. EQUATIONS FOR THE SPIN-2 PERTURBATIONS

OF THE KERR-NEWMAN BLACK HOLES

To first order in the spin- —', fields, the O(2} extended su-

pergravity field equations are [2,6]
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where
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(The parentheses denote symmetrization on the indices
enclosed and the indices between bars are excluded from
the symmetrization. )

In the linearized version of the N =2 supergravity field
equations given by Eqs. (1), the supersymmetry transfor-
mations act only on the spin- —', fields. These transforma-
tions are given by

J ~f Jk ek
YABC' YABC' ~BC'a A ( " 2E 0 ABa C' (4)

where aJ
A is a pair of arbitrary spinor fields and

a' c.=(a c)*. Then, from Eqs. (3} it follows that,

(j,k =1,2), where 4ABcD corresponds to the trace-free
part of the Ricci tensor, A=R/24, (pAB is the elec-
tromagnetic spinor, cJ is the Levi-Civita symbol, andf"A 8 c =(tk'ABc )* Equation. s (la) —(lc) are just the
Einstein-Maxwell equations without a cosmological con-
stant. Equation (ld) can also be written in the form [6]
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rnodulo Eqs. ( la) —(lc), under the transformations (4),

ABC~K ABC +ABC + D+~" 2~ o. S'~A %BC
j j D j ~ &/ jk ok S'

(5)
AB'C' AB'C'

Here M and e denote the mass and charge of the black
hole, respectively.

From Eqs. (9a) it follows that the functions R J+3/2 can
be chosen in such a way that [6]

where qJ„J]cD is the Weyl spinor. Equations (1) and (3)
lead to the equations

I I I

H wJJc q'wJ]cDW +& 2E "])'J*"g "~J] pic
(6)

~'"+P &P4~'"R'+3/2=C]R' 3/2-
XpS&p+ '

3/2
—C2 5 R '+ 3/2

where

(12)

whose integrability conditions are satisfied identically.
If the principal null directions of the electromagnetic

field are geodetic, shear free, and nonproportional (as in
the case of the Kerr-Newman solution), by choosing a
spin frame 0",~ such that o and ~" are principal spi-
nors of yAB, then the only nonvanishing components of
y„J] and V„JJcD are p] and %2, respectively, and Eqs. (5)
imply that Kjo=HJABco 0 o and Hj3:H
are invariant under the transformations (4). From Eq. (6)
it follows that these gauge-invariant components satisfy
the decoupled equations

+16g2(a +e —g]z ) (13)

+—] /A ] /A 3/2 +3/2 ~ —3/2

—]/4]/43/2 —3/2 ~ +3/2

where

(14)

and a —=a +(am/o ). For real o, 6 / RJ+3/2 and
RJ 3/2 satisfy complex-conjugate equations and, there-
fore, they can be normalized in such a way that (for real
o.) C2 =C;. Similarly, the functions S+3/2 obey the rela-
tions

[(D —2e+E*—3p—
p *)(b,—3y+p, ) 8 =K+) +16~(a —Pa) (15)

—(5—2P—a' —3m+ m' )(5' —3a+ n. ) qr2)H J
p
=—0,

(7)
[(b,+2y —y'+ 3]u+]u* )(D +3e —p)

—(5 +2a+P +3m'*)( 5' —+3 P—w) —0'2]HJ3=0,

which can be solved by separation of variables [6].
In the specific case of the Kerr-Newman solution, us-

ing the Kinnersley tetrad and the Boyer-Lindquist coor-
dinates as in Ref. [5], the separable solutions of Eqs. (7)
are given by

HJ —R J (r)S (O)ei( ]+ma/)

When a 0- is equal to zero, the angular functions
S+3/2(O)e' ~ are spin-weighted spherical harmonics and
P takes the values (j —

—,
' )(j+—,

'
) where j is a half-integer

greater than, or equal to, —', .
As shown in Ref. [4], if one principal null direction of

the electromagnetic field is geodetic and shear free then
the complete solution of Eq. (ld) can be written in terms
of two gauge-invariant scalar potentials 1(i'. The poten-
tials P associated with the geodetic and shear free princi-
pal null direction of qAB defined by 0 are governed by

(8) [(&+2y —y'+]u' )(D +3e+2p)
1H 3 —

3
R 3/2(r)S 3/2('O)e

23/2(p ') —(5*+2a+P' —r')(5+3P+2w) —qr2]+=0 . (16)

The most general solution of Eq. (ld) is given locally by

]
= (5+2p+ a + r)(5+ 3p)]IIJ A, *(D + 3E )p

iv'2cJ—"qr](5*+3p*)g *,

where o is the frequency of the waves, m is a half-integer,

p = r +ia cosO, a is the specific angular momentum of the
black hole, and the one-variable functions R +3/2, S+3/2
satisfy the ordinary differential equations [2,6]

(~ ]/22)p
—4]err)b, R +3/2 /]5 R +3/2

(~ ]/P)p+4i or)R 3/2
='KR

(+—] /A3/2+ 4a o cosO)S+3/2 —AS+ 3/2

(X —]/Q3/2 4acr cosO)S 3/2 KS 3/2

where K is a separation constant [5],

]p ]
= (D +2e+ E*+P )(5+3P )])J —7T'(D +3e )]jr

g* p ] ]
=(5+2P ]2*+7)(D +3E )P+p *(5+3P)P

(17)
1(*Jpp, =(D +2e —e*+p)(D +3e)P,
]]'J*J].] p

= i 3/2EJ"ip] (D +3e*—)]tJ *,
QLJ —g4J —$4J —0

2)„—:0, + +2n iK r —M

(10)
up to the gauge transformations (4).

Equation (16) admits separable solutions of the form
X„—:B i]+Q n+cotO, X„—=Bi]

—Q+n cotO,

and

K—:(r +a )o+am, .

Q=—ao sinO+m cscO,

g =r —2Mr+a

(18)

where RJ 3/2 and S 3/2 obey Eqs. (9). Substituting Eq.
(18) into Eqs. (17) one obtains all the components of the
spin- —,

' fields with the correct relative normalization. In
particular, using Eqs. (3), (9), (12), (14), (17), and (18) we
find that the gauge-invariant components H o and H 3
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generated by (18) are

(H 0) =CiR +3/2( r)S 3/2(e)e

1(H 3) I BR 3/2(r)S+3/i(8)e'
2 2(p}

+4ecr'e'"[R" 3/2(r)S 3/2(())

X ei(at +mP)]e
] 7

(cf. Ref. [7]}.

(19)

d TJYi= R — Zi+(T —2icr)A Zi
dI'»

g3/2
I('Z~=RYi (—T, —2icr)A+ YJ,

p
where [10]

g3/2 g3/2 6
R=Q+

6 p2= 6 (P+p» F=

(26)

p =r +a, a =a +(arri/cr),

and of the variables

(20)

III. THE POTENTIAL BARRIER
FOR THE SPIN-

2 FIELDS

It is a remarkable fact that, despite the coupling of the
O(2) doublet 1''&zan. with itself and with the electromag-
netic field given by the last term in Eq. (ld), the equations
governing the spin- —,

' perturbations of the Kerr-Newman
solution differ from those corresponding to the Kerr
metric [8] only by the replacement of a by az+ez in
some few places [see Eqs. (11) and (13)]. Since Eqs. (9a)
are almost identical to the equations for the spin- —', per-
turbations of the Kerr metric considered in Ref. [8], we
can readily reduce Eqs. (9a) to Schrodinger-type equa-
tions by making some slight changes in the results of Ref.
[8].

Following Chandrasekhar [5,9], we make use of the in-
dependent variable r, defined by dr, /dr =p /b„where

T = —a. , P =4(a +e —Ka },1 dF
1 F p d 2 & 2 (27)

re&=A +)(. , K = 4c—r P2 2i—crick',

and [11]

dTfV=Q—
dp»

(28)

SC'+'Z'-'=4~'C C1 2 ~ (29)

which is analogous to those obtained for the perturba-
tions of the Kerr metric by massless fields of spin —,', 1, —,',
and 2 [5,9,8].

As in the case of the spin- —', perturbations of the Kerr
metric, the potential V is real (for real o) and of short
range; therefore the reflection and transmission
coefficients can be defined as in Ref. [8]. Furthermore,
from Eqs. (13) and (27) one finds that the constants I(. (+

and K' ', corresponding to the frequencies o and —o,
satisfy the relation

Zj=p 'R~ „,. (21) IV. INGOING OR OUTGOING WAVES

A Yi+PA+ YJ—QYi=O, (22)

d
Ag = +l 0'

dp»

dA2=~+A =A A+=, +0-2,
df»

(23)

From Eqs. (9a) and (10) one finds that the functions Yi
satisfy

The presence of a nonvanishing background elec-
tromagnetic field allows the existence of solutions to Eq.
(ld) that correspond only to ingoing waves
(H 0%0,H 3

=0) or only to outgoing waves
(HJ3%0, HJO=O). From Eqs. (12) it follows that in order
to have R 3/2 0 with R~+3/2 different from zero, it is
necessary that C2 be equal to zero. Then, Eq. (12) gives

t~t~3nR J =0 (30)

Therefore, taking into account the fact that

and [10]
iver+

—
iver+O=e „e (31)

P = [2rb, p(r —M)], —3

p

Q= —(P p +2Mr —2a —2e ) .
p

(24)

[Since the complete solution to Eq. (ld) is generated by
(18) it suffices to consider the equation for R J

3/2 only;
an entirely similar reduction can be made with the equa-
tion for R 1+3/2 ] Equation (22) can be transformed into
the Schrodinger-type equation

the general solution of Eq. (30) has the form

b, / R 1+3/z(r) =(a Jr +bjr +cj)e (32)

l=A~ 2icrr Kr (K +I —8cr a— 4i—oM)— '

4o.

where a, b, and c are constants of integration. By sub-
stituting Eq. (32) into Eq. (9a) one finds that

b, / RJ+3/i(r)

A'ZJ= VZJ ior»Xe (33}

by means of the substitutions where AJ are arbitrary constants and 0. is such that



5398 G. F. TORRES del CASTILLO AND G. SILVA-ORTIGOZA

C2=0. Similarly, assuming that R +3/2 0, from Eqs.
(12) and (9a) we obtain

R 3 y2( 1')

1=B~ —2icrr K—r+ (K +A. —8cr a +4ioM)
4o.

—i Crr+
Xe (34)

where B' are arbitrary constants and o. is such that
C) =0.

When a =0 (in which case the Kerr-Newman back-
ground solution reduces to the Reissner-Nordstrom solu-
tion), from Eq. (13) one finds that the vanishing of C, or
C2 implies that

(35)

where j is a half-integer greater than, or equal to, —,'.
The foregoing relations are analogous to those ob-

tained in Ref. [12] for the case of the algebraically special
(gravitational) perturbations of the Kerr metric. In fact,
as in Ref. [12], the same solutions can also be derived by
means of the transformation theory given in the preced-
ing section [13].

V. CONCLUDING REMARKS

The results presented here, as well as those of Ref. [8],
show that the equations given by the linearized super-
gravity lead to spin- —', perturbations of the black hole
solutions that possess many remarkable properties analo-
gous to those previously found in the analysis of the per-
turbations of the black holes [5,9,12].

Equations (19) show that, when etr&0, a separable ex-
pression for the gauge-invariant components H~o is ac-
companied by expressions for H 3 that cannot be written
as the product of one-variable functions. A similar be-
havior is found for %0 and %'4 in the case of the gravita-
tional perturbations of the Schwarzschild metric [14] and
of the Reissner-Nordstrom solution [7].

As pointed out in Ref. [7], there exist singular Debye
potentials that generate well-behaved perturbations; such
singular potentials are required to generate solutions of
Eq. (ld) with vanishing Hjo and H~3.
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