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Two-dimensional black hole solutions of string-motivated two-dimensional (2D) gravity are studied.
It is shown that the main results of 4D black hole physics (such as the uniqueness theorems, mass formu-
las, and thermodynamical analogy) have their counterparts in the 2D case. The existence of static solu-
tions describing black holes with tachyon hairs is proved. It is shown that the entropy of a charged 2D
black hole is 27 exp(® ), where @ is the value of the dilaton field at the black hole horizon.

PACS number(s): 04.20.Cv, 11.17.+y, 97.60.Lf

I. INTRODUCTION

Black holes are regions in spacetime with a strong
gravitational field from where no information-carrying
signals can escape to infinity. The idea of black holes has
proved to be highly fruitful. Originally, black holes arose
as special solutions of the Einstein equations. Later, it
was understood that the black holes may play an impor-
tant role in the Universe. The theoretical discovery by
Hawking of quantum radiation from black holes provid-
ed us with understanding that black holes may also play
the role of a “Rosetta stone” to relate gravity, quanta,
and thermodynamics.

Many properties of black holes are directly connected
with the nontrivial causal structure of spacetime in the
presence of a black hole. There are also a number of fun-
damental results (such as the increasing of the black hole
surface [1], uniqueness theorems [2-6], mass formulas,
and thermodynamic analogy [7]), which for their proof
require the Einstein equations.! An interesting problem
is how far these results can be extended to other versions
of the theory of gravity. Recently, this problem has be-
come important for string theory because it was found
that black-hole-like solutions may play an important role
in it.

The problem of the unification of quantum mechanics
with general relativity is almost as old as both these
theories. A quite remarkable development in solving this
problem was proposed by string theory. This theory not
only provides us with manifestly covariant reliable per-
turbative calculations in second-quantized theory, but
also gives hope for treating non-perturbative effects, such
as the change of spacetime topology.

The evolution of a classical string is described by a
two-dimensional (2D) sheet in a d-dimensional target
space. If g is an external metric in the target space, then
the conditions of self-consistency of quantum string equa-
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tions require that the metric g obey special relations.
These relations, determined by setting the 8 function to
zero, can be obtained also by varying some effective ac-
tion [9]. This effective action contains the curvature. It
describes the theory of gravity, which is a generalization
of Einstein theory and which (for bosonic strings) in addi-
tion to the gravitational field g contains also the dilation
field ® and tachyon field T (as well as some other fields).

In this construction one can choose the number d of
target space dimensions arbitrarily. The case when d =2
plays an important role. It is singled out by the property
that, because of the absence of the transversal directions,
a string can not vibrate. As a consequence, the string-
motivated 2D gravity contains only one dynamical degree
of freedom, which is connected with the tachyon field. It
was shown by Witten [10] and Mandel, Sengupta, and
Wadia [11] that in the absence of the tachyon field
string-motivated 2D gravity allows black-hole-like solu-
tions. These solutions, their properties, and quantum
effects in their presence appeared to be highly important
for string theory [10-14]. On the other hand, in the
framework of these 2D toy models, the most intriguing
problems of black hole physics (such as singularities, loss
of quantum coherence, and final state of an evaporating
black hole) can be analyzed. Many papers on this subject
appeared recently. Without pretending to be complete,
we refer only to some of them [15-27].

In this paper’ we would like to stress another side of
the problem. Namely, string-motivated 2D gravity pro-
vides us with a nontrivial example of the theory which al-
lows the same nontrivial causal structure of spacetime as
black holes in general relativity, while the basic equations
of the theory are quire different. The possibility of a
rather detailed study of 2D string-motivated gravity al-
lows one to obtain and compare those results of “stan-
dard” black hole physics which are based on the equa-
tions.

The main aim of this paper is to develop the theory of
2D black holes. It is remarkable that many basic results

2This paper is an extended version of the invited talk given at
the “Black Holes, White Holes, and Wormholes— A Symposi-
um in Honour of Werner Israel” (May 20-23 1992, Banff).
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of “standard” 4D black hole physics find their counter-
part in the 2D case.

This paper is organized as follows. Our starting point
(the 2D effective action and basic equations) is formulat-
ed in Sec. II. The uniqueness theorem for 2D black holes
in the absence of a tachyon field is proved in Sec. IIL
The mass formula for 2D black holes is obtained in Sec.
IV. Static solutions with the tachyon field are discussed
in Secs. V and VI. It is shown that the complete system
of 2D equations for the gravitational, dilaton, and ta-
chyon fields can be reduced to one nonlinear second-
order equation for the tachyon field (“the master equa-
tion””). The existence of regular solutions of the master
equation which generate black hole metrics with a non-
vanishing tachyon field is proved. The analytic continua-
tion of static 2D black hole solutions to the Euclidean re-
gion is discussed in Sec. VII. The reduced Euclidean ac-
tion approach developed in Refs. [28-31] is used to re-
late the entropy of a charged 2D black hole with the
value of the dilaton field at the horizon. Four laws of 2D
black hole physics are formulated and discussed in Sec.
VIIL.

The sign conventions of Misner, Thorne, and Wheeler
(MTW) [32] and the units in which G =#=c =1 are
used.

II. BACKGROUND THEORY
AND BASIC EQUATIONS

Our starting point is the action
§=S[g®,T, A]
E—f d>xV'—ge®R +L)—f dxVThle®K , (2.1)
v av

2

where
L=(V®)— DT> +p?|T|*+A—LF, F*, (2.2)
D,=V,T—ied,T, (2.3)
F,=V,A,—V, A4,. (2.4)

This action is to be considered as describing 2D gravity
gravity, ®, T, and 4, being the dilaton, tachyon, and
electromagnetic field, respectively. The surface term is
added in Eq. (2.1) in order to make the variation pro-
cedure self-consistent. The quantity 4 is the induced
metric on 9V, and K is its extrinsic curvature.

In the absence of an electromagnetic field, the action
Eq. (2.1) coincides with the effective action for closed bo-
sonic strings [9-11,33,34]. We include the electromag-
netic field into the action (2.1) because many results of
2D black hole physics can be easily obtained in the gen-
eral case of charged black holes. On the other hand, the
consideration of charged black holes allow us to trace
more deeply the analogy between 2D black hole solutions
and 4D ones. This action (for uncharged tachyons) natu-
rally arises in the 2D heterotic string theory [35].

The following system of equations is obtained by vary-
ing the action (2.1):

T,,=0, 2.5)

O®+(Ve)*— LR +L)=0, (2.6)
e ®*DHe®D,T)+u*T =0, 2.7)
(e®FH). =e®JH (2.8)
where
T, =e®®,,+D,TD,T+F,F,“~g,U]l, 2.9

U=00+LV®P2+L DT> 1p?| TI>— 1A+ LF gF# ,

(2.10)

e, m = =
J#——?(TD#T—TD#T) . (2.11)
This system can be simplified. The electro-

magnetic-field strength being antisymmetric, the tensor
can be written in the form

F,,=Fe,, , (2.12)
where e,,=e[,,; and e, =(—g)!"/>. The electro-
magnetic-field equation reads now

(e®F) ;= —e,,e®J"” (2.13)
and
T, =e®[®,,+D,TD,T—1g, (R+2F)].  (2.14)

Instead of Eq. (2.6), one may use the following relation
which follows from it and from the trace equation T, =0:

(V®)*—|DT|*+R —p?|TI>*—A+3F*=0 . (2.15)

Before considering a general case, it is worthwhile
making the following remark. In the absence of the ta-
chyon and electromagnetic fields, the basic system of 2D
gravity equations reads

(b;,uv_%g,uvR :0 > (216)

(V®)?’+R =M\ . (2.17)

It is possible to show that the solutions of these equations
are identical to the solutions of the theory described by
the action

§=§[g]=de2x\/—_gR In|R|, (2.18)
provided one puts ®= —In|R|. In the latter case, the pa-
rameter A arises as the integration constant.

The action (2.18) may be considered as the special lim-
iting case (y—0) of a nonlinear in curvature two-

dimensional gravitational theory,
§'=58'[g]= fvdzx\/-—_gR t+y (2.19)

discussed in Ref. [36].

III. TACHYON-FREE SOLUTIONS.
UNIQUENESS THEOREM

In this section we show that the tachyon field is the
only dynamical one in the theory (2.1). In the absence of
this field, the solutions are static; i.e., they allow a Killing
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vector. To prove this we note that for T =0 the 2D
gravity-field equations are of the form

— 2
®,,,=1g,, (R +2F?). 3.1

We assume at first that ®.,70. Then Eq. (3.1) implies
that the vector field

E=—etod, (3.2)

obeys the Killing equation gw)zo. Moreover, Egs.
(2.13) and (3.2) show that

£P,, =0, EF,=0, (3.3)

and hence the dilaton and electric fields are constant
along the Killing trajectories. This result may be con-
sidered as a 2D version of BirkhofP’s theorem.?

In two-dimensional space, the tensor §,§,.,, vanishes
identically, and according to Frobenius’s theorem, one
has

§.=Bn, . (3.4)

The scalar functions 7 and ® can be chosen as coordi-
nates. One can use Eq. (3.1) to show that =B, and the
metric in these coordinates takes the form

2
ds?>=—Bdn*+ d}? . (3.5

The general solution to the electromagnetic-field equation
for T =0 reads

F=Qe ®. (3.6)

Taking into account that the curvature R for the metric
Eq. (3.5) is

_ d’B
do?’

one can find the solution of Eq. (3.1) for u=v=0 in the
form

B=B,+Be *+Q% 2, (3.8)

(3.7

The other equations are satisfied, provided the integra-
tion constant B, is chosen so that

By=A . (3.9)

The obtained solution can be rewritten in a more familiar
way by introducing new coordinates

t=an, r=a '®, a=|A|"2. (3.10)
In these coordinates,
2

ds2=—Adt2+i’;— : @3.11)

2
4 =1—2—Me_‘"+—Q—2e_2‘", (3.12)

a a
P=ar, F=Qe . (3.13)

3The theorem of uniqueness for uncharged black holes was
also proved in Ref. [38].

(Here we put M = —B, /2a.)

For M = Q this solution describes a charged (with
charge Q) two-dimensional black hole, the coordinates ¢
and r being valid out of the horizon defined by the rela-
tion

r=ry=a 'Infa” [ME(M2—-0Q?)'?]} . (3.14)

The global structure of this solution is the same as for the
four-dimensional charged black hole. For Q >M the
horizons are absent, and instead of a black hole one has a
naked singularity. The above-described charged solu-
tions were obtained in Refs. [35,37]. For Q =0 the solu-
tion (3.11)-(3.13) coincides with the black hole solution
in string theory [10,11] (see also, [16,17]).

Now we consider the degenerate case when @.,=0. In
this case ®=const and it cannot be used as the coordi-
nate. Under the assumption ® =const, the complete set
of field equations is reduced to the relations

F=a, R=—-2a%. (3.15)

In the absence of an electric field, these relations show
that the only possible solution is flat spacetime and this
solution exists only if the cosmological term A=a? in the
action Eq. (2.1) vanishes. In the presence of an electric
field, there are new nontrival solutions.* For these solu-
tions the curvature is constant and the two-dimensional
spacetime metric is an anti—de Sitter one. This metric
can be written in one of three forms:

dst=—e 22 +d g, (3.16)
ds’= —sinh*(a&)dn*+dE&?, (3.17)
ds?=—cosh¥(a&)dn*+d & . (3.18)

It is worthwhile noting that the metric in the form (3.16)
can also be obtained as a limiting case of a metric near
the horizon of a charged extreme black hole [Egs. (3.11)
and (3.12)]. For this purpose one must put

Q

M=0, r=éln Q| et (3.19)

and consider the limit when £— o. Equation (3.13)
shows that in this limit F =a and ®=In(Q /a)=const.
All the degenerate solutions allow three parameter
groups of isometries.

IV. MASS FORMULA. SURFACE GRAVITY

Though in the presence of a tachyon field the generic
solution of 2D gravity equations is time dependent, there
are also static solutions. We prove the existence of these
solutions describing a static black hole with tachyon
“hairs” in Sec. VI. In this section we describe the generic
properties of static solutions. In particular, we prove the
so-called mass formula, which relates the asymptotic

4The author is grateful to Robert Mann, who has indicated on
this possibility.



5386

properties of the black hole metric with the parameters of
the event horizon, and obtain the useful integral repre-
sentation of the surface gravity of a black hole.

We begin by deriving the mass formula. Let us assume
that all the field equations except the gravitational one
[Eq. (2.5)] are satisfied. The coordinate invariance of the
action (2.1) implies that

™ =0, @.1)

where TH¥ is given by Eq. (2.9). We assume that the
gravitational field is static and allows a timelike Killing
vector £*. The general form of a static metric is
dx?
ds?=—Exdt?+ — ,
§ P
where §25—§#§". The ambiguity in the choice of a
coordinate x can be eliminated by imposing a gauge-
fixing condition. The condition P =£? was used in the
previous section.
In a static gravitational field, one has

(T*E,).,=0 .

4.2)

(4.3)

In two dimensions Eq. (4.3) implies that there exists a
scalar function m such that

m,=—eg THE, . (4.4)

[Equation (4.3) plays the role of the integrability condi-
tion for Eq. (4.4).] Straightforward calculations show
that the “mass function” m at a point x can be written in
the explicit form [37]

m(x)=e® w(x)&(x)+@(x)Q(x) , 4.5)
where
E=1£,£"7, w=lww'?, w,=V,n§, (4.6

@(x)= A ,(x)E%x) is the value of the electric potential at
a given point, and Q (x)=e®*'F(x) is the electric charge
“inside” this point. In what follows we assume that the
Killing vector is normalized by the condition
&(x = o )=1 and we choose the electric potential to van-
ish at infinity.

Equation (4.5) is valid for any static gravitational field.
In the case when the field equations TW:O are satisfied,
Eq. (4.4) implies that m =const. In other words, Eq.
(4.5) gives the first integral of the gravitational-field equa-
tions. This first integral can be used to relate the mass of
a black hole seen by a distant observer with the parame-
ters of the black hole horizon. The asymptotic value of
e®wé at infinity coincides with the Arnowitt-Deser-
Misner (ADM) mass M of the black hole and hence
m =M. On the other hand [see Eq. (A6)], the limiting
value of w& at the horizon gives the surface gravity of the
black hole:

k=[w&ly . 4.7)
Hence we have
M= k49,0, (4.8)

where @y, is the electric potential and Q =[e®F] is the
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charge of the black hole. The obtained relation [Eq.
(4.8)] is the desired mass formula for 2D black holes.

For the tachyon-free solutions (3.11)-(3.13), the values
of &y, k, and @y are

2__p2y\1/2
®,=In M-HMa Q) , 4.9)
. a(MZ_QZ)l/Z

C MAM—0Y)' 10
Pu Q . (4.11)

= M+(M2—Q2)I/2

These formulas resemble the analogous formulas for a 4D
Reissner-Nordstrom black hole.

In the presence of the tachyon field, these relations are
modified. It is interesting that some conclusions about
the properties of the surface gravity of a black hole can
be obtained in a quite general form without using explicit
solutions. We obtain now a useful representation for the
surface gravity k. Our starting point is Eq. (A10) of Ap-
pendix A:

k=4[ REWGS, .

The integration in the right-hand side is taken over the
exterior of the black hole.

In a static case, £#®,, =0 and hence £, ®*=E£"P, .
This equation together with the gravitational-field equa-
tion (2.5) allows one to show that

(E*PH—grdi®)  =0DE*=(R +2F*—|DT|*)E" .

(4.12)

(4.13)
This relation allows us to rewrite k in the form
k= [ (gleom)), a3+ [ (—F+1IDTgds, .

(4.14)

The first integral in the right-hand side can be taken by
using Stokes’ theorem:

fz( Elagir] ), dZa=teq, glagin]

_é_wuq)m

2w

(4.15)

H

The quantity in the right-hand side of Eq. (4.15) vanishes
at the horizon, while at the infinity it gives

o
> -

(4.16)

oc

After simple transformations we finally obtain the desired
representation for the surface gravity of a charged 2D
black hole:
a

2
~ fz[F2+ A,J"MEdS, .

K=

1 2.2 21
+Ef2[|VT| e?4,A*|T*)E%d3,
4.17)

This relation shows that in the absence of an electromag-
netic field the surface gravity of the black hole with ta-
chyon hairs is always higher than a/2, the value of the
surface gravity for tachyon-free solutions.
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V. STATIC SOLUTIONS
WITH TACHYON FIELD. MASTER EQUATION

In this section we consider solutions describing 2D
black holes with tachyon hairs. For simplicity, we as-
sume that a black hole has no charge and we put 4, =0.
The tachyon field is also assumed to be noncharged. (We
remind the reader that this case is of high interest for
string theory.) The following set of equations can be
used as a complete system of equations for the case under
consideration:

%?QW:%R , (5.1)
Ob=—(VT)?+R , (5.2)
(V®)?—(VT)*+R —pu*T?—a?=0, (5.3)
e " ?[V(e®VT)]+u*T=0. (5.4)

The first two equations are obtained from Eq. (2.5) by ap-
plying to it the projection operator £#£*/£? and by taking
the trace of this equation. Equation (5.3) is the constraint
equation (2.15), which together with the tachyon-field
equation (5.4) guarantees the satisfaction of the dilaton-
field equation (2.7).

We write down the static metric in the form

dx?

ds?=—e2Ugs2+ i )
s e“dt P (5.5)
where

U=1ln[g? . (5.6)

The Killing vector is normalized by the condition
|E%(x = 0 )| =1, so that we have U(x = )=0. Denote
by w the acceleration of a Killing observer:

w =|w,wh!"?, w,=U, . (5.7)
For the metric (5.5), one has
122
w=L2"45 _ypi (5.8)

& dx

[Here and later ( )’=d /dx.] We eliminate the ambiguity
in the choice of the coordinate x by imposing the condi-
tion

x=—In¥ . (5.9)
a

For this choice we have
2

P =%2—e_2" (5.10)
and

ds’=—e?Vdt’+a 2e>U"%dx? . (5.11)
The curvature R for this metric is

e—Zx

R =-20U=—2¢? U (u'—1). (5.12)
Equation (5.1) can be rewritten as

wh®, =1R , (5.13)
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which in the chosen coordinates reads

'=1-U". (5.14)
The solution of this equation is
®=x U+ . (5.15)

[The integration constant is denoted by In(M /a).] Equa-
tion (5.2) yields the relation

1—T?—U"+ U, =0, (5.16)
U
while Eq. (5.3) gives
—7"2
Ut=-—p T (5.17)
1+e*X(1+B°T*)
Here B=p/a. Finally, Eq. (5.4) reads
" _U" o ook
U'2~FT +B°e“*T=0. (5.18)

By combining Eq. (5.17) with Eq. (5.18), it is possible to
obtain the following equation which contains only the ta-
chyon field T:

(e "+ 1+BTHT"+(1—-T")(1+ BT T’

+BX1—T)T=0. (5.19)

It is easy to verify that Eq. (5.16) is identically satisfied.
To summarize, we proved that the general static solu-

tion of the 2D gravity equations (5.1)—-(5.4) can be written

in the form (5.11) and (5.15), where

P 172

dx , (5.20)

1+e?*(1+B°T?)

Ux)=- [~

X

and T is a solution of Eq. (5.19). We shall refer to Eq.
(5.19), the solutions of which generate the solutions of the
complete system of equations (5.1)—(5.4), as the master
equation.

VI. TACHYON HAIRS

For a static black hole, the event horizon coincides
with the Killing horizon and hence it is given by the
equation U = — . This infinite value of U cannot be
reached at any finite value of the coordinate x because ac-
cording to Eq. (5.17) the value of |U’| remains finite
(U’ <1). Hence the horizon (only if it exists) is located
at x = — . (At this point the acceleration w of the Kil-
ling observer is infinite.) We assume that our solution de-
scribes a black hole and hence possesses the horizon. By
using the mass formula (4.8), we get the following expres-
sion for the surface gravity:

=gy lim V-, 6.1)

X — — 0

k=Me
It means that, near the horizon,

lim U'=1. (6.2)

X— — o0

U~x+InX |
a

Equation (5.17) allows us to conclude that a static solu-
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tion has a regular horizon if and only if the tachyon field
obeys the boundary conditions

lim T'=0,

X-—— o0

lim e*T=0. (6.3)
X — — o0

We show now that the boundary conditions (6.3) single
out a regular, decreasing-at-spatial-infinity solution of the
master equation (5.19), which is unambiguously specified
by its value Ty =T(— o). By using Egs. (5.20), (5.11),
and (5.15), this regular solution allows one to get the
metric and dilaton field. The solution obtained by this
procedure is regular and describes a static black hole
with tachyon hairs.

We begin the proof of the above statement by consider-
ing the asymptotic behavior of solutions of the master
equation (5.19) near x = — . For this purpose it is con-
venient to introduce a new coordinate p=e”*. The master
equation in these coordinates takes the form

dT

(1+p22) ar
dp’

= +BWT=0,
dp

1z 4pwz
P

(6.4)

where Z =1+p*T> and W =1—p*dT/dp)*>. The
boundary conditions (6.3) imply that near the horizon
(p=0) the master equation (6.4) has the asymptotic form

2
d°T s 1 dT
dp* pdp

and a solution obeying the boundary conditions (6.3) al-

lows the following expansion near p=0:

I32
1+~p

+p*T =0, (6.5)

T=T, (6.6)

This regular solution is defined by its value T, at the hor-
izon.

As the next step, we show that for any solution of the
master equation regular at the horizon one has |T’| < 1.
In order to show this, we rewrite Eq. (5.18) as the integral
equation

(Tj, Z—ijBZU'ez"de , (6.7)
and use Eq. (5.17) to present it in the form

T - _ 2x 22\1172 % p2p7r,2x
e [1+e>(1+B2TY)] fwBUe Tdx .

(6.8)

The convergence of the integral in the right-hand side of
Eq. (6.8) at the lower limit is guaranteed by the boundary
conditions (6.2) and (6.3). At the horizon, |T’| vanishes.
We assume that |7’| reaches the value 1 at some finite
value x =x,. Equation (6.8) implies that it may happen if
either, near this point, T is infinitely growing or the in-
tegral in the right-hand side of Eq. (6.8) is divergent at
this point. In the latter case, T also must be divergent
near x, because, according to Eq. (5.17), |U’|<1. But
infinite growth of T at x, means that 7" is also infinite at
this point and hence |T’| reaches the value 1 at some

point x; <x,. The obtained contradiction with our ini-
tial assumption shows that |T’| cannot reach the value 1
at any finite point x < .

In Appendix B it is shown that any solution of the
master equation, for which |T’| < 1, remains finite and is
decreasing at infinity provided 8 < 1. This result together
with the above proved statements means that a solution
of the master equation (5.19) finite at the horizon is glo-
bally regular and vanishing at infinity. The metric (5.11)
and dilaton field (5.15) corresponding to this solution are
also evidently regular.

VII. EUCLIDEAN 2D BLACK HOLE

The study of the analytic continuation of 2D black
hole spacetime and its Euclidean section is important for
understanding quantum aspects of black hole physics and
for the development of a thermodynamical analogy. The
metric of the Euclidean black hole can be obtained from
Eq. (4.2) by putting 7=ir:

i 2
dsézgﬁvdx“dx"=§§;drz+—d; . (7.0

Denote by / a proper distance from the Euclidean hor-
izon £2=0 (dl=dx/P'/?). Then the metric Eq. (7.1)
near the horizon has the form

dséz;czlszz—f-dlz R (7.2)
where
k=lim(w&)= p12ds (7.3)
10 dx |,_o

is the surface gravity of a black hole. The Euclidean
black hole is defined as a regular manifold with the
metric (7.1). The regularity of the metric at / =0 implies
that 7 is periodic with a period 27 /k [7€ (0,27 /k)].

Various thermodynamical quantities for a system con-
taining a black hole can be obtained by differentiation of
the Massieu function:

— %anGC : (7.4)
where Z ¢ is the grand-canonical partition function. It
is assumed that a black hole is inside a cavity with a
boundary B, and 3, ¥4, and ¢ are the inverse tempera-
ture, the value of the dilaton field, and the chemical po-
tential at the boundary. The chemical potential for a
charged black hole is conjugate to the electric charge,
and hence it is an electrostatic potential energy per unit
charge. The electric charge Q and the value of the dila-
ton field at the horizon, ®, are not fixed and enter the
Massieu function as parameters. In Refs. [28—31] there
was proposed a method for obtaining an approximation
to InZ ;¢ based upon finding the stationary points of the
Euclidean action [39] from which the constraints have
been eliminated. We use this approach in order to show
that the entropy of a charged 2D black hole is

UB, Py, pp)=

Sy=2me" ¥ . (7.5)
We also show that for an uncharged black hole the entro-
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py coincides with the value of the action evaluated for
the Euclidean black hole solution after subtraction of the
vacuum contribution from it.’

Following [31], we rewrite the metric Eq. (7.1) in the
form

dx?
P b
where 7 is periodic with a period 27 and x €[0,1]. The

boundary surrounding a black hole is located at x =1.
Denote

B(l):BB ’ q)(l)—__(pB ’ q)(o):(pH .

ds’=Bdn’+ (7.6)

(7.7)

Then the inverse temperature 8 measured at the bound-
ary is

27
B= fo BYdn=2mB)* . (7.8)

The regularity condition of the metric and dilaton field at
the origin give

[BI/Z(PI/Z)']X:O:I ,
[PD"], —o=[(VP)*],_,=0.

Here ( )’=9/0x.
The vector potential for the electromagnetic field can
be chosen in the form

(7.9
(7.10)

A, dxt=—igp(x)dn , (7.11)

where @(x) is a real function obeying the boundary con-
ditions

Bes
2

The reduced action is obtained from the Euclidean ac-
tion

SEZSE[gy(b’A]
=—1 [ d%xVge (R +(VOP+a ~1F, F*]
—f demeq)K »
av

by substituting the solution of the constraints and bound-
ary conditions into it. The electromagnetic-field con-
straint at 7 =const,

p(0)=0, @(1)=

(7.12)

(7.13)

(e®F™),,=0, (7.14)
gives
p 172 ,
3 e’ | =0. (7.15)
This equation has a solution
B 172
'=0 ) e % (7.16)

5Another approach for the calculation of the entropy of a
black hole was proposed in Ref. [38]. For a neutral black hole,
the result of [38] coincides with Eq. (7.5).
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The gravitational constraint
satisfied, while T1717 =0 gives

T,,=0 is identically

[(P®?—a?)e®—Q% ?)=0. (7.17)
The solution of this constraint is
W=P®?’=a?>—De ®*+Q% 2%, (7.18)

Equation (7.9) can be used to get the following expression
for the constant D connected with the mass of a black
hole M:
D=2aM=a%""+Q% *¥ . (7.19)
Denote by I the reduced action, which is obtained
from the Euclidean action by substituting the constraint
solutions and using the boundary conditions. The calcu-
lations give

I=I1(B,®p,pp; Py, Q)
=—Be¢31/73—2ﬂe¢H—BQch , (7.20)
where
Wy=(1—e " 8)(g2—Q2 2~ %) (7.21)

The stationary points of the reduced action with
respect to the parameters @5 and Q are defined by a
differentiation of I with respect to these parameters with
B, @y, and @y fixed. By using these relations, we get

Qe'q}”—e_% )
q)Bz e e—— (722
V' Wp
4‘n'\/_i¥73e¢ﬂ \/w;
= S . By » (7.23)
aZe H_QZe H a
where
1 27
=—= 7.24
Bu T, x (7.24)

with k given by Eq. (4.10). The entropy of the black hole
is defined by the relation

ol
Sy=|B=—— —I. (7.25)
u= |P B |05
Finally we get
Sy =2me" ¥ (7.26)

In the 4D Einstein theory of gravity, the entropy of an
uncharged black hole coincides with the value of the ac-
tion calculated for the Euclidean black hole solution after
subtracting from the latter the vacuum contribution. The
same is true for a 2D black hole. One can demonstrate it
by evaluating the value of I given by Eq. (7.20) for the
black hole metric. Another more direct way is to use the
dilaton equation (2.6) and to transform the Euclidean ac-
tion (7.13) to the form
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SE=—fydzx\/}g';e¢[DEq>+(vK>)2]
7
+ [ dxVhge K

= fanx\/hEeq’(n;“d);“—KE) . (7.27)
The subscript E in these relations indicates that the cor-
responding quantities are to be calculated in the metric
(7.1) of the Euclidean black hole.

It should be stressed that the Euclidean action is diver-
gent at large distances already for flat 2D spacetime
where

ds(=dr*+dl*, ®=al . (7.28)

On the other hand, the difference between the action Sg
and its flat-space limit Sg is finite. Namely, this
difference Sy =Sz —Sg, which describes the change of
the Euclidean action due to the presence of a black hole,
has physical meaning and it is directly related to the
black hole entropy. The following procedure allows one
to define Sy. Denote by V(¢) the spacetime region
where the value of the dilaton field is less than or equal to
a given value ®, and let S;(®) be the corresponding
value of the euclidean action Eq. (7.27) calculated for
V =V (®). Then the black hole’s contribution to the Eu-
clidean action can be defined as
Sy = lim [Sg(®)—SAP)] .

¢

(7.29)

Here S2(®) is the value of the Euclidean action for a flat
metric (7.28) with the same periodicity in the imaginary
time coordinate 7 as for the black hole solution. By using
Eq. (5.8), the extrinsic curvature K of the line x =const
in the metric Eq. (7.1) can be written

172 d (&%)
kp=-L P2 2% _ (7.30)
- 2 g dx

The quantities n’#*®, , and K are regular at the Euclide-
an horizon. For a neutral (noncharged) black hole, the
contribution to Sy due to the horizon vanishes and we
have

SE(<1>)=—ZT”(é‘Ewe‘b-f-gEeq’n“(D;#) . (7.31)
The asymptotic form of S;(®) for large values of ® is

SE(¢)=2T7T(M—ae¢)+O(e_°), (7.32)

where M is the mass of a black hole. By subtracting from
this expression its flat space limit

Sp(®)=—27/k)ae® (7.33)
and taking the limit ®— o, we get
Sy= 27”M : (7.34)

This expression evidently coincides with Eq. (7.26).

It is interesting to note that the Euclidean action of a
4D black hole is proportional to its surface. In the 2D
case, the “‘surface” of a black hole is null dimensional (a

point) and there is no sense in speaking about its area.
Nevertheless, it might be useful to think about the value
of the dilaton field at the horizon as of some quantity
playing the role of the logarithm of an effective area of
the black hole in 2D black hole physics.

VIII. FOUR LAWS
OF 2D BLACK HOLE PHYSICS

In this section we make some remarks concerning the
thermodynamical analogy in 2D black hole physics. We
begin by considering general (not necessarily static) solu-
tions describing black holes and prove some results on
the behavior of the event horizon.

We assume that a spacetime described by a solution of
Egs. (2.5)-(2.11) is asymptotically flat. As usual, one
may define the event horizon as a line J (J"). The stan-
dard arguments used for the proof of the Penrose
theorem show that this line at its regular points is to be
null. Any null line in two dimensions is geodesic.
Denote by ¥V an affine parameter along the horizon, and
let /49, =03, be its tangent vector.

The results of the previous section allow us to conclude
that the entropy of a black hole is to be defined as

Sy=2me"" . (8.1)

The general equation which describes the evolution of
@, can be obtained by using the gravitational-field equa-
tion (2.5) and the expression (2.14) for T,,,. These equa-
tions imply the following relation, which must be satisfied
at the horizon:

d*®,
dv?

The subscript H in these relations indicates that the cor-
responding quantities are calculated at the horizon. The
solution of Eq. (8.2) under the assumption that the black
hole becomes static at a late time can be written as

Oy (V) =Py(0)— [ "av' [ "avTi(V"),  (8.3)

=[IMI"D,,),

alg=—1"D, TI=—1(V). (82

where ® () is the future asymptotic value of the dila-
ton field at the horizon. For our choice of the action, the
local “‘energy flux” of the tachyon field through the hor-
izon is non-negative [I1(¥)=0] and Eq. (8.3) implies that
@, (V) (and hence the entropy of the black hole Sy) is a
monotonically nondecreasing function of time. This re-
sult resembles the Hawking theorem for 4D black holes.

Equation (8.3) shows us also that for any moment of
time before the moment when the black hole parameters
reach their asymptotic values the value of d®y/dV is
strictly negative provided there was a flux of the tachyon
field through the horizon. This conclusion may look a bit
surprising. We show now that this behavior is natural
and is to be expected.

We illustrate it by considering two examples. We as-
sume at first that the spacetime region containing the
nontrivial time evolution is located between two moments
of the advanced time parameters V|, and V,. We assume
that before V| and after V, the spacetime is described by
static solutions. Figure 1 represents the Penrose diagram
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FIG. 1. Penrose diagram for a spacetime with an external 2D
black hole. The lines of constant values ®,>®,> ®;> P, of
the dilaton field are shown.

for spacetime for the case when before V| there was a
static eternal black hole. The null ray H representing the
event horizon being monitored back in the advanced time
V after passing the time-dependent region is propagating
in a static spacetime. For II >0 the event horizon H
passes in the region V <V, outside the apparent horizon,
and for decreasing values of V it crosses the lines of
smaller and smaller values of the dilaton field (see Fig. 1).
By using the explicit form of the solution (3.11)-(3.13), it
is easy to prove that in the absence of the tachyon field
the value of the dilaton field ® can be taken as an affine
parameter along null geodesics and hence in this region
O(V)=®,—d,V, where ®, and ;>0 are constants.
This result is in complete agreement with the negative
value of d®y/dV <0. If the initial eternal black hole
possesses tachyon hairs, then even in a static spacetime
there may be fluxes of this field through the horizon. In
this case d @y /dV is also negative, but its value might be
dependent on time.

Another possibility is shown at Fig. 2, which
represents the Penrose diagram for the spacetime of a 2D
black hole which arises as a result of tachyonic matter
collapse.® In the flat region lying before the beginning of
the collapse, the dilaton field ® can be chosen as the
affine parameter, and being monitored back in time, this
parameter along the horizon is monotonically decreasing
until its asymptotic value — .

After the discussion of the general behavior of the
event horizons, we are able to formulate the four laws of
2D black hole physics. The analogue of the zeroth law of
thermodynamics is quite evident. For a static equilibri-
um configuration, the black hole temperature 6=« /27 is
constant at the horizon.

For the formulation of the first law, we assume that the
system incorporating a black hole switches from one stat-
ic state to another. The mass formula (4.8) shows that its
mass changes by

SM=8(e " )c+e o . (8.4)

%The behavior of the event horizon for the processes of 2D
black hole formation and evaporation in the 1/N expansion of a
two-dimensional model was analyzed in [15]. See also Refs.
[19,20,22,25,26].

FIG. 2. Penrose diagram for a spacetime in the case when a
2D black hole arises as a result of the gravitational collapse of
tachyon matter. The lines of constant values @, > ®,> ®;> P,
of the dilaton field are shown.

(For simplicity we consider the uncharged black hole.)
The variation of x can be found by using Eq. (4.17):

k=15 [ [(VIPEds, . 8.5)
Using the definitions of the entropy Sy =2we Pu and the
temperature 8=« /2 of a black hole, we get
SM=68Sy+1e 8 [ (VTVEeds, . (8.6)
The last equation (“differential mass formula”), relating
the change of the energy of a black hole to the change of
its entropy, plays the role of the first law in the thermo-
dynamical analogy. The second term on the right-hand
side of Eq. (8.6) describes the change of the contribution
of matter (the tachyon field) outside the black hole to the
total energy.
In the beginning of this section, it was shown that Sy
is a nondecreasing function of time,

85y >0, (8.7)

provided |/#D,T|3; Z0. The latter inequality (“weak en-
ergy condition”) is valid for a classical tachyon field, but
it can be violated as a result of quantum effects (e.g, dur-
ing the process of quantum evaporation of a black hole).
Nevertheless, one may expect that the generalized entro-
py (the entropy Sy of a black hole plus the entropy S, of
the quantum radiation) is to be a nondecreasing function
of time:

85, +8S,>0 . 8.8)

This inequality is the second law.

The third law, i.e., the statement that the temperature
of a black hole cannot be reduced to zero by a finite num-
ber of operations, is evidently valid for uncharged black
holes because, for them, 6=a/4w. For charged
tachyon-free black holes, Eq. (4.10) shows that any at-
tempt to reach 6=« /27=0 must destroy the black hole
in the same manner as happens in the 4D case. It means
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that the same arguments as in the 4D case [40] can be ap-
plied to 2D black holes. It would be interesting to obtain
a rigorous general proof of the third law for 2D black
holes.

In conclusion, we make some remarks concerning
tachyon  hairs. The  positive integral J[T]
= f 2(VT)2§"‘d 3, standing in the right-hand side of Eq.
(8.6) vanishes only for tachyon-free solutions. It may be
used to characterize the deflection of a solution describ-
ing a black hole with tachyon hairs from a tachyon-free
one. The classical radiation of the tachyon field carries
away energy, and hence it decreases the total mass of a
black hole. On the other hand, the second law (8.7) im-
plies that the entropy of the black hole cannot decrease,
and hence for this process SM —06Sy =0. The first law
allows one to conclude that 6J[T]<0. In other words,
by radiating the tachyon field, the black hole becomes
closer to its “no-hair state.” It means that one may ex-
pect classical instability of tachyon hairs unless there ex-
ists some conservation law preventing this process.
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APPENDIX A:
GEOMETRY OF A STATIC 2D SPACETIME

This appendix contains some useful results concerning
the geometric properties of static two-dimensional space-
times.

Let £ be a timelike Killing vector

£ =0 . (A1)
Then
§a;B;Y=RaBy5§5 ) (A2)

In the 2D spacetime, §,§,,,;=0. By using this identity,
it is easy to prove that

Euv=8uw, —Ew, = —8fwe,, , (A3)

where £=£,£%"2, w=|w,w?® % and w, =V In.
The Killing horizon (which in a static spacetime coin-
cides with the event horizon) is defined by the equation

£2=0. (A4)

Since £ is constant at the horizon, the vector (§2);y is
normal to it and hence

_%(gz);VEguév;p:ng > (AS)

where « is the surface gravity of a black hole. It is easy
to show that

k=[Ew]y , (A6)

where the subscript H indicates that the limit is taken for
a point at the horizon.
The Eq. (A2) implies

P = JRE™ . (A1
By using Stokes’ theorem, it is easy to show that
1 REd3,= [ 600 = 1eps )z . (AD)

In the case of a static 2D spacetime with a black hole, 02
consists of two points: infinity and the horizon. The
value of eaﬁga;ﬁ vanishes at infinity, while at the horizon
it is

‘;—[eaﬂga;B]H =K . (A9)

By combining these formulas, we get the following useful
expression for the surface gravity:

K=?szgad2a :

where the integration is taken over the part of the Cau-
chy surface lying outside the black hole.

(A10)

APPENDIX B: ASYMPTOTIC BEHAVIOR
OF SOLUTIONS OF THE MASTER EQUATION

In this appendix we prove the results concerning the
behavior of the solutions of the master equation (5.19) in
the asymptotic region x — oo. In this region, e " <<1,
and the master equation takes the form

A+RTHT"+(1 =T +BTHT' +B(1—T')T =0 .
(B1)

By introducing new variables T\ =T and T,=T", this
second-order equation can be rewritten as the following
system of first-order equations:

T,=Z,(T,), a,b=1,2, (B2)
where

Z,=T,, Z,=—(1—=T}H[T,—F(T))], (B3)
and

F(T,)=—?ﬁ:};—lﬁ . (B4)

Figure 3 represents the phase plane for this system.
There are three lines (y,y ) in this plane where Z, van-
ishes. They are described by the equations T,=—1
(y_), T,=+1(y,),and T,=F(T,) (y). We denote by
R _ (R, ) the region lying between y and y , (between y
and y_). The curve defined by the equation T, =F(T,)
has a maximum at the point B=(—1/8,8/2) and a
minimum at the point A =(1/8,—pB/2). It passes
through the origin O of the phase plane, and it has the T,
axis as its asymptotes for |T;|— . Z, vanishes at the
T, axis, and the integral lines of the vector field Z, cross
the T, axis perpendicularly everywhere outside the origin
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~

FIG. 3. Phase plane for the system (B2) and (B3).

O. The system (B2) and (B3) (and hence the phase plain)
is evidently invariant under the transformation

T,—~—T,, Ty—>—T,. (BS)

It was shown in Sec. VI that any solution of the master
equation regular at the horizon obeys the condition
T'?< 1. That is why for our purpose it is sufficient to re-
strict ourselves to considering solutions lying in the strip
|T,| <1 of the phase plane. We show that for <1 any
integral curve of the vector field Z, with the initial point
lying in the strip |T,| <1 reaches the origin O of the
phase plane. In order to prove this, we assume that there
exists an integral curve I which does not reach O. Let us
assume that this curve passes through some point p, of
the strip with the coordinates 7.°’ and monitor its behav-
ior.

Because of the symmetry (B5), without loss of generali-
ty we can assume that 7%’ >0. If T\ <0, then the solu-
tion can cross neither the T, axis nor y, at the point
where T, <0, and hence it intersects the T, axis. By the
assumption it cannot pass through O, and hence it
crosses the T, axis at some point p; with the coordinates
(0,T") (0< T4 <1). The value of dT,/dT, at this

point is —[1—(T%")?]. It is easy to verify that in the re-
gion T, >0,0< T, < T3 one has
dT,
<—[1—(T§")]. B6
aT, [1—(T5")7] (B6)

It means that I" crosses the T'| axis and enters the region
lying between the T, axis and y. It leaves this region
crossing y at some point ¢, lying between the points A4
and O. We denote the coordinates of the point g, by
(a;,—b,). After entering the R , region (where Z, >0),
the curve I' cannot cross y again at the points where
T, >0. By our assumption, it also cannot reach O. Thus
it crosses the T, axis at some point p,. For symmetry
reasons our previous considering can be repeated to show
that the curve I' after crossing the T, axis necessarily
crosses Y at some point g, lying between B and O.
Denote by (—a,,b,) the coordinates of this point.

The next step in the proof is to show that the transfor-
mation defined by the relation b,=f(b,) is a contrac-

tion. To show this we consider the line g;q'q"'q’"" shown
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in Fig. 3. Its part ¢g,q’ is a horizontal line. The part
q"'q’" is vertical, and the direction of the part ¢'q"’ coin-
cides with the direction of the vector field Z, at the point
q'. Simple arguments show that the curve I' after passing
through the point ¢, cannot cross the line g,q'q"'q""". It
means that b, <b), where (—a5,b}) are the coordinates

of a point ¢'"’. It is easy to find that
B?b,(1—b?)

by=——5——— . B7)
T a-b} 4B

Denote y =1—b?. Then

2
T 2 A— (B8)
ye+p(1—y)

The value of b, is less then B/2. For B<1, the value of y
is positive. For positive y the function W is positive and
it reaches its maximum value W, , =B/(2—pB) at y=p.
Thus we proved that, for <1,

2 _
b, =Wiy)

b, b, B
< < -3

b, b,
By our assumption, the curve I' cannot enter O. Hence,
after passing through g¢,, it will cross the curve y again
and again at the sequence of points which we denote g,,.
Let ((—1)""'a,,(—1)",) be the coordinates of g,.
Then one evidently has

<1. (B9)

b, 14 B

b <3‘;§<1 . (B10)

n

It means that b,—0 as n— 0, and the sequence of
points g, has the origin O as its limit.

The behavior of the integral line in the vicinity of O
can be described in an explicit form. The system (B2) and
(B3) in this vicinity can be linearized, and it has the
asymptotic form

Z,=T,, Z,=—T,+BT, . (B11)
The corresponding second-order equation

T"+T'+B*T =0 (B12)
has the solutions

T=C,e *"+C_e 7, (B13)
where

vi=1£(L—p)"2. (B14)

By using this asymptotic solution, one can verify that our
original assumption is wrong and the curve I' either
enters O after crossing the curve y a finite number of
times (it happens for B < %) or the curve I' has O as its
limiting point (for 1 <B<1). In both cases any solution
of the master equation regular at the horizon remains
regular and it is decreasing at infinity.
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