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We investigate the stability of the electroweak Z string at high temperatures. Our results show that
while finite-temperature corrections can improve the stability of the Z string, their effect is not strong
enough to stabilize the Z string in the standard electroweak model. Consequently, the Z string will be
unstable even under the conditions present during the electroweak phase transition. We then consider
phenomenologically viable models based on the gauge group SU(2)I X SU(2)~ X U(1)& L and show that
metastable strings exist and are stable to small perturbations for a large region of the parameter space
for these models. We also show that these strings are superconducting with bosonic charge carriers.
The string superconductivity may be able to stabilize segments and loops against dynamical contraction.
Possible implications of these strings for cosmology are discussed.

PACS number(s): 98.80.Cq, 12.15.Cc

I. INTRODUCTION

Over the last two decades, cosmic strings have evoked
a great deal of interest both as possible remnants of a
grand unified era in the early Universe as well as a possi-
ble mechanism for structure formation in the Universe
[1]. However, no compelling particle physics models ex-
ist that give rise to such defects. Recently, a defect that is
closely related to the "ordinary" cosmic string has been
found [2,3] in what may be the most compelling of all
particle physics models —the standard electroweak mod-
el. The defect is identical in its structure to the cosmic-
string solution found by Nielsen and Olesen [4] and may
be thought of as a cosmic string embedded in the stan-
dard electroweak model [5]. The difference now is that
the defect does not owe its existence to topology and con-
sequently may not be stable. The stability of the defect
depends on the parameters of the electroweak model [6].

In Ref. [7] the stability of the string in the standard
electroweak model was analyzed. This resulted in a map
of parameter space demarcating the regions in which the
string is stable to small perturbations from the regions in
which it is unstable. Given the known value of the Wein-
berg angle sin 0~=0.23 and the constraints on the

'Present address: Physics Department, University of Michi-
gan, Ann Arbor, MI 48109.

Higgs-boson mass mH & 57 GeV, it is clear that the elec-
troweak string is unstable. However, the analysis in Ref.
[7] was limited to the bare electroweak model. The issue
of stability must be reconsidered when one takes quan-
tum and thermal corrections to the potential into ac-
count. In essence, the question is whether the strings can
be stable at temperatures close to the electroweak phase-
transition temperature. If this is true, the strings may be
relevant to cosmology. We answer this question in Sec.
II where we map the parameter space as in Ref. [7] for
the case when thermal and quantum corrections are tak-
en into account. The results show that these corrections
increase the region of stability, but not to the extent of al-
lowing for stable electroweak strings in the standard
model even near the electroweak phase transition.

We then consider the question of whether there is any
realistic particle physics model in which one might ex-
pect stable embedded strings. We show that left-right
models [8] are good candidates. In Sec. III we consider
an SU(2)L X SU(2)z X U(1)s t model. The parameters
may be chosen such that this model gives acceptable par-
ticle physics and also contains stable strings. This gives
us a concrete example of a realistic particle physics model
with stable embedded strings.

The cosmology of embedded strings will be very
different from that of topological strings. The basic
reason for this has to do with the metastability of the em-
bedded strings versus the complete stability of topologi-
cal strings. In Sec. IV we speculate on the cosmology of
embedded strings. The results of this section should not
be thought of as firm conclusions but only as first guesses

46 5352 1992 The American Physical Society



46 METASTABLE COSMIC STRINGS IN REALISTIC MODELS 5353

intended to inspire future work. Section V contains our
conclusions.

II. STABILITY OF THE Z STRING
AT FINITE TEMPERATURE

W"'=8'" = A"=0, Z"= — e
v(r)

g
T

0
P=f(r)e' 4,

(2.4)

(2.1)

The addition of quantum corrections to the Higgs po-
tential can have a drastic effect on the vacuum structure
of the standard model [9]. The most important correc-
tion is in the form of a P ln($/M) term, which can desta-
bilize the potential at large P. However, our interests lie
at relatively small P where this term is quite small. We
have done a stability analysis including this term and
found that there is very little effect. Therefore for the
remainder of this discussion we shall ignore quantum
corrections and concentrate on those induced by finite
temperature effects.

The one-loop finite temperature effective potential for
the Higgs field can be written as [10]

2
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where the primes denote differentiation by r. Here a is
given by g =a cos(8~).

The functions also satisfy the boundary conditions

where we have assumed the string to be aligned along the
z axis, and r and 0 are polar coordinates in the xy plane.
The functions f and v are determined by the equations of
motion:
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where D and E are functions of the particle masses, and
can be approximated by

f (0)= v (0)=0, f ( ~ ) =f„,u( ao ) =—,2
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where f „

is the magnitude of the global minimum of Vr.
In order to study the solutions to these equations nu-

merically, it is convenient to introduce the dimensionless
quantities
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Here r)=246 GeV is the expectation value of P at the
minimum of the zero-temperature potential. Here we
have chosen to ignore temperature corrections to A, ,
which are logarithmic and should not affect our results
significantly.

As in the zero temperature case, Z-string solutions will
take the form

so that the equations take the simple form
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2 P
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where P=8A, /a and

(2.9)
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P, = —1+ 2ET
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The parameter P, carries all of the information about
finite temperature effects in the rescaled potential. It
takes on values between —1 at T=O up to 0.5, above
which P =0 becomes the true vacuum. For 0&P, &0.5,
P =0 is a local minimum, separated from the global
minimum at P =1 by a potential barrier. This assumes
the phase transition to be first order; in models with a
second order transition P, ~ 0.

Equations (2.9) and (2.10) can be solved using standard
methods. The string configurations that result, even in
the extreme P, =0.5 case, are not qualitatively different
than T =0 strings. In particular, both P(r) and V(r)
remain monotonically increasing functions of r.

The stability of electroweak strings at finite tempera-

E = J d x[ ,'G;;G,', + ,—'F~,,F~, —

+(D/Q) (DJQ)+ Vr($)], (2.12)

where i,j =1,2 and a =1,2, 3. The string solution that

ture can be determined in a similar manner to that for
zero temperature strings as described in Ref. [7]. Here
we will give a short review of the procedure, referring the
reader to Ref. [7] for details.

The energy functional for two-dimensional static solu-
tion in the electroweak model may be written in the stan-
dard notation of Ref. [11]:
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FIG. 2. Regions of stability for various temperatures for
fixed D/a =0.224 and E/a =0.019. Strings are stable in re-

gions below the solid lines and to the right of the dashed line.
The dashed line corresponds to the boundary of stability at the
phase transition.

III. METASTABLE STRINGS IN LEFT-RIGHT MODELS

As we have seen in Sec. II, the Z strings of the elec-
troweak theory are unstable to small perturbations for
physically reasonable values of the Higgs-boson mass and
the Weinberg angle, even when quantum and finite-
temperature corrections are taken into account. This
leads us to wonder if there are any well-motivated parti-
cle physics models that admit (meta)stable, embedded
strings.

A hint as to how to go about finding such a model
comes from the analysis in Sec. II. There we were essen-

disappear as the temperature drops below some critical
value. It is important to note, however, that even at finite
temperature the standard model value of sin (8~)=0.23
and mH & 57 GeV is still deep within the region of insta-

bility.
Another feature of the plot is that there appears to be a

lower bound to the sin (8~) at which there are stable
strings. The stability region for small p is unknown, due
to the fact that in this limit the strings become very thick
and are diScult to treat numerically. For the T=0 case
it was unclear whether the region of stability extended
down to small sin (8~) at small p. For the finite-
temperature case, all of the stability curves corresponding
to different P, should converge at P=O. This is because
the potential becomes unimportant in the Lagrangian in
this limit. From the figure it seems likely that the critical
value of sin (8~) at p=O is around 0.92. The absolute
lower bound for stable strings is thus given by the
P, =0.5 curve, and is =0.91.

tially trying to stabilize the string through modification
of the Higgs potential. Our failure to obtain stable
strings was due in some part to the small value of
sin (8~} required by the standard model. Thus, we are
motivated to look for extensions of the standard model
where the gauge sector of the theory is enlarged, allowing
for the presence of other Weinberg-type angles which can
take somewhat larger values.

A well-known extension of the gauge sector of the stan-
dard model is the left-right model based on the gauge
group SU(2)L XSU(2)z XU(1}z L [g]. One of the in-

teresting features of this class of theories is that they can
be compatible with known experimental results even if
the scale of SU(2)z XU(1)s L breaking to U(1)„is quite
low; i.e., 500 GeV to 1 TeV [12].

The field content of the model we consider is as follows
[the quantum numbers are the SU(2)L X SU(2)a
X U(1)~ L representation assignments]. The left-handed
quarks and leptons transform as (2, 1;—,

' ), (2,1;—1), respec-

tively, while their right-handed companions transform as
(1,2;—,

' ), (1,2; —1) (note that we have added a right-handed
neutrino state). The minimal Higgs content required for
the phenomenological viability of the model is
P-(1,2; —1), g-(1,3;2), b -(2,2;0). The right-handed
triplet y is required to give the right handed neutrino a
large Majorana mass so as to implement the seesaw
mechanism [13], while P is needed to yield the correct
pattern of symmetry breaking and 5 induces the Dirac
masses of all other fermions. The phenomenology of this
model was considered in Ref. 12. We assume that the
vacuum expectation values (VEV's) f&, fr, and v of P, g,
and b, respectively satisfy the hierarchy v «fr «f&.

From the viewpoint of constructing models with em-
bedded metastable strings, the advantages of the left-right
model described above are clear. We can just take the Z
string found in the electroweak model and embed it in the
right-handed sector. To the extent that v and fr are
much smaller than f&, we can neglect the back reaction
of b, and y on the string configuration described by P and
the right-handed neutral gauge boson Zz (these effects
are proportional to fr If&

). Thus the stability analysis of
Sec. II goes through without any changes except for the
replacement (g,g') ~(gx, gs L ). This implies that there
is a nontrivial region of the parameter space for which
our model will admit metastable strings.

While the strings of the left-right model are stable to
small perturbations, as it stands, it would appear that
they are unstable to perturbations along the string. In
other words, they are unstable to contraction (which
leads to the annihilation of the monopole-antimonopole
pair at the ends of the string). Since we expect that the
contraction time scale will be at most a Hubble time, if
these strings are to be of any cosmological significance,
we must find a way to make them more stable against this
mode of instability. One possibility is that if the strings
are supereonducting, a standing wave of charge carriers
can be set up along the string, which reflects off the
monopoles at either end. While the reflection coeKcient
is not unity, we can imagine that it is large enough so
that it will take some time before the string can rid itself
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of enough current so as to allow for it to contract away.
This mechanism for preventing the dynamical collapse of
string loops has been studied in some detail in earlier
work and it has been shown that there is a region of pa-
rameter space where current carrying loops can form
static rings, or, vortons. As we will see below, it is these
loops that will be most relevant from a cosmological per-
spective.

To show that the string is superconducting we start by
displaying the Higgs potential for the coupled P —X sys-
tem (note that this system is remarkably similar to the
triplet Majoron model [14,15]):

V(p, X)=k&(p p f&/—2) +A2(tr(X X)—fr/2)
+A, 3(p p f&/2)(t—r(x x) f r—/2)

+4(4'0 «(x x)—(t'xx'0)

+x5( [tr(x'x) ]'—tr(x'xx'x) ) .

We parametrize P and X in the following fashion:

(3.1)

(3.2)

X'/&2 X"
—x

(3.3)x +/&z

where the factors of 3/2 in X have been chosen so that if
D„xis the x covariant derivative, the tr[(D„x)D x] is
the correctly normalized y kinetic term. Note that y can
also be written as X=v'2(T3X++T+X+++T X ),
where I T+,T, T3 J are the generators of SU(2)„satisfy-
ing [T3,T+]=+T+, [T+,T )=T3. The action of
SU(2)z on X is via the commutator: T'8'„'X
—:[T' x) II'„'.

If A, , 2 4 5&0 and ~A, 3~ (2+A, ,A, 2, then V(((),X) is posi-
tive definite and P, X acquire the following VEV's:
&C') =f,«2, &x'& =f,«2

We now claim that given this potential, there are large
regions of the k, 2 3 4 5 parameter space for which y+'++
act as bosonic charge carriers on the P string. To show
this, we use the following argument, first given by Witten
[16]. First we show that it can be energetically favorable
for the components of y to be nonzero in the core of the
string where / =0. If / =0, the potential for X reads

V(/ =0,X)= A, ,f~/2+A2(tr(X X)—f—r /2)
—

A, 3(f&/2)(tr(x x)—fr/2)
+~ ([«(x'x))' —«(x'xx x)) (3.4)

This is extremized if (i) X=0, or (ii) either ~X ~

or 2A,2(tr(X X) f /2)=A, 2f /2. —It is easy to see that if
A2fx+A3f&/2&0, then X=O is a maximum of the po-
tential. Thus, in this case, nonzero values of y are ener-
getically preferred in the string core.

The above analysis is not sufficient to show the ex-
istence of bosonic charge carriers. We must check to see
that the kinetic term for y also allows for a nonzero value
of g in the string. We do this by showing that the equa-
tions of motion for y, linearized around g=0, admit

Here a~ =—Qg~+gs I, 8z is the right-handed version
of the Weinberg angle, and fNo(p) is the p part of the
string configuration. In the string, Zz takes the form
Zz(p)= —[v(p)/p]es, where v(p) is the Nielsen-Olesen
configuration for the vector field. We now linearize Eq.
(3.5) around x=0 and take the following form for the
perturbation of y++:

fiX"= exp( —i~, +r)g++(p) .

The linearized equation of motion for g++ (p) reads

—V g++ (p)+ V(p)g++ (P) =rv'++g++ (P),
where V(p) is given by

V(p) = ~sr+ ~3[fNo(p)' fy
/2]—

(3.6)

(3.7)

and V is the two-dimensional Laplacian. We see that at
p=o,

V= —(A2f r +A3f ~ /2),

and that V increases monotonically with p until it
reaches the asymptotic value of A,zf x. Thus, as l—ong as

12fr+A.3f&/2&0, V is negative definite and, as in
Witten s original analysis [16], the two-dimensional
Schrodinger equation above for g++ wi11 admit at least
one bound state with co++ (0. Thus, y++ is unstable to
forming a condensate on the string. A similar analysis
can be repeated for the other components of g, with the
result that under certain conditions, they too can con-
dense onto the string (except for x, since it has a nonzero
expectation value away from the string).

IV. COSMOLOGICAL SPECULATIONS

Here we speculate as to the possible cosmological irn-
plications of embedded strings. There are many uncer-
tainties in outlining any cosmological scenario involving
these strings because of the model dependence of many of
their characteristics. Here we will content ourselves with
outlining one of several possible scenarios in which ern-
bedded strings might be cosmologically relevant. We will
also try to compare and contrast the formation and evo-
lution of embedded strings with that of standard topolog-
ical strings.

Consider the production of strings in a phase transition
in the early Universe. At temperatures above the phase
transition temperature, the thermal fluctuations in

growing solutions. This will then show that in the back-
ground of the P string, X is unstable to the formation of a
nonzero condensate on the string. Let us first consider
the g++ equation of motion

—B„(B"X++—ia„cos20+ZgX++ )

=24(t (x'x) —f,'/2)X"
+~3(fNo(p»' fp

—/2)x"
+&,(X"+2X'X")X'* .

(3.5)
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~
—bl lg'

dn(l)=a dl .
2l2 (4.1)

The dimensionless parameters a and b will depend on the
probability of string formation while g is the correlation
length at the phase transition which we will assume is
given roughly by T, ', where T, is the temperature at
which the phase transition occurs. If the phase transition
is second order, the correlation length can actually
exceed T, ' by orders of magnitude, leading to a small
value of b in the above equation. Note that the exponent
of l in the denominator is 2 and not —,

' as might be expect-
ed from a scale invariant distribution. When the string
formation probability is low, the number density of open
strings will be similar to that in Eq. (4.1) but the overall
amplitude will be suppressed by a factor exp[ —(m

the fields will spontaneously produce stringlike
configurations which will, however, decay just as fast. As
the temperature decreases and the Universe goes through
the phase transition, some of the stringlike configurations
that were undergoing thermal fluctuations will freeze-out
and thus not decay. It is these string configurations that
may survive the phase transition and be important for
cosmology. This process of thermal production is the
same for topological as well as embedded strings.

There is, however, an important difference between to-
pological and embedded strings. This is that topological
strings cannot end whereas embedded strings may end on
monopoles. Hence, after the phase transition, topological
strings can only occur as closed loops or infinite strings,
while embedded strings can also occur as finite segments
of strings with monopoles attached at their ends. This is
the crucial difference between the two kinds of strings.

We now discuss the formation of embedded strings.
The first question is: what is the size distribution of the
embedded strings after the phase transition? This ques-
tion cannot be answered with any certainty but some
reasonable guesses can be made. As we discussed above,
the production of the strings is thermal and is similar in
some ways to the production of topological strings;
hence, it is prudent to first look at topological strings. In
this case [17],the string network upon formation consists
of a network of infinite strings that contain about 80% of
the entire string length. The remaining 20% goes into a
scale-invariant distribution of closed loops. These results
were obtained by using an argument first given by Kibble
[18]. In this argument, if the boundary conditions on a
spatial contour are fixed, they determine whether there is
a string passing through the contour almost unambigu-
ously [19]. So to detect the presence of a string, all one
needs to check are the boundary conditions.

This "Kibble" mechanism does not apply in the case of
embedded strings because the boundary conditions are
not sufficient to determine the presence of a string. How-
ever, one might assume that there is a certain probability
of a string passing through any given contour. On this
basis, one could attempt to use the results of Ref. 20. In
the case that the probability of string formation is
sufficiently low, there is a population of loops whose
length distribution is given by

—
)u,m ')/T, ], where m is the mass of the monopole

necessary to terminate a string and p is the mass density
of the string. (The exponent is derived by the following
considerations: the energy cost in terminating a string is
the mass of the monopole m but were the string not to
terminate, the energy cost would have been the string
density p multiplied by the size of the monopole =m .)
If the mass of the monopole is large, that is, if the strings
are stabilized by a large potential barrier, the open seg-
ments of string are negligible in number as compared to
the closed loops. It should also be remarked that the ex-
ponential suppression of long loops (and open segments)
may be viewed as a Boltzmann factor in the thermal pro-
duction of embedded strings.

If the probability of string formation is large, the loop
distribution will be given by a scale-invariant distribution

—Pl /g
dn (I)=a dl .

If strings cannot terminate, a network of infinite strings
would also be present. However, since embedded strings
can terminate, the length that would have been in infinite
strings would now be in finite segments of string. The
length distribution of the finite segments would also be
exponential since, at every step, there is a certain proba-
bility for the string to end. But, for large string forma-
tion probabilities, the total length in open segments
would exceed the total length in loops. In the limit that
the monopole becomes infinitely heavy, the open seg-
ments would be infinitely long and the fraction of length
in open strings would approach 80%.

There is another important feature of the string net-
work that we have ignored so far: the strings are super-
conducting. Then, during the phase transition, random
currents will be induced on the strings. The net current
on a loop of size I is expected to be proportional to
T, (l/g; )', where g; —T, ' is the correlation length of
the random currents. There will be currents on the open
strings also. However, it is not clear what happens to the
current when it encounters the monopole at the end of
the string. We expect that the current could be reflected
off the monopole and, in this way, a standing wave would
be set up on the open string. (In addition to the reflection,
there might be a small transmission amplitude and the
current would slowly leak out from the string. ) Another
way of saying this is that the zero modes are a solution to
the Dirac equation (or the Klein-Gordon equation for bo-
sonic superconductivity) in the presence of the string.
The string provides a potential well for the zero-mode
carriers. In the case of an open string, one might en-
visage the presence of standing wave solutions while in
the case of a loop, one can imagine traveling waves going
around the loop in addition to the standing waves.

In the following we will assume that, after the phase
transition, there is a loop distribution given by Eq. (4.1)
and a strongly suppressed open string distribution also
given by the form in Eq. (4.1). In addition, all the strings
carry currents in proportion to the square root of their
length.

What is the evolution of this system? Let us first consid-
er the loops. The dynamics of the loop is governed by the
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tension of the string, frictional forces and the Hubble ex-
pansion. We are justified in ignoring the Hubble expan-
sion since it is unimportant on scales much smaller than
the horizon. (The embedded string distribution is ex-
ponentially suppressed at long lengths and so it is unlike-
ly to find strings that span the horizon. Therefore, the
Hubble expansion has no significant effect on the dynam-
ics of embedded strings. ) Initially the frictional forces are
very large and so the string motion is highly damped.
This would lead to a collapse of the loops under their
own tension. However, the effective tension of the string
is a sum of the bare tension and the square of the current
on the string [21,22]. As the loop collapses, the current
builds up and the effective tension becomes smaller. Now
two possibilities can occur [21—24]: (i) the current is so
large that the charge carriers can leave the string, that is,
the current can saturate, and (ii) the effective tension goes
to zero and the loop does not collapse any further. If
possibility (i) is realized, the loops continue to collapse
and eventually disappear. Depending on the lifetime of
the loops and their decay products, their cosmology may
be of some interest. If possibility (ii) is realized, the loops
form static ring configurations that can survive until
some quantum tunneling event causes the charge to leak.
In this case, the rings would have a magnetic dipole mo-
ment and perhaps some net electric charge and could sur-
vive for a very long time. Depending on the net charge
that a ring carries, the rather severe constraints on
charged dark matter [charged massive particles
(CHAMP's)] would apply [25].

The evolution of the open segments of strings is even
less certain than that of the loops but we shall indicate
some possible scenarios. The initial dynamics of the
monopoles and open segments will be heavily damped
due to the friction from the ambient plasma. The long-
range magnetic field of the monopoles will be frozen into
the cosmological plasma. The tension in the open strings
will shrink the segments, bringing the monopoles and an-
timonopoles at the ends together. One possibility is that
the current and the charge in the segment would prevent
the segment from shrinking any further as happens in the
case of the loop. Then the segment would form a
dumbbell and survive for a very long time. On the other
hand, if the current leaks out through the monopoles, the
segment would collapse rather quickly since the frictional
forces cannot slow down the longitudinal motion of the
string but only the transverse motion. In this scenario,
the open segments decay soon after forming and disap-
pear. The disappearance of open segments (and loops)
would also be hastened by the breaking up of long strings
by the spontaneous nucleation of monopole and an-
timonopole pairs. However, we might assume that this
process will be slow (compared to the direct collapse of a
segment) since it requires a monopole pair to nucleate by
a quantum process.

There is yet another alternative to this entire scenario
which follows from the stability analysis in Sec. II. From
Fig. 2, we see that it is possible for the strings to be stable
at high temperatures and unstable at low temperatures.
Then the string network, the rings and dumbbells, would
behave like unstable particles with a lifetime given by the

time it takes for the Universe to cool down to the temper-
ature of instability. Unstable particles have been con-
sidered on numerous occasions in cosmology, particularly
as a means for generating additional entropy. It is amus-
ing that embedded strings would be natural candidates
for such unstable particles.

What may be the consequences of long-lived rings and
dumbbells? The most obvious consequence is that these
objects may be the dark matter of the Universe and may
still be around today. They may be lurking in stars and
in galactic halos. On the other hand, since these objects
are formed in the early Universe, there is a chance that
they will come to dominate the Universe rather early
(since they redshift as matter). In this case, their cosmol-
ogy might be useful to constrain particle physics
models —though, given the uncertainties, this promises
to be a difficult task. Finally, the decay of the rings and
dumbbells would produce energetic exotic particles.
These decay products might lead to interesting effects.
Finally, the presence of strings for some period of time
could lead to baryogenesis [26].

V. CONCLUSIONS

Topological strings can have dramatic consequences in
the early Universe but can occur only in certain specially
constructed particle physics models. On the other hand,
embedded strings are almost universal in their occurrence
but their consequences depend on their stability. For the
embedded string to have some affect on cosmology, it
should survive for one Hubble time at the very least.
This criterion makes it necessary to study the stability of
the electroweak Z string at high temperatures.

We have analyzed the stability of the Z string at high
temperatures and also taken quantum corrections to the
scalar potential into account. The analysis shows that
thermal corrections tend to enhance stability but the
effect is too small to stabilize the Z string in the standard
electroweak model with sin 8~=0.23 and Higgs-boson
mass larger than 57 GeV. Hence, we come to the con-
clusion that the Z string is unstable at all temperatures.
Then, even if a Z string configuration is formed during
the electroweak phase transition, it will quickly decay
into particles and the string will not survive for more
than a Hubble time. This means that Z strings are prob-
ably irrelevant for cosmology after the electroweak phase
transition; their role during the electroweak phase transi-
tion is still unclear.

We found that is it possible to construct phenomeno-
logically acceptable left-right models that also admit
stable embedded strings (Zz strings). Because of its sta-
bility the Zz string may survive for a large number of
Hubble times and may be cosmologically significant.

The cosmology of embedded strings was discussed in
Sec. IV. Here, we pointed out that embedded strings
would be produced thermally during the phase transition.
The Boltzmann suppression of long string segments and
large loops means that there is a possibility that all the
loops and segments will collapse dynamically and decay
into ordinary particles. On the other hand, the pressure
from bosonic and fermionic zero modes on the strings
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might prevent this collapse and serve to stabilize the
"rings" and "dumbbells". We considered the more in-
teresting possibility that some of these remnants may
have survived for a few Hubble times and perhaps even
until the present epoch.
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