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Primordial magnetic fields from pseudo Goldstone bosons
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The existence of large-scale magnetic fields in galaxies is well established, but there is no accepted
mechanism for generating a primordial field which could grow into what is observed today. We
discuss a model which attempts to account for the necessary primordial field by invoking a pseudo-
Goldstone boson coupled to electromagnetism. The evolution of this boson during inflation generates
a magnetic field; however, it seems difficult on rather general grounds to obtain fields of sufficient
strength on astrophysically interesting scales.

PACS number{s): 98.80Cq 14.80.Gt, 95.30.Cq; 98.60.Jk

I. INTRODUCTIQN

The existence of a magnetic field of ~ 10 s G in our
Galaxy and other galaxies is well established [1]. The
explanation of how such a magnetic field arose is, how-
ever, far from certain. While the creation and evolution
of stellar magnetic fields is fairly well understood, the ex-
tension of these theories to galaxies suffers from problems
relating to both scale length and time scales.

Zeldovich, Ruzmaikin, and SokolofF [1] and Parker [2]
discuss the origin and efFects of magnetic fields in the
Universe and draw the conclusion that the galactic field
arises from a dynamo mechanism. The dynamo model re-
quires a seed field at the epoch of galaxy formation which
is coherent over a scale of ~ 1 Mpc. We can parametrize
the strength of a primordial field by r = ps/p~, the
ratio of the energy density ps = Bz/8vr in the mag-
netic field relative to that of the background radiation
p~. (This ratio is constant while the Universe is a good
conductor, which is almost always [3].) Then the field
required to seed a galactic dynamo satisfies r & 10
corresponding to an intergalactic field at the epoch of
galaxy formation (z ~ 3—5) of & 10 zo G. The implica-
tions of this requirement in terms of the origin of such
fields and their possible efFect on star formation (or the
early history of the Galaxy in general) are discussed by
Rees [4].

Kulsrud [5] has argued that the galactic dynamo expla-
nation is fundamentally flawed in that the mean-square
deviations of the magnetic field will grow much faster
than the mean field itself, resulting in a disordered field
with a much smaller mean field strength than would
naively be expected. Kulsrud then discusses the possi-
bility that the magnetic field originated in the early Uni-
verse and was embedded in the medium out of which the
galaxies ultimately formed. In this case, Kulsrud argues
that the intergalactic field would need to be ) 10 G
at the epoch of galaxy formation (giving r & 10 ) in
order to account for the observed interstellar field.

Any dynamo theory requires a mechanism for generat-
ing the required seed field; however, compelling mecha-

nisms have been elusive (see, for example, [6].) The hot
plasma in the early Universe is highly conducting and
thus should strongly inhibit the growth of a magnetic
field, even to r 10 si. Furthermore, any hypothet-
ical process at work in the very early Universe must be
able to produce fields with characteristic length scales
much larger then the horizon at that time, in order to
correspond to galactic scales today.

The advent of inflation [7] has opened the door to new
possibilities for generating a primordial magnetic field.
There are two key features of an inflationary universe
that make the possibility of creating a magnetic field dur-
ing this time particularly attractive. First, if there were
an inflationary epoch at very early times in the Universe,
the exponential expansion would have reduced the con-
ductivity to a negligible value by reducing the charged
particle density, thus allowing the creation of a substan-
tial magnetic field. If this field were then frozen into the
plasma created during the subsequent reheating of the
Universe, it would be supported by the efFectively infi-
nite conductivity of the plasma so that its strength would
decay only as the inverse square of the scale factor.

Second, if inflation did occur, then the entire observ-
able Universe today was, at some point in the early Uni-
verse, contained entirely within the particle horizon. It
would then be possible to use physical mechanisms op-
erating on a scale smaller than the horizon to generate
magnetic fields that are coherent over macroscopic scales
today, an opportunity which is not available in models of
the early Universe without inflation.

Turner and Widrow [3] (TW) investigated the possi-
bility that quantum fluctuations during an inflationary
epoch might have generated a magnetic field that could
be sustained after the wavelength of interest crossed be-
yond the horizon and thus give the observed field today.
TW considered coupling the electromagnetic field to the
curvature tensor so as to amplify the fluctuation-induced
field, but found satisfactory results could be obtained
only at the expense of breaking gauge invariance.

Ratra [8] has argued that it is possible to generate a
magnetic field with a present field strength of & 10
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d Fg f', dP)+
~

k 6 gy»k ~
Fy = 0, (1 2)

where F~ ——az(B„+iB,) (the + refers to difFerent circu-
lar polarization modes of the magnetic field), dg = dt/a,
and a is the scale factor of the Universe (normalized so
that ao = 1 where ao is the value of a today). One
(or both) of the polarization modes will be unstable for
k ( gy»[dP/drI], where both polarization modes can be
unstable to exponential growth if P is oscillatory. Thus,
if such a scalar field exists during inflation (perhaps the
inflaton itself [11]) with the above coupling, this might
provide a mechanism for generating a substantial mag-
netic field.

Here we will consider a generalization of the possibil-
ity suggested by TW [3], coupling the photon to an ar-
bitrary pseudo Goldstone boson (PGB) rather than the
axion of /CD. The PGB is characterized by a sponta
neous symmetry-breaking scale f (as above) and a soft
explicit symmetry-breaking scale A (see Sec. II). We find
that significant growth occurs only at a temperature near
A, and that the magnetic field strength thus generated
cannot give an astrophysica11y interesting field at the end
of inflation.

We should point out that, while our notation through-
out this paper suggests that we are working with the
photon of the standard U(1), symmetry, the photon as
a separate U(1) gauge boson will not exist at high tem-
perature, since the SU(2) x U(1) gauge symmetry will
not have been broken. Nevertheless, our results should
be correct up to factors of order unity simply because
the U(1) hypercharge symmetry projects onto the pho-
ton with a multiplicative factor of cos8~ = 0.88 at the
electroweak phase transition.

We will use units in which fi = c = k~ = 1, such that
G = rn i, where m~i —1.22 x 10 s GeV is the Planckp] )

mass.

G on a scale of 1/1000 the present Hubble radius by
coupling a scalar field C to the electromagnetic potential
A„through a term of the form e+F„„Fi"",where F„„=
B„A„—B„A„is the electromagnetic field strength. This
would be sufficient to explain the galactic magnetic field,
but it remains to be seen whether or not this coupling
could arise naturally in realistic particle physics models.

TW also suggested that the magnetic field could be
sustained by coupling the EM field strength to a pseu-
doscalar axion field P via an interaction term in the La-
grange density of the form

94» PF Fi v (1 1)
4

where Fi'" = zs""i' F~ is the dual of F„„,and g4,» ——

(o./2n)/f, where f is a coupling constant with units of
mass and a is the fine structure constant. However, they
did not complete the necessary analysis to show whether
or not this might indeed be the case.

An interaction of this form has been studied by Carroll
and Field [9] (see also [10]),who found that the evolution
of a Fourier mode of the magnetic field with wave number
k is governed by

II. THE SETUP

In this section we briefly review the essentials of infla-
tion, as well as the physics of pseudo Goldstone bosons
and their couplings.

Throughout this paper, we will assume that the Uni-
verse is in a spatially flat Friedmann-Robertson-Walker
(FRW) cosmology in which the metric is given by

ds = a (rl)(—dg +dx ), (2.1)

B =
z M

Sm,
(2.2)

If we assume that the Universe expands adiabatically af-
ter inQation so that the entropy per comoving volume el-
ement remains constant, it can be shown (see, e.g. , [12])
that the total expansion from the time a given comoving
wavelength A (which is equal to the physical wavelength
today due to the normalization of a) crosses outside the
horizon until the end of inflation is given by

+inf

1

yO26
(M'TRH1 '

Mpc
q

ms&
(2 3)

where a;„ris the value of a at the end of infiation (but
before reheating), and ap is the value of a at the time

where x represents the standard Cartesian three-space
(comoving) coordinates. In addition, we will assume that
the Universe is a perfect Huid with the equation of state
p = pp, where p is the pressure, p is the total energy
density, and p is a constant. Using this equation and
energy-momentum conservation, it is straightforward to
show that p oc a ski+» which, from Einstein's equation,
gives a oc tz~sfi+». In order to explain the horizon prob-
lem, we require that, at some time in the past, the scale
factor was growing faster than the horizon (H i, where
B = a/a is the Hubble parameter and an overdot denotes
differentiation with respect to physical time t). Thus, we
require —1 & p ( —s. For simplicity in the following
discussion we will restrict ourselves to inflation in which

p = —1. This value for p gives the best possible condi-
tions for generating a magnetic field, since the amount of
inflation from the time that a given comoving wavelength
crosses outside the horizon is minimal in this case, so this
does not limit the validity of our results.

At the end of inflation, the Universe enters a reheating
phase, in which the energy density is matter dominated.
As a simplifying assumption, we take the process of re-
heating to be instantaneous, such that the Universe goes
directly from inflation to radiation domination. Once
again this is a best-possible assumption, since the mag-
netic field will decay more rapidly (relative to the to-
tal energy density) during a matter-dominated phase, in
which p oc a s.

Standard inflation is characterized by two parameters:
the mass scale for the total energy density M = pi~4

(note that this is a constant since p is constant during
inflation with p = —1); and the temperature TRH to
which the Universe reheats at the end of inflation. H is
then given by
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A crosses outside the horizon. Expressing this in terms
of the number of e-foldings N~ (a;„r/a~ = e ") in the
expansion, we have

Ni, - 48+ ln
i I

+ —ln
i

2 f M
(Mpc) 3 (10i4 GeV)

(
3 10i4 GeV

(2.4)

m = A'/f . (2 5)

Our assumption that reheating lasts for a negligible time
amounts to setting M = TRH.

In this paper we are concerned with the pseudo Gold-
stone boson P of a spontaneously broken symmetry.
PGB's are characterized by two mass scales: a large mass

f at which the global symmetry from which the PGB's
arise is spontaneously broken, and a smaller scale A at
which the symmetry is explicitly broken. For concrete-
ness, we imagine the breakdown of a global U(1) symme-
try, resulting in the familiar Mexican hat —the radial
degree of freedom gets a vacuum expectation value of
order f, and the angular degree of freedom becomes a
massless boson P. The hat is tilted by a small term of
order A; the formerly massless scalar P becomes a PGB
with a mass of order

The interaction between this pseudoscalar and electro-
magnetism, as implied by (2.8) and (2.9), can be de-
scribed by an efFective Lagrangian of the form (1.1).
Thus, string theory offers the possibility of PGB's of the
type we discuss.

III. BASIC REQUIREMENTS

We envision a scenario in which the desired magnetic
field is entirely created during inflation and then frozen
into the post-reheat plasma, so that the field strength de-
cays as the inverse square of the scale factor after reheat-
ing. Thus, under the assumption that the dominant com-
ponent of background photons is created at reheating,
both p~ and p~ will decay as a 4, such that r = p~/p~
is essentially constant after inflation. As mentioned in
the Introduction, we seek r = ro ) 10 (to seed a
galactic dynamo) or & 10 is (to directly account for the
observed magnetic field) at scales of 1 Mpc today.

For convenience we define r during inflation as the ra-
tio of p~ to the total (vacuum-dominated) energy density.
From above, we can readily calculate the required value
of r at the time that the wavelength of interest (comov-
ing scale 1 Mpc) crosses outside the horizon in order to
generate astrophysically interesting fields today. This is
given by

1- 1&..t =
4f @V Vs@~I 4 =

4 Js &i 4; (2.6)

Cosmological constraints on the parameters f and A have
been studied in [13].

In many models, PGB's interact with fermions by cou-
pling to the axial-vector current (for a review of PGB's
and their couplings, see [14]):

4(a;„r't
rMpc=

I I rO~
&aMpc)

or, using (2.3),

io4 r Mi'
rMpc —10

I I
ro

(mpi)

(3.1)

(3 2)

well-known examples include pions and axions. Since the
symmetry associated with the axial-vector current (that
is, chiral symmetry) is anomalously broken, the current
itself is not conserved:

Q
O„Js"= F„F"",—

27r
(2.7)

Hpvp = (pBvpI —AtpFvp) ) (2.8)

where square brackets denote antisymmetrization. In
four dimensions the equations of motion for B&„allowus
to recast its dynamics (at least semiclassically) in terms
of a pseudoscalar P by the identification

(2.9)

where n is the fine structure constant. Integrating by
parts, we find that the anomaly (2.7) induces a coupling
between P and the electromagnetic field of the form (1.1).

A similar situation occurs in the low-energy limit of
string theory, which involves an antisymmetric two-index
tensor field B„„[14,15]. The Lagrangian for B„„includes
a kinetic term H&„pH""P,where H&„pis an antisymmet-
ric Field strength tensor. The demand that the theory
be free of anomalies requires that the definition of H„vp
include a term involving gauge bosons (which we take to
be Abelian for simplicity):

Since r ( 1, we can use this to calculate the maximum
allowed value for M such that there would be any hope
for meeting the above condition. Using the values given
above for ro, this gives M ( 10 GeV for a galactic dy-
namo, or ( 1 MeV to directly account for the field. It is
important to realize that these are extreme upper bounds
that can only be obtained under ideal situations (i.e., the
magnetic field energy being comparable to that in the
vacuum at the time the wavelength of interest crosses
the horizon, and with negligible reheating). Even so, the
upper bound for seeding the galactic dynamo is, at best,
marginal (that is, while current constraints on the time
at which inflation might occur could allow it to occur as
late as a temperature of ~ 1 GeV since we merely require
the Universe to be radiation dominated by the epoch of
primordial nucleosynthesis [3], constraints arising from
baryogenesis will probably require M & 200 GeV, at
least). Thus, even if the magnetic field has an energy den-
sity comparable to the background energy density when
1 Mpc crosses the horizon during inflation, it will be too
weak to explain the observed magnetic field if its energy
decays according to the normal a 4.

In other words, in order to generate a significant mag-
netic field during inflation, we require "superadiabatic
growth" —that is, a mechanism that will continue to
increase the energy density (or, at least, decrease the
rate of decay) of the magnetic field at a wavelength of
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1s

IV. EQUATIONS OF MOTION

The Lagrange density for the photon and scalar field

1 Mpc after 1 Mpc becomes superhorizon sized. At first
sight, this may seem impossible due to the fact that such
a mechanism must apparently act in a noncausal way.
However, it is possible that inflation may create a Geld
that is coherent over scales much larger than the horizon,
and that this field can subsequently generate a magnetic
field that is also coherent at superhorizon scales simply
by classical field interactions.

—(a B)+V'x(a E) =0,
8'g

with

'I7 B =0.

(4.9)

(4.10)

Since we are interested in the specific case where the
background space-time is inflating, we make the assump-
tion that the spatial derivatives of P are negligible com-
pared to the other terms (if this is not the case at the
beginning of inflation, any spatial inhomogeneities will
quickly be inflated away and this assumption will quickly
become very accurate). Then, eliminating E in the above
equations, we have

8 = —~g -V„PV"P+V(P) + -F„„F""
4 pp

—gp» —7'x
~ (a B) = 0.(8', dP

(8il2 '
dr/

(4.11)

+g4 Y Y PF FPP
4 pl/ 'I (4 1) Taking the spatial Fourier transform of this equation so

that

where g = —det(g„„)and 7'„denotes the covariant
derivative. As mentioned previously, we are consider-
ing only the U(1) fields and ignoring any possible effects
from the non-Abelian gauge fields.

The equations of motion for P are

gu, P y + (&) A» F Fyu
dy 4

and the equations of motion for F„„are
&~F""= W»(&~&—)F"

along with the Bianchi identity

7'„F""= 0 .

(4.2)

(4.3)

(4.4)

—(a E) —V' x (a B)
87)

g~» a B ——g~»(VQ) x a E, (4.7)
4' 2 2

rl

with

&.E= —gy»(&&) B
while the Bianchi identity becomes

(4 8)

The equations of motion are more transparent if we define
the E and B fields by

( 0 E, E„E,
E, 0 -B, B„-(

)—E„—B, 0 B~
&-z, a„-a. 0 )

Then (4.2) becomes, after expanding the covariant
derivatives,

8 g 8P 2 2dV(P)2+2aH —V' /+a =gy»a E B,rl' rl

(4.6)

where V' represents the usual three-space gradient (for
comoving coordinates). Similarly, (4.3) becomes

B(rl, k) = — e'"'"B(il, x)d x,
2Ã

and writing F = a2B, we then have

(4.12)

2 + k F —gy» ik x—F = 0 .
87/ 8g

(4.13)

Finally, if we take k to point along the x axis and define
F~ = F„kiF„this becomes

82' (, dP &+
~

k + gy» k~ Fy = 0 . —
8rl ( d7/ )

(4.14)

We can similarly manipulate the equations in an attempt
to produce an expression for the evolution of E. It turns
out, however, that we cannot uncouple the E field from
the B field. We have, in short,

whjch, after taking the space Fourier transform and defin-
ing G = a2E and Gy = G„kiG„becomes

8'G, (, ~y 'r d24+
~

k2 + gp» k~ Gy = ——gy»8n' & dn )
(4.16)

In order to determine the evolution of E and B, we
need to know how P evolves. We look first at the case
vrhere E and B make a negligible contribution to the
equation of motion for P. Furthermore, we will consider
the evolution after the time when the explicit symmetry
breaking for the PGB becomes important (at a temper-
ature scale A). The potential for the angular degree of
freedom in a tilted Mexican hat is

V(P) = A [I —cos(P/f)j . (4.17)

(82 2 dP—«1(a'E)
i,8rI' ' dil j

2p= —gp» a B, (4.15)
df/
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Since the details of the potential do not acct our results,
we will expand to lowest order: V(P) (A /2f )P W. e
again ignore spatial derivatives in P, as well as any back
reaction from the electromagnetic fields, to give

dzP dP A4

z +3H +—st=0, (4.18)

where we have used dq = dt/a to write this in terms of
physical time rather than conformal time. The general
solution to (4.18) will be approximately

A4&
P(t) = f exp —— 3H 6 9H2 —4 (t —to)

2
g f

~—3/2 sin A t for A ))
oc g (4 19)

exp 30f t for f ((H,
where we have used the fact that a oc exp Ht.

Looking again at (4.14) we see that we will only have
a growing mode for the magnetic field if

dP dP k—=a—0
dg dt gy»

(4.20)

Furthermore, since we want this growth to be as large as
possible, we will choose k such that Ic gy»acti, „at
the time of interest. For our initial analysis, we will as-
sume Az/ f )) H so that p is oscillating rapidly compared
to changes in a. Also, this implies that a is essentially
constant over several oscillations in P, and thus we can
write Arj —At/a where a is constant for time intervals
b,t - f/A'

In order to estimate the total growth in F~, we note
that, for a fraction e (where e is not necessarily small, al-
though numerical integration of these equations for some
cases indicates that ~ ~ 0.1) of each period, we can write

F~ oc e~+" where a = y gy»kdP/dry agy»A and
Ari = 4t/a ef/aA Furtherm. ore, this will continue
for a time ~ H i (since this is the time scale on which
a and the amplitude of P are changing), or for a total of
n H iAz/f oscillations, from which we can estimate
the total growth in Fy as

Fy, f (~gy»A'l,
exp (4.21)

Of course, the exponent may contain other factors of or-
der unity, but this estimate allows us to understand the
dependence of the growth in the magnetic field on the
parameters in the problem. Note that the analysis is
similar if A /f H, but then the growth only occurs
for n Az/H f 1 oseillations. Since the amount of
growth per oscillation remains roughly the same, this case
can only result in less growth than the rapidly oscillating
ease. Similarly, in the overdamped ease (A /f (( H), P
does not change rapidly enough to generate any appre-
ciable growth.

Since we are interested specifically in long-wavelength
magnetic fields, we would also like to know the wave-
length at which we get the most growth by this mecha-
nism. This follows from our assumption that the maxi-

mum growth occurs at k —agy»cd „=ag4,»A2, which
gives

ag4, »Az ' (4.22)

where A is the wavelength today. More importantly, at
the time the growth occurs the ratio of the wavelength
to the horizon length is given by

2vraH 2'H
k g@»A~

(4.23)

But, looking back at (4.21), we see that this ratio is,
essentially, just the inverse of the factor in the expo-
nent, i.e., the larger the growth in the magnetic field,
the smaller the wavelength at which it occurs. Further,
since an increase in the wavelength by a factor P will re-
sult in a decrease in the exponent for the growth by a
factor P i, it is apparent that significant growth in the
magnetic field will only occur for wavelengths that are
subhorizon sized.

We have shown that we cannot have growth in the
magnetic field for superhorizon-sized wavelengths when
the back effects of the E and B fields on P are small, but
there is still the possibility that the interaction between
the fields and P could allow the magnetic field to be sus-
tained such that it does not decrease as a 2. However,
from (4.7) and (4.8), we see that, if P decays as a s~

(that is, P behaves as a nonrelativistic fluid), then the
right-hand sides (RHS's) of these equations will rapidly
become negligible compared to the individual terms on
the LHS's. We then recover the source-free Maxwell
equations, from which B still decreases as a z. (The sit-
uation is only exacerbated if P behaves as a relativistic
fluid. ) In short, there seems to be no way of sustaining
the magnetic field at superhorizon-sized wavelengths.

V. SUMMARY

In this paper we have considered a mechanism for cre-

ating a large-scale magnetic field during inflation, pro-
posed by TW, in which the magnetic field is coupled to
a pseudo Goldstone boson. We showed first that the
scale required of the magnetic field in order to explain
the galactic magnetic field (~ 1 Mpc) implied that the
growth had to occur at superhorizon-sized wavelengths
since the uncoupled equations of motion for a U(l) gauge
field imply that the energy density in the field would sim-

ply decay too quickly to be significant at the end of in-

flation if there was no enhancement in the field for wave-

lengths larger than the horizon.
We then considered the classical evolution of a U(l)

gauge field coupled to a PGB when the back efFects of
the field on the PGB were negligible and showed that
such a coupling can, in fact, produce growth in the field.
However, such growth can occur only at subhorizon wave-

lengths, and thus does not provide a solution to the above
problem. In the more general case when we allow the
back efFects of the U(1) field to be significant, we still
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have the problem that any natural decay of the P field ul-

timately allows the U(1) field to uncouple from the PGB
leaving us once again with a free U(l) field. Hence, it
seems to be impossible to create a significant magnetic
field by simply coupling the magnetic field to a PGB dur-

ing inflation.
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