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An inflaton (scalar field) with the potential co?" is coupled to gravity within the Jordan-Brans-Dicke
theory. The corresponding inflationary model (that is, a flat Friedmann-Robertson-Walker solution with
a slowly varying inflaton) is constructed for all values of the coupling B of the inflaton to the dilaton
(Brans-Dicke scalar field). The linearized perturbations of the metric, the dilaton, and the inflaton are
then quantized within a gauge-invariant formalism. The power spectrum of the vacuum density fluctua-
tions is calculated as a function of c,n, and B. It is the juxtaposition of two powers of the wave number
corresponding, respectively, to the contribution of the inflaton and the dilaton. We find the value of B
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for which the dilaton contribution dominates on observable cosmological scales.

PACS number(s): 98.80.Cq, 04.50.+h
I. INTRODUCTION

In this paper we consider a cosmological model of ex-
tended inflation where a scalar field (the “inflaton”) is
coupled to gravity in the framework of the Jordan-
Brans-Dicke (JBD) theory [1-3]. The action is

s=[axV =g | LR Ly g0, p o

— 183,030 —V,(0) | . (1)

Here R is the curvature scalar and g the determinant of
the metric tensor g,,; o is the inflaton and V(o) its po-

tential; w is the JBD coupling constant and ¢ the Brans-
Dicke scalar field. (1/8my=G. 4 can be viewed as an
effective gravitational “constant.””) The action (1) has
been expressed in terms of the metric tensor g,,, called
the “Jordan frame” [4,5], to which the matter fields, here
o, are minimally coupled. The dynamics are more simply
described in the “Einstein frame” [3-5], obtained by a
conformal transformation g,, =«*Yg,,,, with K’=87G (G
being Newton’s constant), which brings the action into
the Einstein-Hilbert form

S= f d*xVv—g
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—R——g*%
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(2)
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where f=(w+3/2)7!/? and where the “dilaton” ¢ is
defined by w*¥=exp(Bkg). (We have chosen here a
definition of B which corresponds to 2 in Ref. [6], to
2/kf in [5], and to 1/k¢, used by us in [7].)

General relativity is the limiting case B=0, and solar
system experiments impose that o> 500 (= [<0.045)
[8]. We shall, however, consider a wider range for 3, as
the solar system constraint is not as stringent as it ap-
pears. One can, for example, postulate that the dilaton
couples more strongly to the inflaton than to baryonic
matter. (This violates the weak equivalence principle but
does not conflict with experiment [6,4].) One can also
circumvent the constraint by invoking one-loop quantum
effects that give rise to a dilaton-inflaton interaction po-
tential [5], which plays a role after inflation in such a way
that this modified JBD theory coincides with general re-
lativity today; in that case (1) and (2) hold approximately
for all B during the inflationary stage. Finally, one can
also replace, as in hyperextended inflation [9], the cou-
pling eB""’g#V by f(g)g,,- Assuming then that f(g)
tends to a constant at large @, or in other words that the
theory coincides with general relativity at late times, is
yet another way of relaxing the constraint. The action (1)
and (2) does not include that case, for a study of which
we refer to [10]. [A classification of scalar-tensor
theories, extensions of (1) and (2), is given in [11].]

The first cosmological model of the type described by
(1) and (2) that was shown to be viable [12,13] was ex-
tended old inflation [14], that is, the case where o in (1)
and (2) is first trapped in a false vacuum V;(0)=V, and
then decays to a true vacuum state V(o )=V, via quan-
tum tunneling. Now, if the theory of gravitation in the
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primordial Universe is the JBD theory, then, as em-
phasized in Ref. [15], one should also consider more gen-
eral potentials for the inflaton field. In this paper we
shall therefore consider, as a generic example, the model
of extended chaotic inflation first proposed in [15], where
Vi(o)=co®". In these models there is no quantum tun-
neling, but we have to deal with two coupled scalar fields
which both evolve in time.

In the study of density perturbations in models of ex-
tended inflation, one must take into account two
“matter”’ perturbations, that of the inflaton and the dila-
ton, together with the “scalar” [16] perturbations of the
metric. In a previous paper [7] we generalized
Mukhanov’s [17] treatment of single-field inflation (see
also [18]), and expressed the Lagrangian to quadratic or-
der in the perturbations as a function of the two true
physical degrees of freedom v and w, gauge-invariant
quantities associated with the dilaton and inflaton pertur-
bations, respectively. We also expressed ®, the gauge-
invariant version of the Newtonian potential, and a relat-
ed gauge-invariant density perturbation §, in terms of v
and w. (P and & are Bardeen’s [16] &4 and €,,.) Finally
we showed that, in the case of extended old inflation
(when the inflaton is trapped), the inflaton perturbation w
does not contribute to §, as had been assumed to hold ap-
proximatively in previous analyses [19,20].

In this paper we investigate the case where both matter
perturbations contribute. We quantize the two coupled
degrees of freedom v and w and obtain the power spec-
trum of the vacuum density fluctuations 8.

We use a slow-rolling approximation to describe the
evolution of the background, but in contrast with [15] we
do not assume that 3 is small. From the quadratic La-
grangian we then deduce the classical equations of
motion for v and w. In the canonical quantization
scheme, v and w become coupled quantum operators and
can be written as linear combinations of creation and an-
nihilation operators. The coefficient, or mode functions,
are complex classical solutions with initial conditions
determined by the canonical commutation relations and
the choice of a Fock vacuum state. It is possible in prin-
ciple to compute the mode functions numerically and
thus derive the power spectrum of the density fluctua-
tions 8. Analytic results can be given, however, by ex-
panding them in a small parameter that characterizes the
slow-rolling approximation. To leading order, the equa-
tions of motion for v and w decouple and the power spec-
trum of the vacuum density fluctuations & is easy to ob-
tain.

The plan of the paper is the following. In Sec. I we
construct the inflationary background solution of the
model (2). In Sec. III we derive the equations of motion
for the perturbations v and w during inflation. In Sec. IV
we quantize these perturbations in the Heisenberg pic-
ture. In Sec. V we discuss the evolution of the density
perturbation after inflation. In Sec. VI we comment on
the resulting power spectrum of vacuum density fluctua-
tions at late times. Section VII contains our conclusions.

II. THE BACKGROUND SOLUTION

We assume a flat Friedmann-Robertson-Walker (FRW)
universe with homogeneous fields o and ¢@. The evolu-
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tion of the system is described by three independent equa-
tions of motion, e.g., the (00) component of the Einstein
equations and the two Klein-Gordon equations for the
scalar fields. They read, in the Einstein frame,

H2:KT(%¢Z+%€*[J’K¢U-2+e*2/3;«pca,2n) , (3)
$+3H@+ LPre P62 —2pke " Hrécgi=0 , )
& +(3H —Bkp)s +e P9nco® =0, (5)

where a dot means a derivative with respect to the cosmic

time ¢ and H =4 /a is the Hubble “constant,” a being the
scale factor.

Standard chaotic inflation [21] is characterized by a
“slow-rolling” regime when the scale factor changes
much more rapidly than the inflaton o and, hence, the
Hubble constant. Here we shall consider the regime
when only o is slowly varying compared to the scale fac-
tor, while the dilaton ¢ and the Hubble constant may be
rapidly varying. In other words, we shall neglect 6% and
& in Egs. (3)=(5), but not % and ¢>. Then the equations
of motion simplify to the following set, where in (4) § is
consistently approximated by —Bk¢*:

n

g

H=k’We Pregn=w v (6)
@=2BkWe Prég"e=y=2BWo" , (7)
o=—2nWo" !, (8)
with
c 1/2
W= m 9)

[In [15], ¢* and § were neglected, which yields (6)—(9)
with S=0 in (9). Therefore our results agree with those
of Ref. [15] in the most interesting case of small 3.] The
condition for inflation is @ > 0, which requires that 32 < I
We shall therefore allow 3 to range from O to 1. The ap-
proximations (6)—(9) are valid for f2<<1, where

1 Y

2= Bro__ - _ ¥

=e . (10)
f k*o?  o?

(This  criterion for slow rolling, rewritten as

87G.g0>>>1, is the same as in standard chaotic
inflation.) The approximation improves as we approach
early times. Indeed, (10) and (6)—(8) give

d(Inf)=(B*+2nf?)d(Ina) , (11

and hence f—0 as a —0, logarithmically in a for B=0,
and as a power of a for 0.

A pertinent question is whether the solutions of (6)—(9)
are stable against small perturbations, i.e., whether they
are attractors at least locally. We can rewrite (4) and (5)
using (3) as a dynamical system:

@=2BkWe P¢o"(1+x) , (12)
c=—2nWo" 1+y), (13)
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X =k We Beo"[(—3+2B82+n%ft)x —2n’f?
+0(x%y%xy)+0(fH], (14)

y=1>We Peg"{(n?—2n)f?
+[—3+2B+(n*—4n)f?ly
+0(x%y%xy)+0(fH] . (15

The first two equations define phase-space coordinates x
and y, which measure the deviation from the slow-rolling
approximation. The inhomogeneous terms in X and y are
at least of order f 2. while the coefficients of the terms
linear in x and y are negative. Therefore the solution of
(6)—(9), although not a solution of the exact equations of
motion (3)—(5), remains close to a true solution which is
locally an attractor.

Now we solve the approximate equations of motion.
Equation (8) is easily integrated to give o(#). For n70, o
can be used as a time variable and Eq. (7) can be integrat-
ed as

—y B
Yo)=1, on (16)
Finally Egs. (6) and (7) give
1728 2 2 |1728°
a(o)=a, T;,L =a, 1—fn‘; (17)

The two integration constants ¥, and a, are fixed, in a
complete cosmological model, by tracing the evolution of
a and ¢ back from the present epoch, where a =a,=1
and ¥=19,=« 2.

We now check that in the limit B—0 we recover the
slow-rolling approximation in standard chaotic inflation
[21]. The limit of (16) is in fact y=19,=v,=« 2 The
limit of (17) is

a =a, exp as B—0 . (18)

The case of extended old inflation corresponds to n =0.
Equations (6) and (7) then hold exactly and we recover
the results of [14]: ¢(t)=vy,+2B*W(t—1t,), and a(t)
given by (17).

Although the background equations of motion (in the
slow-rolling approximation) are now completely solved,
we need some further work on them because in the quan-
tization of perturbations the appropriate time parameter
will be the conformal time 7. We therefore have to ex-
press the background parameters a, H, and f as functions
of 7, again in the slow-rolling approximation f2<<1. We
find from the slow-rolling equations that

n= fa_ldt

1— 2n2f2
1—2p8°

—1
4
dt(h )dt (19)

__ 1

where h =aH. If n =0 (extended old inflation), or if we
neglect the f2 term, we can integrate and obtain
1

h=—m, (20)
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where the origin of 7 has been fixed so that & becomes
infinite as —0 from below. Integration of (20) gives

1/(1-28%)
a(n)=a, i] , 1)
Mo
—28%1-28%)
Y=y, |- , 22)

where 7, is a priori a constant. The dependence of A, a,
and v on 7 is then the same as for extended old inflation,
where o is exactly constant. Now, as ¢ is not constant
for n#0, these expressions are not consistent with
(6)—(8). The reason for that discrepancy is that in obtain-
ing (20) we have neglected not f2, but an integral of f2
over time. The error we make in this way may become
large over a long period of time. To compensate for it we
can readjust the constant 7, by hand by allowing it to be
slowly varying as a function of o (adiabatic approxima-
tion). The explicit dependence is obtained by forcing
(20)-(22) to coincide with our former solutions in cosmic
time ¢. Substituting (6) and (20)-(22) in the identity
h =aH and solving for 7, yields

Y o
(1—2B%)a,Wo"
Using this o-dependent value ensures the consistency of
(20)-(22) with the slow-rolling approximation. Equations
(6) and (22), for example, give

1
(1—28%)1,a,

282/(1—28%)
s (24)

No

which agrees up to an f? term with the expression de-
rived directly from (21). The same applies for ¢. Finally,
substituting (22) into (10), we obtain

Y- Y
fZZLp_‘; 282 /(1—2B%)
2

o

R
Mo

(25)

To summarize, Eqs. (20)-(25) are strictly equivalent to
(10), (16), and (17) in the case of old extended inflation,
where n =0 and o =const, and adiabatically approximate
them in the general case.

III. THE EQUATIONS OF MOTION
FOR THE PERTURBATIONS

In [7] we generalized Mukhanov’s [17] treatment of
single-field inflation and expressed the Lagrangian for the
perturbations of the metric and the two scalar fields of
extended inflation as a function of the two physical de-
grees of freedom v and w, which are, respectively, the
gauge-invariant quantities associated with the dilaton and
inflaton perturbations. This Lagrangian is of the form

L=1v"?+1w?—13,v 3% — 13w d'w
—Dvw’—%sz—va—%sz . (26)

where the prime denotes the derivative with respect to
conformal time 7 and i =1,2,3. The explicit expressions
for the coefficients as functions of the background solu-
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tions are given in [7]. The gauge-invariant density per-
turbation §, which is the relative density perturbation on
comoving hypersurfaces (through which the energy flux
vanishes), is given by a Poisson equation

_2 A®
3 (aH)?

where A denotes the Laplacian with respect to the
comoving spatial coordinates and where the gauge-
invariant quantity ® can be interpreted as the gravita-
tional potential on conformally Newtonian hypersurfaces
(see [16], where ® =Py and 6=¢,,). The explicit expres-
sion for A® as a function of v and w is given in [7]. The
equations of motion for v and w derived from the La-
grangian (26) are

) 27)

v"'+Dw'+ Av+Bw—Av =0, (28)

w'"—Dv'—D'v+Bv+Cw—Aw=0. (29)

For V,(0)=co?", and in the slow-rolling approximation

[(8), (16), and (17)] to the background solution, the
coeflicients of the Lagrangian reduce to

A=—2r1—-p%), (30)
C=—2n*1-B1—-3p%, (31)
B=2nB(1—p*fh?*, (32)
D =—2nBfh , (33)
D'=—2nB(1—pB*)fh*=—B . (34)

As in the background equations of motion, terms of order
f? have been neglected compared to terms of order 1.
Specializing the expression for A® in [7] to extended
chaotic inflation in the slow-rolling approximation, we
find

A(bz%{ﬁ(v'—hu)-—nf[w’—(I‘Bz)hw]} .39

IV. VACUUM FLUCTUATIONS

We now construct the quantum theory of the perturba-
tions in the Heisenberg picture. The classical quantities v
and w become quantum operators that we decompose on
a basis of annihilation and creation operators with time-
dependent c-number coefficients, the “mode functions”
(for further details, see [18]):

vl | r k| g a
wiem | = G |0 |5
.
) agk

+e*Q*(n) | + , (36)
ask

where a dagger denotes the Hermitian conjugate, and
where the matrix Q of mode functions is

Uik Vak

Q(n)= (37)

Wik Wy

the columns being two linearly independent complex
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solutions of the equations of motion (28)-(34) in Fourier
space.
We define the canonical momenta from the Lagrangian
(26) as
_ oL _ , _ oL _
TTU:W—U, vw:——aw,—w —Dv . (38)
The quantization is performed by imposing the canonical
commutation relations

[v(x,n),m,(x",7)]=i83(x —x'),
(39)
[w(x,n),m,(x",7)]=i8P(x —x') ,

while all other pairs commute, if the matrices of mode
functions obey

[aik’ajﬁ(']zaijsl(k ‘—k,)) 17_] :112 ’ (40)

while all other pairs commute if the matrices of mode
functions obey

PP+__P*Pl:0’ QQ+—Q*Qt:O, QP‘F_Q:& t:l- R
41)

where ¢ denotes transposition of a matrix, an asterisk
complex conjugation, a plus their composition, and
where P is the matrix of momenta associated to the ma-
trix Q by (38).

To build a Hilbert space of quantum states, we first
define the Fock vacuum |0, ) by

;10 ) =0 for all k,i . (42)

The vacuum depends on the choice of mode functions.
We choose it to be the ground state in the asymptotic
past. Now as p— — o the coefficients 4,B,C, and D
vanish with f and A, and the equations of motion (28) and
(29) decouple into two harmonic-oscillator equations.
Therefore the asymptotic ground state, which we denote
by [0), corresponds to the mode functions whose behav-
ior is
e *1/V2k 0
2= lo e=*1/v2k
Finally we define the quantum operators & and & from
(27) and (35) where v and w are replaced by their quan-
tum equivalent (36). This completes the quantization
scheme.

It remains to compute the mode functions, that is, to
solve the classical equations of motion (28)-(34). It is
possible in principle to determine them numerically.
However, one can view the slow-rolling approximation as
keeping the two first terms of an expansion in f. The cor-
responding expansion of the mode functions in powers of
f is analytically tractable. In solving the perturbation
equations of motion it is inconsistent, however, to go fur-
ther than O(f), as the error in the coefficients (30)-(34)
themselves is of O(f2). To lowest order, O(f°), the
problem simplifies to two decoupled equations, which
read, in the adiabatic approximation where 4 is given by
(20),

DUUi(]E)):O’ waitlg)zo ’ (44)

as n— — oo . (43)
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with

D

g (45)
1—28%
The initial conditions are given by (43). The solution is

v Y=N,vV — an“)( kn),

A

il
dn
3
2

+2y, VwEE‘i'?” Y=

w =N,V —knH'! ( kn), (46)
where H'" is the Hankel function of the first kind [22]
and where

172

N= 2k expi%v+%”,

while v =w'y =0.

We now have all the ingredients to compute, in the adi-
abatic approximation, the power spectrum {®?), of the
vacuum expectation value of ®2. We find, from (35)

(@?),= [d’x e"’“<o\<1><o,n)<1>(x,n)|o)

e[ | 5Ol +n2f R0, @)
where
=0l —hoQ=—kN,V=FnH\ (—kn)
. (48)
w(z(])()Ew(O)_(l_BZ)hw(O)
7 and @ arise by use of the identity

(d/dz)H (z)+(v/z)H (z)=H
function H (z).

In (47) we have written down only the contributions
from v and w'?. This means that we have included a
term of order f2, but not others which are also of order
f2, for example, 28nf Rev Yw Y +2Bnf Rewyvsy. (In
an appendix we show how v and w'" can be calculated
and that they are of order Bnf.) Still, these terms are
really the leading contributions to {®?),. This is due to
the presence of two potentially small parameters. Evalu-
ated at —kmn==1, nf takes a definite value, depending on
the value of 8 (and weakly on k), which may be smaller
or larger than .

For B*>>n%f? at —kn=1, the first term in (47) is the
dominant one. For 82 <<n?2f?, the second term in (47) is
the dominant one and the first one is a small correction,
suppressed by 82. For B2~n2f? both terms in (47) will be
equally dominant. Finally, in the limiting cases of ex-
tended old inflation (n =0) and of standard chaotic
inflation (8=0) only the first or the second term, respec-
tively, do not vanish altogether. In summary, the leadmg
term in (®2), will be either the first or second term 1n
(47), or both in a special case, while terms in v‘!) and w'
are always smaller. Taking them into account would be
inconsistent with the O(f?) error in the background

_1(2), valid for any Bessel
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solution. [This becomes obvious when one considers the
contribution B Qv{%Y, which would also have to be in-
cluded to make the O (f?) in (47) complete, and which is
already beyond the adiabatic approximation.]

We are interested in the asymptotic behavior of the
fluctuations after they have “crossed the Hubble radius,”
that is, when k2 <<h? or equivalently when |k7| <<1 [see
(20)]. We then use the asymptotic power-law expression
for the Hankel functions, H'" (z)~ —im " 12'T(v)z ™" for
|z] << 1, and obtain

( ASKZHZ[N B — k)~ /(126
+ N, n A —ky) B8] (49)
with
sziyzv Tv=D|>=1+0(BY) ,

for f2<<1 and —kn<<1. Finally, if we substitute the
explicit expressions for H and f, (24) and (25), Eq. (49)
reads

2 k5 2 -2
(®%), — K*[(1-28*m,a,]
1'\7 BZ(_kn )'432/(1*262)
2
+N ¢e(_ )—ZBZ/(I—ZBZ) . (50)

We see that all the powers in 1 have canceled and that
(®?), is a function of o only. It is therefore strictly con-
stant when n =0 (extended old inflation) or nearly frozen,
in the sense of the adiabatic approximation, in the gen-
eral case. The spectrum (50), together with the spectrum
of the vacuum density fluctuations,
(8%), =4k /aH)*(®?*),, is our main result. We shall
devote the rest of the paper to tracing its evolution after
inflation.

V. THE EVOLUTION OF THE PERTURBATIONS
AFTER HUBBLE RADIUS CROSSING

All perturbations of cosmological interest, with wave-
lengths between 1 and 3000 Mpc today, cross the Hubble
radius long before the end of inflation (see, e.g., [23).
For these perturbations, (49) and (50) apply from the first
Hubble radius crossing until the end of slow rolling. But
we want to know (®?), when the perturbation reenters
the Hubble radius. By then the Universe has gone
through the end of inflation, through a period of reheat-
ing, of radiation, and for small &, of dust domination.

While a perturbation component of given & is “outside
the Hubble radius,” i.e., while k2 <<h?, one can ignore
spatial gradient terms in its equation of motion, and it
will evolve as the k =0 component. The period after the
last perturbation of interest has ‘“left the Hubble radius™
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and before the first “reenters the Hubble radius” will
therefore affect only the overall amplitude of the pertur-
bation spectrum, not its shape.

Beyond that knowledge, which follows only from as-
suming the validity of linear perturbation theory, we can

’ ’ 2
8+ 1432 —62 |nsj+ |oL —122 4223
P P p 2p° 2
=k? _BTSk‘Aﬂk
p p

where p and p are the pressure and density of the back-
ground effective perfect fluid. The  quantity
N=08p/p —(p'/p')N8p/p) describes the anadiabatic part
of the pressure perturbation, and 7 the anisotropic stress
perturbation. (These are 7 and 7'2’ of [16].) Both, like 8,
are gauge invariant. In general » and 7 are not deter-
mined by the Einstein and Bianchi equations but by the
remaining equations of motion for the matter. If the
matter is a single scalar field, then the Bianchi identities
give its equation of motion (the Klein-Gordon equation).
One can therefore determine 7 and 7 as functions of §
and obtains, in fact, n=[1—(p'/p')Np/p)]d and 7=0
[24]. When the matter is two scalar fields as in (2) or as
in double inflation [25], we have shown in [7] that 7=0.
[This follows from Eq. (6a) in [7] with Eq. (4.4) in [16].]
As for the 7 term in (51), it can be neglected for com-
ponents outside the Hubble radius unless it is very large
compared to 8. In double inflation one expects that 7 be-
comes large at the transition between the first and second
period of inflation because the background equation of
state changes abruptly and the perturbations may not be
able to follow adiabatically. By contrast, the background
evolves smoothly in extended chaotic inflation until
reheating, so that 7 should remain small. Finally, during
reheating 7 is probably large, but by then the factor
k?/h?is also much smaller.

During reheating 7 may also be nonvanishing. There
is some reason to believe, though, that its effect on § is
unimportant. Bardeen [16] has solved the homogeneous
part of (51) analytically for p /p=p’/p'=const, and has
solved the inhomogeneous equation with the help of a re-
tarded Green’s function. He finds that for k?<<h? the
source term 7 excites only the decaying mode of §. One
must take into account, however, that
p/p=p'/p’'=const is not a good approximation during
reheating.

We therefore neglect the right-hand side of (51) for
k2 <<h?. The equation is then an equation in & alone, a
first integral of which was found in [24] (see also [26]).

|

2

h2s,

+__7Tk

(&) lme=2" —
2 [ 282+2n%f?
_ k3 1 +1 g K2
2 | 2p*+2n’f? ((1—-2B*)n,a,T

also estimate the overall amplification factor. From the
Einstein equations and Bianchi identities alone one can
deduce an equation of motion for the Fourier com-
ponents of the gauge-invariant density perturbation &
[Eq. (4.9) of [16]]:

2L |+2n2

’

2 ’
3L 432 2
P e e

-2y 51
35 T pﬂ'k (51)

f

Using relation (27), this first integral { can be written in
terms of ¢ and P’ as

(=2 P (o+h 0+ . (52)
3ptp

The constancy of § outside the horizon has been claimed
[23,27] without all the qualifications we have stressed
here. It was checked numerically in a variety of exam-
ples with one or more scalar fields in [28]. The only case
in that study where § was not constant to great precision
was that of double inflation. In all cases it remained con-
stant during reheating, which was simulated by a heuris-
tic damping term coupling o to a radiation fluid. Assum-
ing therefore that in our model § is constant while the
component is outside the Hubble radius, we can compute
the spectrum of density perturbations after inflation, at
the time when the components reenter the Hubble radius.

VI. THE POWER SPECTRUM
OF THE DENSITY FLUCTUATIONS

After quantization the quantity § (52) becomes an
operator. Since we assumed its constancy while the
wavelength is outside the Hubble radius, its power spec-
trum at the time of second Hubble radius crossing is
2
2P 4| (ad),, (53)

<§2>k|2ﬂc: 3p+p

where the right-hand side is evaluated during the slow-
rolling phase after the first Hubble radius crossing, when
® is adiabatically constant. We have

2
z_L:_H_:(232+2n2f2)—1 , (54)

3ptp H
where the first equality holds in any flat FRW universe
and the second in the slow-rolling approximation. Sub-
stituting (54) into (53) together with the expressions (49)
and (50) for (®?),, we obtain

K2H2[NUBZ( _kn)—4ﬁ2/(1—232>+]\7wn 252 _kn)~2ﬁz/(1~232)]

2
[]\7 Bz(—k’fl )—4BZ/<1—252)+1‘\7 n ¢e(—k17 )—2B2/<1—2BZ) )

o2
(55)
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In the case of extended old inflation (n =0,0 =const) the
right-hand side of (55) is strictly constant, as it should be
during the whole slow-rolling phase after the first Hubble
radius crossing. In the general case it varies slowly with
o(t), due to the fact that we describe the evolution of the
background in an adiabatic approximation. Since the
adiabatic approximation improves with early times [see
(10)] the error made is minimal if we evaluate the right-
hand side of (55) as early as possible, that is, at the time
of the first Hubble radius crossing.

From (52) and (55) the power spectrum for the density
perturbations is easily found. For long wavelengths, for
example, which reenter the Hubble radius in a dust-
dominated universe when the gravitational potential ® is
nearly constant (see, e.g., [29]), we have {~1®, and (27)
yields

4
<52>k|2Hc='2_5‘

4
k
ﬁ] (&%), . (56)

Let us first check that Egs. (55) and (56) agree with
known results in chaotic and extended old inflation. For
B=0 (standard chaotic inflation) (55) reduces to (since
fi«1)

2 2
<§2)k|21-1c=k_3 W H-

Bn? /2 (B=0), (57)

IHC

which can be rewritten, using (6), (8), and (10), in the fa-
miliar form

2
2
<§2>k|2HC=%k_3 {—H— (B=0), (58)

g 1HC

which is the standard result (see, e.g., [23] and references
therein). The other limit, n =0, corresponds to extended
old inflation. Equation (55) then becomes, using (23),

2

2 _@B+1 LW
¢ )k|2HC 832 K ¥,
(1—B%a, W 4B /(1-28%)
X |—¢
[ Ve ]
XN,k 3=2/0-28) (n =0) (59)

where kW=V¢ /(3—282). To relate (59) to previous re-
sults [19,26], we approximate the end of inflation by
Y=1,,a =a,. We can then set ¢, =« 2, assuming as an
approximation that the dilaton will no longer evolve after
inflation, and a, =T, /T, using the fact that the radia-
tion present in the Universe is such that a7 =T7,=2.75
K and the hypothesis that the Universe reheated to a
temperature T, at the end of inflation. A short calcula-
tion then gives for 8, |,;c, the average value of the densi-
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ty fluctuations on a scale A=1/k at second horizon cross-
ing:

811, =V EN ) Lne= 2KV (8 Lne

_ )| 28*+1 |3—28 —B*/201-28%)
10V2r B | 4VB
_ 2 T, 282 /(1—28%)
o : (60)
B Treh

which is identical with Eq. (4.16) in [20], with ¢ =V, and
N,=(1/2m)|2"T(w)|? with p=(1+28%)/(2—4p%).

Let us now consider the general case when both terms
in (55) contribute, that is, when S is of the same order as
f. We have now contributions from both v and w, and
both differ from a Harrison-Zeldovich [30] spectrum:
where the dilaton contribution dominates the spectrum
slowly rises with wavelength A=1/k as A**’, and as A%’
where the inflaton contribution dominates. We shall cal-
culate here for what B the switchover occurs at a A in the
cosmological range, say from 1 to 3000 Mpc. This will
require a fine-tuning of 8. More importantly, it indicates
up to what upper limit on S the dilaton contribution to 8
can be neglected.

To optimize the adiabatic approximation, the right-
hand side of (55) has to be evaluated at first Hubble ra-
dius crossing, that is, when k =aH, which, using (17),

reads
2
ﬁZO’%HC 1/2p
- 2n¢ HIHC > (61)

where H yc can be given as a function of oy by (6) and
(16). For small 8, Hubble radius crossing corresponds to
—kn=1. The switchover in (55) can therefore be defined
by B°=n?f2. Using (10) and (16) this reads

k=a

e

2 _ 2n2 ¢e
o?liuc= 2+n ? . (62)
Substituting (62) into (61), we obtain
In[(n +2)/2]
2 - LN\ te//el
B: 2N, ) (63)
where eN*EaekHIHC=ae /agc- To estimate N, we

characterize, in a rough approximation, the end of
inflation by a =a,, and set a,=T,,, /T, with T(=2.75
K, assuming that the Universe reheated instantaneously
to a radiation temperature T, at the end of inflation.
Furthermore, we can make the rough approximation
H\ yc=H, in (63) as H yc depends only logarithmically
on A. Now H, and T, are related by the Einstein equa-
tion 3H2=k’p=«*bT%,, where b is the radiation density
(Stefan) constant:

172
Treh TO

A ]—Fln
C

b

N;\ZIH A

Treh

~40+ In — =
1010 Gev
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(A more elaborate model, distinguishing H yc from H,
and allowing for delayed reheating, and therefore for
¥, 71, would change N, by a few units. In our rough
approximation the InA and InT,, corrections are there-
fore not significant.) We see that the switchover from a
density spectrum dominated by the dilaton to the inflaton
occurs at observable cosmological scales if

B*~B*~0.009 (n=2).

Finally, it is interesting to see how far our results support
the approximate expression {¢£?) ~H?2/¢, where ¢ is any
scalar field and where the expression is evaluated in the
conformal frame in which ¢ is minimally coupled, e.g., ¢
in the Einstein frame (2) and o in the Jordan frame (1),
and at the moment of Hubble radius crossing in that
frame.

If 0<B<pB,, we obtain approximately
(k 3/2)(H?/¢ )3, evaluated in the Jordan frame. Other
terms must be considered artifacts of the adiabatic ap-
proximation. (This is because in the adiabatic approxi-
mation we neglect not only f? compared to 1, but even
the time dependence of a term like nf , and because in
the case we are considering here % <n 2f2)

If B>>3,, we obtain
2

_ 1 H?
(01£%10) =k =N, | ——
¢ Einstein frame
x(__kn)74[32/(142321 (64)

for f2<<1 and —kn<<1. The explicit power of 7
renders (64) constant in the adiabatic approximation be-
cause it compensates the power of 7 arising from H?/¢,
which is rapidly varying on its own. We recover the usual
expression by evaluating (64) at —kn=1.

To summarize, we recover the usual expression H?/é
only when perturbations from one of the scalar fields are
dominant, and by evaluating our expression for { at
—kn=1.

VII. CONCLUSIONS

We have calculated the inflationary solution of a scalar
field o with the potential co?" coupled to the Brans-
Dicke theory, and the vacuum density fluctuations on
that background. Our quantization prescription, more
precise than in previous work, is a generalization of [17]
(see also [18]), which has been applied previously to ex-
tended old inflation [22].

For the background we have used the slow-rolling ap-
proximation, in which the change of o with time is used
only adiabatically, but our approximation is better for
large JBD coupling 8 than that of [15]. In order to treat
the perturbation equations of motion analytically, we had
to use conformal time 7 as the independent variable. The
transition from cosmic time ¢ (or equivalently o), which
is the natural independent variable for the background
evolution, required an additional approximation we have
called the adiabatic approximation. Although we must
expect the perturbation variable §{ to be precisely con-
stant for perturbation modes which are ‘‘outside the
Hubble radius,” our results are not manifestly constant.
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This problem does not arise from the presence of the
Jordan-Brans-Dicke theory, but is already present in
standard new or chaotic inflation. (In standard chaotic
inflation, for example, ¢ is proportional to ¢” *'.) The
remedy used implicitly has always been to evaluate the
nonconstant expression for § as soon as § is expected to
be constant, that is, at Hubble distance crossing. In this
paper we have not improved upon the adiabatic approxi-
mation, but generalized it to the presence of the JBD
theory.

The power spectrum of density fluctuations rises with
the wavelength as A2P/1726") for small wavelengths and

as A*/11-28) for large wavelengths. It is continuous at
the transition. In the two segments, the dilaton and
inflaton fluctuations, respectively, can be neglected. If
the change of power law is to occur between 1 and 3000
Mpc or, in other words, if both dilaton and inflaton per-
turbations are to contribute equally to the density fluc-
tuations on a cosmological scale, S must have the fine-
tuned value B,=~0.1. In itself this is not likely, but a
value of 8 both greater or less than this value is not in
conflict with observation, as reviewed in the Introduc-
tion.
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APPENDIX: THE MODE FUNCTIONS TO O (f)

Treating v{Y, etc. and B and D as O(f), the next-to-
leading order in the expansion of the mode functions
obeys

D,vi=0, (A1)
D, wy)=0, (A2)
D,vi}=—Dw} —Bw=2npfhw , (A3)
D, w{{=Dv\Y + (D'~ B}
=—=2nBfh[v\Y+3(1—Bhv'\}] . (A4)

Putting boundary conditions on the two homogeneous
equations is straightforward. We know that all solutions
oscillate at a constant amplitude as n— —oc. In.the
same limit, f—0, so that the solutions of the homogene-
ous equations cannot be nontrivally of O(f). Therefore
we must choose vi})=wi’=0. By the same argument,
the solutions of the two inhomogeneous equations must
vanish as 7— — o in order to be of O(f). Again that
fixes the boundary conditions uniquely. Explicit solutions
of the inhomogeneous equation Dv =s can be given as
vin)= fG(n,T)s(T)dT. The correct boundary condi-
tions are obeyed by the retarded Green’s function for D,
which is
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0 if n<r,
_mV —knV —kt
2k sinvwr

G(n,7)=

The explicit solution in this form is clearly of order Bnf.
As G(n,m)=0, it is easy to see that
v(n)= [G(n,7)s(7)d 7, where the differential operator
we have denoted by a tilde [see Eq. (48)] acts on G (7, T)
with respect to its argument 7 in the same way as on any
solution of D, that is, by changing the order by 1. In or-
der to make progress analytically, we need to approxi-

U=k _(—kr)—J
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(AS)

_(—kmJ (—k7)] otherwise .

—

mate f in (25) as a power of 7, that is, we must treat 7, as
a constant. Even so, the necessary indefinite integrals
over a product of two Bessel functions of different order
and a power are not known in closed form. At best we
can obtain an approximation for —k7n<<1 in closed
form.
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