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This paper derives and analyzes exact, nonlocal Langevin equations appropriate in a cosmological set-

ting to describe the interaction of some collective degree of freedom with a surrounding "environment. "
Formally, these equations are much more general, involving as they do a more or less arbitrary "sys-

tem, "characterized by some time-dependent potential, which is coupled via a nonlinear, time-dependent

interaction to a "bath" of oscillators with time-dependent frequencies. The analysis reveals that, even in

a Markov limit, which can often be justified, the time dependences and nonlinearities can induce new

and potentially significant e6ects, such as systematic and stochastic mass renormalizations and state-

dependent "memory" functions, aside from the standard "friction" of a heuristic Langevin description.

One specific example is discussed in detail, namely, the case of an inflaton field, characterized by a
Landau-Ginzburg potential, that is coupled quadratically to a bath of scalar "radiation. " The principal

conclusion derived from this example is that nonlinearities and time-dependent couplings do not pre-

clude the possibility of deriving a fluctuation-dissipation theorem, and do not change the form of the

late-time steady state solution for the system, but can significantly shorten the time scale for the ap-

proach towards the steady state.

PACS number(s): 98.80.Bp, 98.80.Dr

I. INTRODUCTION

Over the past two decades or so, a great deal of atten-
tion has focused on the problem of understanding statisti-
cal field theory in a cosmological context, allowing
correctly for the fact that the spacetime is not flat, or
even static. This is a problem of interest both from an
abstract field-theoretic viewpoint and from a more practi-
cal viewpoint which seeks to understand what the
Universe was like at very early times. When addressing
the latter sorts of issues, one is led oftentimes to imple-
ment various models and/or approximations which, al-
though not justified rigorously, seem physically well
motivated and even essential, if one wishes to obtain con-
crete results.

One important ingredient in this sort of modeling is the
idea that, at some level, the physical degrees of freedom
of the Universe divide into two coupled pieces: a "sys-
tem" component, the detailed evolution of which is for
some reason of particular relevance, and a "bath" corn-
ponent, the detailed evolution of which is somehow ir-
relevant. This sort of picture has arisen in at least four
different settings. One such setting entails an understand-
ing of inflation in terms of an inflaton field evolving in the
rest of the Universe, which serves as an external environ-
ment or bath [l —3]. Another involves the general notion
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of "coarse graining" as a physica1 mechanism in terms of
which to extract quantum decoherence, this facilitating a
"quantum-to-classical" transition in the early Universe
[4]. A third entails a more systematic development of
statistical quantum field theory [5], which uses a closed-
time-path formalism to derive quantum dissipation and

memory loss. And finally, there is the intriguing, but not
yet completely understood, program of stochastic
infiation originally proposed by Starobinsky [6].

Much work along these lines has been predicated upon
the formulation of essentially ad hoc Fokker-Planck
equations, which effectively introduce a bilinear interac-
tion between the system and the bath. It seems crucial to
understand the extent to which these sorts of heuristic
models are in fact reasonable, i.e., approximately true in

some appropriate limit, and, especially, how relaxing the
basic assumption of bilinearity changes the underlying
physics. In particular, is the standard sort of modeling
legitimate if one allows, as in certain cases one must, for
time-dependent couplings and frequencies and incorpo-
rates realistic nonlinearities~

These are extremely difficult questions to answer in
complete generality. However, as will be seen in this pa-
per, they can be examined in certain cases by considering
special models of systems coupled to baths comprised of
time-dependent harmonic oscillators, where it is possible
to derive exact, nonlocal Langevin equations simple
enough to understand, both physically and mathematical-
ly. These models are nonlinear, time-dependent generali-
zations of phenomenological models which have proven
quite successful in other branches of physics, such as con-
densed matter physics or quantum optics. And, as in
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those settings, the models are well motivated phenomeno-
logically, even if they are not derived ab initio.

One of the objectives here is to derive exact generalized
Langevin equations for these models, and in an appropri-
ate Markov limit, their Fokker-Planck realizations. One
is then poised to understand the sorts of new effects aris-
ing in these exact nonlocal equations which are absent
both from more heuristic Langevin descriptions and from
the exact nonlocal equations that can be derived for the
special case of time-independent bilinear couplings.
What this entails is an analysis of the interplay between
three different sorts of effects: namely, linear and non-
linear noise, which may well have very different natural
time scales, and the explicit time dependence of the envi-
ronment, reflecting the overall expansion of the Universe,
which introduces yet another time scale.

This analysis shows that (a) allowing for a nontrivial
time dependence necessarily induces qualitatively new
effects such as mass (or frequency) "renormalization, "
even for the special case of bilinear couplings [3]; and,
moreover, (b) allowing for nonlinearities in the system-
environment coupling induces new effects aside from the
usual "friction" term. One discovers, e.g. , that non-
linearities give rise to an additional renormalization of
the system potential, and that they imply a "memory"
kernel which involves the state of the system.

These results might suggest that, in the presence of
such nonlinearities, one's naive intuition is completely
lost. This, however, is not so: Even allowing for non-
linearities and time-dependent couplings in the interac-
tion between the system and environment, one can, at
least for the case of time-independent oscillators, where
the bath may still be viewed as being "at equilibrium, "
still derive a simple fiuctuation-dissipation theorem [7].
When the oscillators become time dependent, the
fluctuation-dissipation theorem will no longer be exact.
However, this theorem does remain at least approximate-
ly true to the extent that the coupling between the system
and environment is dominated by modes of sufficiently
short wavelength. As will be shown below, in a cosmo-
logical setting this implies that, on scales short compared
with the horizon length, it is still possible to speak of an
approximate equilibrium and an approach towards that
equilibrium.

This paper focuses on obtaining a qualitative under-
standing of the effects of nonlinear couplings and a time-
dependent environment. A subsequent paper will present
a concrete calculation, applying the technology of the
time-dependent renormalization group to a simple
cosmological phase transition.

Section II of this paper focuses on the general problem
of couplings between a system and a bath, motivating in
particular a rather general time-dependent Hamiltonian
which is amenable to a systematic analysis. Section III
derives an exact, nonlocal Langevin equation from this
Hamiltonian and then discusses its physical implications.
All of this is completely general, not restricted in any way
to a cosmological context. Section IV then turns to a
consideration of one specific cosmological model, deriv-
ing Langevin and/or Fokker-Planck equations for some
collective degree of freedom, such as the dilaton mode,

evolving in a Landau-Ginzburg potential and coupled to
scalar "radiation. " This equation can provide one with a
simple tool in terms of which to model a cosmological
phase transition associated either with inflation or the
formation of a cosmic string. Section V provides approx-
imate solutions to this equation, which enable one to
study the approach towards a (time-dependent) steady
state. It is observed that such an approach towards
"equilibrium" can be strongly influenced by the non-
linearities in the couplings ("multiplicative noise")
and/or the effects of the time-dependent expansion of the
Universe.

II. THE SYSTEM-ENVIRONMENT SPLITTING

Two sorts of equations are ubiquitous in nonequilibri-
um statistical mechanics: namely, (collisional) Boltzmann
equations and Fokker-Planck equations. Boltzmann
equations are appropriate for transport-type problems,
involving strongly interacting particles, whereas
Langevin and/or Fokker-Planck equations are useful in
the study of phase transitions, Brownian motion, and the
like.

These two ubiquitous equations also find a place in
cosmology. In the past, kinetic theory in the manner of
Boltzmann has been studied extensively, most prominent-
ly perhaps in the analysis of nucleosynthesis [8]. More
recently, however, phase transitions have come into
vogue, especially with regard to the inflationary scenario
[9], and it is here that one encounters Fokker-Planck
equations.

That the standard methodology (with essentially trivial
modifications) can be applied to the very early Universe
involves a certain leap of faith; and while on the whole
cosmologists appear comfortable with the status quo,
doubts have certainly been voiced in the literature [10].
The main objections relate to (1) the assumption of
thermal equilibrium, (2) the absence of a clear separation
of time scales, (3) the neglect of fiuctuations, (4) the valid-
ity of heuristic master equations, and, related to this, (5)
the lack of a fundamental Liouville description, derived
from a Hamiltonian. While it is fair to say that some of
these objections have not been stated in a concrete, quan-
titative way, they do lead to a feeling of unease.

In order to address some of these issues concretely, this
paper will consider a prototypical Hamiltonian which in-
corporates more or less realistic nonlinearities and time
dependences, and then extract from that Hamiltonian an
exact Langevin equation for the system variable. This is
a Liouville approach [10] in which the fundamental equa-
tion is derived systematically without any ad hoc assump-
tions. However, the more difficult problem of justifying a
full-blown nonlinear Boltzmann equation will not be
treated here.

The exact Langevin equation involves at least three
distinct time scales: (1) the Hubble time t&, (2) the relaxa-
tion time t~ on which the system is affected by the sur-
rounding environment, and (3) the time scale tc set by the
decay of the noise autocorrelation function. If the system
evolves under the influence of some nontrivial system po-
tential U, there is also a fourth time scale tz, the time
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scale on which the system changes in response to U. The
implementation of any approximation entails an assump-
tion regarding the separation of these time scales. In par-
ticular, the possibility of an approximate local descrip-
tion, i.e., the existence of a Markov limit, depends criti-
cally on the assumption that t& && tz, t&, and ts. An ob-
vious point then is that nonlinearities, especially with
respect to the system-bath coupling, can play an impor-
tant role by inducing multiplicative noise which can
significantly alter tz.

The specific objective here is to motivate a phenomeno-
logical Hamiltonian for the system plus environment, and
to analyze it rigorously to extract the physical effects con-
tained therein. The system is taken to be some "collec-
tive coordinate" evolving under the inhuence of a "heat
bath. " Particular interest focuses on phase transitions,
but the development here is in no way restricted to such a
setting. Indeed, it should be stressed that this general ap-
proach has been used successfully in many other areas of
physics, such as condensed matter physics, nonlinear op-
tics, nuclear physics, etc.

Given an arbitrary composite Hamiltonian, one wishes
to introduce a splitting into a "system" piece, a "bath"
piece, and an interaction term. If this split is to be useful,
it must be true that in some sense the system is "small"
compared with the environment. What this means is
that, as far as the system is concerned, the full Hamiltoni-
an

Hz =Hs+Ha +H

is well approximated by

H =Hs+5H~+5Hq, (2)

where 5H~ is the Hamiltonian for a collection of har-
monic oscillators and 5Ht an interaction Hamiltonian
linear in the oscillator variables q„[11,12]. The heat
bath may well be one in which the oscillators are "funda-
mental" (e.g., the modes of some free field, as in black-
body photons), but this is by no means necessary: As-
sume that, in the absence of any coupling with the sys-
tem, the environment is characterized by some fixed, pos-
sibly time-dependent, solution. Now allow for a weak
coupling with the system, weak in the sense that each
path mode is only changed marginally. Then identify the
qz's as perturbed variables, i.e., degrees of freedom
defined relative to the fixed solution (e.g., phonons). This
has two implications: (1) the environment can be visual-
ized as a collection of oscillators with (possibly time-
dependent) frequencies, so that 5H~ is quadratic in bath
variables q„, and (2) because the interaction of the envi-
ronment with the system is assumed to be weak, in the
sense that the individual bath modes are not altered
significantly, 5H~ must be linear in the q~'s. Note that
one does not want to assume that the system is only
weakly altered, so the interaction 5H~ is not necessarily
linear in the system variable x. In principle one can
proceed without imposing any restrictions on the form of
the system Hamiltonian Hs.

Given the above set of assumptions, one can write that

Hs= —,'u + V„,„(x,t),
1

5Ha = &—[p~+Q~(t)q A ]
A

(4)

and, in terms of relatively arbitrary functions I ~,

5Ht= —QQ„(t)I „(x,t)q„.

+—g [p„+Q„(t)[q„—I „(x,t)]'), (6)

where, in terms of the "renormalized" potential V„„,

U(x, t)= V„„—g —Q'„(t)I'„(x,t) .1

Couplings of a system to some environment can induce
finite and stochastic renormalizations in the system po-
tential, although this is not always so [12]. In this paper,
the words "system potential" will always refer explicitly
to the renormalized system potential. A physical restric-
tion on the form of the couplings I ~ arises from the re-
quirernent that the renormalized potential not change the
qualitative form of the bare potential. Thus, e.g., if the
bare potential is a polynomial of order n, the renorrnal-
ization should induce no terms of order higher than n.
This condition also ensures stability of the system to-
wards the destabilizing effects of rnultiplicative noise,
since it implies that the stochastic forcing terms in the
potential must be a polynomial of order & n.

Finally, as emphasized, e.g., by Caldeira and Leggett
[12], it should be stressed that this is more than simply a
toy model. This form of the Hamiltonian generally pro-
vides a correct description for any system which is only
weakly coupled to its surroundings. To facilitate a con-
crete calculation, this Hamiltonian need only be supple-
mented by two inputs, namely, the spectral distribution
of the environmental modes and the form of the coupling
to the system. For a general physical problem, these may
either be extracted from experimental data or derived
from theoretical considerations.

III. TIME-DEPENDENT LANGEVIN EQUATIONS
WITH MULTIPLICATIVE NOISE

The equations of motion generated from the Hamil-
tonian (6) clearly take the form

X =V

a
U(x, t)+ QQ„(t)[q„—I „(x,t)] I'„(x,t),

qa =5'w ~

p„=—Q„[q„—I „(,t)),
where an overdot denotes a time derivative 8/Bt.

The fact that the equation for p~ is linear in q~ implies

It is, however, convenient to rewrite H in the manifestly
positive form

H =
—,'u +U(x, t)
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:-„+Q„:"„(t)=0, (9)

chosen without loss of generality to satisfy the initial con-
ditions C„(0)=S„(0)=1and S„(0)=C„(0)=0at some
time t =0. One then concludes exactly that

that one can immediately write down a forrnal solution
for q„(t) in terms of I „(x,t) at retarded times s(t
Indeed, let S„(t) and C„(t) denote two linearly indepen-
dent solutions to the homogeneous oscillator equation

and

m

1
B~ (s, t) = ——A „(t,s),

n s

n

the "memory kernels" K(t, s) and M(t, s) are

K (t, s) = g Q'„(t)A „(s,t) W„(s,t),

A „(s, t) = g y'„ '(s)x '(s) g } '„"'(t)x" '(t)

(18)

(19)

q„(t)=q„(0)C„(t)+p„(0)S„(t)
+ dsQ„s I x s, s

0

M ( t, s) =g Q'„(t)B„(s,t) W„(s, t) .

The force F, now reduces to
(10)X[S„(t)C„(s)—S„(s)C„(t)].

F,(t) = g Q'„(t) QADI„ I(t)x

X {[q„(0)—I „(x,0)]C„(t)

+p„(0)S„(t)} .

The integrand in (10) vanishes in the coincidence limit
s~t. This, however, may be remedied by replacing S„
and C„by —S„/Q„and —Cz /Q„and then integrat-
ing by parts. The net result is a formal solution

(20)

(21)

q„(t}=I„(x(t),x)

+ [q„(0)—I „(x,0}]C„(t)+p„(0)S„(t)

+ ds W„(s, t) I'„(x(s),s ), (11)

where the Wronskian

W„(s,t}=S„(s)C„(t)—C„(s)S„(t) . (12)

Note that, for the special case of time-independent fre-
quencies, C„(t)=cos Q„t and S„(t)=Q&'sin Q„t.

By inserting (11) into the equation for U and grouping
terms suggestively, one then recovers an exact, nonlocal
equation of the form

(Q„(0)&=(p„(0)&—=0, (22)

with Qz (0):—qz (0)—I z(x (0),0), and where the second
moments are initially thermal, so that

Equation (16) is considerably more complicated than
an ordinary Langevin equation. However, these addi-
tional complications need not preclude entirely the possi-
bility of a simple physical interpretation or the proof of a
fluctuation-dissipation theorem. Provided that the oscil-
lator frequencies Q„are not time dependent, one can still
prove a fluctuation-dissipation theorem, even if I A is a
nonlinear function of x [7] and/or explicitly time depen-
dent. Indeed, consider an ensemble of initial conditions
for which the first moments vanish identically, i.e.,

aU, a a—f ds QQ'„(t) W„(s, t) I „(x(t), t )—

Xl „(x(s),s)+F,(t), (13)

(p„(0)p (0)& =Q„(0)Q (0)(Q„(0)Q (0)&

—km~&Aa (23)

where
where the angular brackets denote an initial ensemble
average. One then computes exactly that

F, (t) =QQ'„(t) I „(x(t), t )
a

A g A

X I [q„(0)—I „(x(0},0)]C„t
and

(F,(t)&=0

(F,(t, )F, (t2) & =k~ TK(t, , t2),

(24)

(25)
+p„(0)S„(t)} . (14)

where, in terms of the quantities

In the spirit of the discussion in Sec. II, suppose now
that the interaction between system and bath entails a po-
lynomial coupling

N

I „(x,t) = g —y'„"'( t)x ",
n=1

where the functions y'A"' are arbitrary real functions of
time. Equation (13) then takes the form

BU —f ds [K(t,s)U (s)+M (t,s)x (s) ]+F,(t),
Bx o

(16)

thereby identifying F, (t) as a noise and providing a gen-
eralized fluctuation-dissipation theorem linking the noise
autocorrelator with the "viscosity kernel" K(t, s) [Strict-.
ly speaking K(t, s} need give rise to a true viscosity only
in the case of an Ohmic environment, a point which will
be discussed later. ] Equation (16) can now be viewed as a
nonlinear, nonlocal Langevin equation.

That a fluctuation-dissipation theorem can hold even
in these more complicated settings is a formal conse-
quence of the fact that the nonlinearities and time depen-
dences in (16) enter into the memory kernel K(t&, t2) and
the autocorrelator (F,(t&}F,(t2)& in exactly the same
way. Physically, this result can be understood as follows:
If the basic picture is valid, the total energy is dominated
by the constant energy of the heat bath (recall that one is
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now assuming that the bath frequencies are time indepen-
dent), so that energy is approximately conserved, even if
the system Hamiltonian Hz is time dependent. Since
fluctuations induce a monotonic increase in the system
energy, there must be some source of dissipation if that
energy is to remain bounded. However, if that dissipa-
tion is too strong and dominates the fluctuations, the sys-
tem energy will vanish at late times, which is clearly un-
physical for a system coupled to a finite-temperature heat
bath. The fluctuations and the dissipation must clearly
balance if the system is to have a finite but nonzero ener-

gy at late times.
It should be observed that the Langevin equation (16)

reduces to a well-known form in an appropriate limit. If
one neglects all nonlinearities in the coupling between
system and bath, assuming that I „~x, one immediately
recovers a special model considered previously [3]. And,
moreover, if one assumes further that Q ~ and I „are in-
dependent of time, one is reduced to the well-known in-
dependent oscillator model [13]. It is thus possible to ad-
dress systematically the question of how the incorpora-
tion of nonlinearities and/or time dependences leads to
systematic changes in the Langevin equation derived for
that original model.

When one neglects both the nonlinearities and the time
dependences, the memory kernel M(s, t) vanishes identi-
cally and, moreover, the remaining memory kernel K (s, t)
contains no explicit x dependence. The stochastic force
F, involves x only linearly, through the propagation of an
initial condition. It thus follows that one recovers a rela-
tively simple equation involving a (nonlocal) friction
~ v(s) and purely additive noise. To the extent that the
function K(t, s) is sufficiently sharply peaked about the
coincidence limit s ~t (what precisely this entails will be
discussed below), one can then approximate u(s) by its
value at time t, in which case one obtains a Markovian
equation involving a friction ~ v (t).

When one allows for a nontrivial time dependence in
the oscillator frequencies or the coupling between the sys-
tem and bath, but as yet no nonlinearities, an additional
nonvanishing kernel M(s, t) appears. In a Markov ap-
proximation, this leads to a new term in the Langevin
equation proportional to x(t) which corresponds to a
time-dependent change in the system potential. In a
field-theoretic context, this would be interpreted as a
mass renormalization. In this case, F, still gives rise to
additive noise, but that noise acquires an explicit time
dependence.

When instead one incorporates nonlinearities but no
time dependences, the memory kernel M(s, t) still van-
ishes, but the other kernel K(s, t) becomes significantly
more complicated, involving not simply an autocorrela-
tor for the mode functions C„~cos Q ~ t, but a correlator
of BI „/Bx with itself. In other words, the nonlinearity
implies that the evolution of x exactly involves an x-
dependent memory. This is hardly surprising. Indeed, as
one might have anticipated, e.g., by analogy with the
theory of the Brownian motion, the integral is nothing
other than the autocorrelation function for the forces as-
sociated with the interaction of the system with each of
the bath modes. In this case, F, also acquires an addi-

tional x dependence implying that the noise will depend
not only on the initial conditions x (0), q„(0), and p„(0),
but upon the x-dependent state of the system as well. In
other words, the noise is multiplicative.

It should be observed that the memory kernel M(t, s)
does not enter into the fluctuation-dissipation theorem
for a time-independent bath. Its only effect is to induce a
systematic renormalization of the system potential, which
will of course affect the form of the late time solution.

One further point should be stressed. The fluctuation-
dissipation theorem of Eq. (25) refers explicitly only to
the total force F, and the total memory kernel K(t, s).
However, it is easy to see that analogous theorems also
hold separately for each term ~y'„'(s)y'„"'(t). In this
sense, the fluctuation-dissipation theorem is truly micro-
scopic.

Equation (16) is an exact, nonlocal equation. Only to
the extent that this equation can be approximated as
Markovian can one derive from it a Fokker-Planck equa-
tion. Such a Markov limit implies (1) that the memory
kernels K (t, s) and M(t, s) may be approximated as essen-
tially local in time, and (2) that the autocorrelation func-
tion for F, falls off rapidly as

~
t —

s~ increases. It is clear
by inspection that, if K(t, s) is essentially local, so is
M (t, s) Furth. er, the fluctuation-dissipation theorem
guarantees that, if K(t, s) is local, the noise autocorrela-
tion will be as well. In considering the validity of a Mar-
kov approximation, it thus suffices to consider K(t, s).

The Markov limit can oftentimes be justified approxi-
mately for smooth spectral distributions, given an ap-
propriate separation of time scales. Let t, denote a
characteristic time scale on which the memory kernels
K(t, s) and M(t, s) decay, and let t,„, denote a charac-
teristic time scale on which the system velocity u and/or
position x change significantly, either in response to the
environment (tz ) or to the system potential U(ts). [Pro-
vided that the mode functions are all oscillatory, K(t, s)
will decay much faster than ~t

—
s~ at late times, so that

one can clearly identify a time scale tc.] In a time-
dependent setting, the Markov limit then follows when
tc « t,„,. If the oscillators are time dependent, there is
another relevant time scale tH, the characteristic time on
which the frequencies change. To the extent that tH is
much larger than both t,„, and t&, one anticipates that
the time dependence may be viewed as a perturbation,
and that the Markov limit should still obtain. If

tsys but is not short compared with t» the time
dependence can no longer be viewed as a perturbation,
but it may still be true that a Markov approximation can
be justified. This should, e.g., be the case if all modes still
oscillate and/or the coupling of the system to the longest
wavelength modes is relatively weak. If, however, t& is
not much larger than t„one expects that a local Fokker-
Planck description will be inappropriate. This is, for ex-
ample, true for the specific example discussed in Secs. IV
and V.

For the special case of ohmic" environments, the non-
local term in the exact Langevin equation involving
K (t,s) reduces to the usual linear viscosity seen in heuris-
tic ad hoc Langevin descriptions. These environments are
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characterized by time-independent frequencies and have
a spectral distribution g (II ) ~ 0, with an upper cutoff at
some 0,„, and all the oscillators are assumed to couple
bilinearly to the system with an equal strength [12,7]. If
the coupling is not bilinear, one still recovers a viscosity
that is linear in v, but this viscosity will be dependent ex-
plicitly on x. If the spectral distribution g(Q) differs only
slightly from ~ 0, the difference may be treated pertur-
batively to extract calculable modifications in the form of
the Markovian equation. However, for spectral distribu-
tions which are very different, e.g. , "supra-ohmic" distri-
butions ~ 0, the local Langevin equation can be higher
order in time derivatives and need not contain a simple
viscosity term ~u(t). One concrete example thereof is
provided by an electron interacting with its self-
electromagnetic field [14]. However, for the cosmological
example considered in Secs. IV and V, the spectral distri-
bution will be nearly "ohmic, " so that the local Langevin
description will contain an ordinary viscosity and thus
admit a Fokker-Planck realization.

where, in terms of constants A. , 0, and o.,

U(x, q)= —,'A, (g)x +—,'9(g)x'+ ,'c—r(g)x

and the coupling

I „(x,71)=y'„"(g)x +y'„'(g)x

Recall from Eq. (7) that U and the Landau-Ginzburg po-
tential V„„are connected by a term involving the cou-
plings I ~. It follows that, if the y'~"s and y'~'s are both
nonvanishing, this coupling will in general induce a cubic
term in U, although the coefficient 0 of that term could
vanish. The coefficients A, and o. in U are also "dressed"
quantities, differing from the bare quantities in V„„be-
cause of the terms involving the I ~'s. At this stage, the
explicit time dependence of A. and o. and the couplings
y'~" and y'~' may be treated as more or less arbitrary.
The frequencies 0„satisfy

(29)

IV. A COSMOLOGICAL EXAMPLE

The objective of this section is to formulate a nonlocal
Langevin equation in terms of which to describe the evo-
lution of some system variable, evolving in a Landau-
Ginzburg potential V„„and coupled to a bath of scalar
blackbody "radiation. " The aim of this Langevin equa-
tion is to provide a quasirealistic model for a cosmologi-
cal phase transition. The entire analysis will be classical,
allowing for thermal fluctuations but not for quantum
fluctuations. This may prove appropriate either in the
context of some versions of inflation or, alternatively, in
the formation of cosmic strings or baryogenesis. Atten-
tion here focuses on formulating the problem and discuss-
ing its physical potentialities. Quantitative details will be
provided in a subsequent paper.

In what follows the bath will be idealized as a collec-
tion of oscillators, characterized by time-dependent fre-
quencies appropriate for a scalar field with a general gR
curvature coupling. The case g= —,

' corresponds to con-

formal coupling, whereas (=0 yields minimal coupling.
Consistent with the discussion in Sec. II, the interaction
Hamiltonian will be taken as linear in the oscillator vari-
ables q~, but it can involve an arbitrary quadratic depen-
dence on the system variable x, with both linear and non-
linear pieces. By allowing for both linear and nonlinear
couplings, and varying the relative strengths of these two
different contributions, one will be able to compare the
effects of additive and multiplicative noise. The analysis
will be effected in the conformal frame, in terms of a con-
formal time coordinate g satisfying dg=a 'dt, where a
denotes the scale factor. It will, moreover, be assumed
that the spatial curvature of the t =const slices vanishes,
so that one is considering a k =0 Friedman cosmology.

Given these assumptions, one is led directly to a Ham-
iltonian of the form motivated in Sec. II, namely,

1H =—u + U(x, rl)
2

+—g tp„+Q„(g)[q„—I „(,q)]]

where a prime denotes a conformal time derivative 8/Bg.
Suppose now that, in terms of cosmic time t, the scale

factor a evidences a simple power-law time dependence
a =t, with p —,'. It then follows that

p/(1 —p) (30)

where go denotes an integration constant, so that

(31)

(33)

is solved by a general

= [ o„(r9 9o)]' Z„(~„(rl—v—lo)), (34)

where Z„denotes an arbitrary solution to Bessel's equa-
tion of order

where

v =(1—6g)
(2 —I )

(1 —p)
is intrinsically positive when p) —,

' and 1 —6(~0. The
quantities co~ denote eigenvalues of the spatial Laplacian.

To proceed further, one needs to determine the mode
functions =„ for the time-dependent frequencies. These
can clearly be evaluated in terms of Bessel functions.
However, in so doing there are at least two possible ways
in which to proceed, namely, considering (1) complex
modes involving Hankel functions or (2) real modes in-

volving ordinary Bessel and Neumann functions. This
paper will adopt the (less conventional) second choice,
since it provides a more direct connection with earlier
work on Langevin equations: in the absence of a time-
dependent expansion, the mode functions reduce to sines
and cosines. Straightforward algebra reveals that the
equation
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p =(1—6g} +—=v +—.p(2p —1) 1 q 1

(1—p)' 4 4
(35} (ksT) '(F, (t)F, (s) ) = g Q'„(t) A„(s,t)Q„(s,t),

A

Note that, for the special cases g= —,
' (conformal coupling)

and/or p =
—,
' (a universe dominated by conformal elec-

tromagnetic radiation), p =
—,
' and the solutions

reduce to sines and cosines. For these particular values,
the bath Hamiltonian 6H& is time-independent in the
conformal frame. This implies that the physical frequen-
cies are simply redshifted uniformly as the Universe ex-
pands.

Presuming that the initial value problem for the
Langevin equation is specified at time g=0, the appropri-
ate solutions will be CA and SA, combinations of Bessel
and Neumann functions J and N„, modulated by factors
cd „(r) —rto), satisfying C„(0)=dS„(0)/d r) = 1 and
S„(0)=dC„(0)/drt=0. If pA —,', the functions C„and
S„are, for long wavelengths with ~Cdg(g 'go)~ ((p, very
different from sines and cosines. Indeed, they are not
even oscillatory. However, to the extent that such longer
wavelengths do not couple significantly to the system,
one can approximate the = A's by the forms appropriate
when ~cd„(r) —rto) ~

))p. In this case, the mode functions
reduce to

1/2
2(g)=
7T

1/2
2

(rt) =
7T

1
sin cd„(rt —rio}——p+—

1
cos td„(rt —go) ——p+—

(36)

(37)

K (t,s) = g Q'„(t)A „(s,t) W„(s, t), (3g)

i.e., ordinary sines and cosines, modulated by phase shifts
which can of course be absorbed in the normalizations.

It is clear that, in this limit, one recovers a relatively
simple nonlocal Langevin equation, for which the only
explicit time dependences are in the potential U and the
couplings between the system and the environment. It
thus follows that, in this approximation, a fluctuation-
dissipation theorem holds, so that one would anticipate
an evolution towards some steady-state solution at late
times. The fluctuation-dissipation theorem is of course
exact when g= —,

' and/or p =
—,'.

It should be stressed that the condition
~
cd g 8/ r/Q )

~

&&p has a very simple physical interpreta-
tion. Reexpressed in terms of the physical cosmic time t,
this condition becomes (td„/a)t))p~1 —p~, this corre-
sponding, for p and p of order unity, to the demand that
the physical period of the oscillation be short compared
with the time scale tH associated with the expansion of
the Universe. In other words, the wavelength must be
short compared with the horizon length.

In general, however, a fluctuation-dissipation theorem
does not hold. Recall that the memory kernel K(t, s)
satisfies

where

C„(t)C„(s)
Q„(s,t)=Q„(s) +S„(t)S„(s)

Q„(0)
(40)

When the frequencies Q z are all time independent (/= —,
'

or p =
—,'), Wz (s, t) and Qz(s, t) are in fact equal so that

one recovers the fluctuation-dissipation theorem (25). In
general, however, this is clearly not so; and the typical
size of the fractional deviation between these two quanti-
ties provides a concrete measure of the degree to which
the fluctuation-dissipation theorem fails. Suppose that
co„denotes a typical frequency associated with the cou-
pling of the system and the environment. It then follows
straightforwardly that the fractional amplitude of the de-
viation is of order

1 a
Nc~( I go)

(41)

The fractional deviation from a fluctuation-dissipation
theorem scales as the ratio of a characteristic oscillator
period -(cd„/a ) to the expansion time scale tH.

It remains to consider the circumstances under which a
Markov approximation can be justified. Note first of all
that, to the extent that the bath oscillators are interpreted
as representing the modes of some free field, one would
anticipate a spectral distribution ~coA, so that, given
some cutoff co,„,one can pass to a continuum limit

g~ f dcd td (42)

X coscd(rt —s) . (43)

Suppose, however, that one can also neglect the time
dependence of the c's, a reasonable assumption, e.g., if
the c's change only on an expansion time scale tH. One
can then effect the dtd integration explicitly to obtain (for
large cd,„) a delta function 5D(g —s). It follows that the
memory of K(t,s) is indeed very short, so that, presum-
ing that the time scale tz associated with U is not too
short, one can approximate

Consistent with the equation for 5Hz, now separate out
the explicit 0 dependence in the system-bath couplings
and write y'„"'(rt ) =c„'"'(r))/Q „(rt).

As a particularly simple first approximation, suppose
that c„'"' is essentially independent of frequency. And,
moreover, assume that the longest wavelength modes are
not very important in the coupling, so that one can
neglect the frequency shift associated with the expansion
of the Universe and set QA =coA. Given these approxi-
mations, one has, e.g., that

K(rt, s)= fdade c'"'(s)c' '(rt)x" '(s)x '(rt)
m, n

in terms « the W«nk»an «Eq. (12). Alternatively, a
thermal average of the noise autocorrelation, taken at the
initial time g=0, satisfies

K ( ), )7=sgc'"'(t)x" '(rt) 5D(rt s)—
n

=2Wx, rl)5D(q —s) . (44)
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aU
Bx

JN, (ri—)x(ri) A(r)—)v( q)+F, (ri),

where, for an initial thermal ensemble,

(F,(g)F, (s) }=2ks T%'(x, g)5D(g —s) .

(45)

(46)

This local Langevin equation leads immediately to a
Fokker-Planck equation of the form

aU
Atx —%—'v fBx

Translated back into the physical frame, the Langevin
equation (45) becomes

V=— 1 aU —M(r)X — 3—+K(r) V+F, (t),a
a4 BX a

(48)

where the overdot denotes differentiation with respect to
cosmic time, and

X =x/a, (49)

V=X=V/a —(a/a )x, (50)

K(t) =R/a, (51)

2

M(t)= +K(r) —+ — +—,a a a

a a a a
(52)

F, (t) =F, /a (53}

An analogous expression holds for the other memory ker-
nel M(g, s).

If the c~'s depend strongly on frequency and/or the
spectral distribution is considerably different, the analysis
becomes more complicated. It is, however, evident that,
whenever the couplings are such that the lowest frequen-
cy modes are not very important, so that t& && t~, and t~,
and the distribution of modes is approximately ohmic, a
Markov approximation should in fact be justified, leading
to a viscosity ~Au.

Under these circumstances, the nonlocal Langevin
equation can be well approximated by a local equation of
the form

af,
at aX ~ aV ', 4 aX

+ ( Vf )+ — —M(t)X

3—+K(r) V fa
a P

k~T
K(t) =0 .

a BV

(55)

The form of this equation is consistent with the
Fokker-Planck equation analyzed by Brandenberger and
co-workers [1]. Given, however, that the approach fol-
lowed here is entirely different from that of Ref. [1] a
more detailed comparison is appropriate: The present
formalism is intended primarily to describe the behavior
of a homogeneous degree of freedom (dilaton mode).
However, for the special case of a free field with no mode
couplings, the Fokker-Planck equation (55) holds equally
well for any single field mode coupled to a heat bath,
which is precisely the model problem considered by
Brandenberger and co-workers. Comparing Eq. (55) with
Eq. (20) of Ref. [1],one finds that, even though the latter
equation was arrived upon in a rather different way, the
diffusion terms are consistent in that they scale the same
way with a, and that in both cases the "Hubble damping"
term is present. However, there is one important
difference. While the present model incorporates back-
reaction effects due to the heat bath, namely, the normal
viscosity K and the potential renormalization M, these
physical effects are not taken into account in Ref. [1]. A
quantitative assessment of the importance of these effects
will be presented elsewhere.

Having formulated the Fokker-Planck equation, it is
worth recalling once again the critical assumptions that
went into its derivation. (1) The decay time tc must be
short compared with the time scales t„and t& on which
the system changes in response either to its potential U or
in response to the environment and with the expansion
time tH. (2) For co(g —

bio) «p, the modes are nonoscilla-
tory. One must also assume that the coupling of the sys-
tem with these infrared modes is negligible, so that there
is no significant long time tail to K(g, s) to prevent the
existence of a Markov limit. (3) The spectral distribution
must be approximately "ohmic, " with g(co) ~ co, so that
the nonlocal contribution involving K(g, s)v (s) gives rise
to an ordinary viscosity. Fortunately, this is precisely
what one expects of a heat bath of thermal photons.

V. AN APPROXIMATE SOLUTION

The noise autocorrelator is now
Given the assumed form (26) for the Hamiltonian (with

the system-bath coupling assumed to be weakly time
dependent), the coefficients A and JR may be written as

(54}
A —kp+ 2A, )x +A, 2x

k~T
(F,(r)F, (r') ) =2 K(r)5D(r r') . —

a4

Note that, in the physical frame, there are two sources of
damping, namely the viscosity ~ KV and the cosrnologi-
cal frame dragging ~ H =a /a. The corresponding
Fokker-Planck equation is now

and

A, =pp+ 2p, x +p2x

and the noise correlator

(57)
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(F,(q)F, (s) ) =2k& T%'5D(g —s)

=2k sT(A, o+2A, , x+ 1, 2x )5D(g s—), (58)

where the A,„'s and p„'s are independent of x ad v. Note
that A,o and A,2 are necessarily positive definite, but that A,

&

and the p,„sare of indeterminate sign. % gives rise to an
x-dependent viscosity, whereas At induces a further re-
normalization of the potential U in terms of new
coefficients A, e, and X:

'Ll(x, g)= —,'A, (g)x + —,'8(g)x + —,'o(g)x + —,'pox

+—pox + 4p2x
3 i 4

—= —,'A(q)x'+ -,'e(q)x '+-,' Z(q)x' . (59)

By inserting Eqs. (58) into (47), one obtains an explicit
Fokker-Planck equation, which one may hope to solve.
Unfortunately, however, in general such a multivariable
Fokker-Planck equation cannot be solved exactly except
via numerical techniques. Nevertheless, one can at least
obtain an approximate solution for the expectation value
(E) of the system energy E using the so-called "energy
envelope" technique introduced by Stratonovich [15] and
further developed by Lindenberg and Seshadri [16].

The idea underlying this approximation is in fact
straightforward: In many cases of physical interest, such
as that considered here, one can visualize the system as
exhibiting (nonlinear) oscillations on the time scale
ts-coo associated with the potential Q, oscillations
which are eventually altered by the coupling with the en-
vironment on the damping time scale tz. To the extent
that the damping time tz and the expansion time tH are

both long compared with t&, one can then assume that
the system energy E is nearly conserved on time scales
-tz, and varies only on a time scale much longer than
the time associated with variations in x. It is thus natural
to transform from x and v to new variables x and E, to
treat E as an adiabatic invariant, and to implement an
"orbit average" of the transformed E-x Fokker-Planck
equation to extract an equation involving only E and g.

Implement, therefore, a change of variables from (x, U)

to (x,E), where, explicitly. E =
—,'U +'M(x, g), to obtain a

new Fokker-Planck equation for W(x, E, t) satisfying

f (x, U, g)dx dv = W(x, E,g)dx dE . (60)

To the extent that the energy is approximately conserved
during a single oscillation of the system, one can then as-
sume that

W (x,E,g) =
[24'(E) [E—%(x, r) ) ]

' i
J

' W, (E,r)),

(61)

where

4(E)=fdx [E—Q(x, g)]'i (62)

and a prime now denotes a B/BE derivative. Here the in-
tegration extends over the values of x along the unper-
turbed orbit associated with E. Note that the prefactor
of 8'& is simply the relative amount of time that, for fixed
E, the system spends at each point x.

By integrating the Fokker-Planck equation for
W(x, E,g) over x, one obtains the desired equation for
W, (E,g), which takes the form

a
W, (E,q) =-

O'Q
[Xo[4(E)—ks T4'(E) ]+2A ) [y(E)—ka Ty'(E) ]+A 2[%(E)—ks T%'(E) ] j

a
BE g'E

82 1+ksT, [Ao@(E)+2k,,y(E)+A2%(E)] Wi(E, rl),BE' y' E (63)

where

y(E)= f dx x [E —'M(x, 71)]'i (64)

and

%(E)=f dx x [E —8'(x, r))]' (65)

Note that this differs from Eq. (3.8) in [16], which as-
sumes implicitly that the system's unperturbed orbit is
symmetric about x =0, so that Eq. (64) vanishes identi-
cally.

Unfortunately, for a generic potential S' the functions
@(E),g(E), and %(E) cannot be evaluated analytically,
so that one cannot realize the right-hand side of Eq. (63)
explicitly in terms of simple functions of E. Thus, e.g.,
for the quartic potential (60), these functions can only be
expressed as elliptic integrals, which must be evaluated

numerically. There is, however, one limit in which one
can proceed analytically, namely when the energy E is
small and the system is oscillating about a local minimum
of (M'. The obvious point is that, in this limit, one can
evaluate the orbit integrals, assuming that the system is
effectively evolving in a simple harmonic oscillator poten-
tia1.

Suppose for simplicity that 8=0, so that the dressed
potential S' is itself of the Landau-Ginzburg form. When
X is positive, one can then approximate the system as os-
cillating with squared frequency 00=X about the origin.
And similarly, when X is negative, and 0 is a "Mexican
hat" potential, the system can be assumed to oscillate
with squared frequency Q0=2~X~ about one of the two
minima at xo =+(A/~X~ )

In either case, one can evaluate 4, g, and +, to realize
the right-hand side of Eq. (63) in terms of polynomials at
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most quadratic in E. And, given such an explicit repre-
sentation, it is straightforward to derive from the
Fokker-Planck equation a transport equation involving
the time derivative of the first energy moment:

(E(g))—:J dE E8', (E, rt) . (66)

a (E(rt) ) =k~ TAO — 7 0—
an

k~ TA, 2
&E(q))

k)o

~2 2, (E'(q) } .
0

(67)

Note that, because of the reAection symmetry x ~—x for
the potential 'M, the functions y=y'=0, so that the con-
tributions involving A,

&
vanish identically.

Suppose in the first instance that X is positive, and that
the system is executing small oscillations about the
ground state x =0 with cop=2. In this approximation,
one verifies that, to the extent that the time dependence
of E, cop, and the A.„'s may be ignored, the moment equa-
tion takes the form

Unfortunately, this equation still cannot be solved ex-
actly for (E(ri)), as it involves the unknown function
(E (rt)). To obtain a formula for (E2(q)), one must
consider the second moment equation, which in turn re-
lates d(E (g)) Idg to the third moment (E (g)). In
the spirit of, e.g., the Bogoliubov-Born-Green-
Kirkwood-Yvon (BBGKY) hierarchy, one requires a
truncation approximation.

As in Refs. [15]and [16],suppose therefore that

(E'(t) ) =~(E(t)}',
with ~=2. One knows that, when the system is at equi-
librium, with energy E =k&T, this equation is satisfied
identically for ~=2, and one might expect on physical
grounds that, before the system is "at equilibrium, " the
energy distribution will be narrower and ~&2. As em-
phasized by Lindenberg and Seshadri [16], this trunca-
tion approximation thus leads to an upper limit on the
time scale on which the system "equilibrates" with the
bath. Given this truncation, one can immediately write
down the solution [16]

ks T(Eo+ A k~ T ) Ak T ( k~—T Eo )exp [
——[( A + I ) / A ]Log ]&E(~)}= '

(E~+ Aks T) —(k~ T Eo)exp[ ——[( A + I )/A]log I

(69)

where

A.pCOp
2

A=
X2k~ T

(70)

A, p XOQ)p «1.
6)P A.2k' 7 (71)

Turn now to the case when X & 0 and the system is os-
cillating about one of the two minima of the potential

In the limit that A.2~0, the multiplicative noise "turns
off" and the system approaches an "equilibrium" with
( E ) =k~ T on a time scale tR -A,o

'. If A,2%0, the system
still evolves towards an equilibrium with ( E ) =kz T, but
the time scale tz can be altered significantly. Indeed, in
the limit that A.O~O, the additive noise "turns off" and

tR -coo/(A2k&T). It thus follows that, when the non-
linear coupling is sufficiently strong, the system may be
driven towards equilibrium, not by the ordinary additive
noise associated with the linear coupling, but primarily
by the multiplicative noise associated with the nonlinear
coupling.

The only point that remains to be checked is that one
is still assuming, as is implicit in this "envelope" approxi-
mation, that the time scale ~p

' is much shorter than the
damping time. This, however, is clearly the case when kp
and A.z are not too large. Indeed, one verifies that (a) the
weak damping approximation is legitimate but (b) multi-
plicative noise dominates the evolution towards an equi-
librium whenever [16]

', (~'(~)},
2cop

(72)

where now

6'=E —'M(xo) (73)

denotes the system energy defined relative to the
minimum of the potential, and

L =A,O+ A. 1+0 +~2X 0 (74)

plays the role of a "dressed" A,p. The obvious point here

is that, since one is effectively expanding in a Taylor
series around the point xo=+(A/~X~) ', the coupling
terms CC A. , and kz will induce (x —x 0 )-independent

effects.
Note in particular that, if ~xo~ is large, as will be the

case when X « A, the dressed L can be much larger than
This implies that, in this case, the nonlinear cou-

xoWO. This is the case relevant to first-order phase tran-
sitions. Here the terms involving g and its energy deriva-
tive do not vanish, and the formula for 4 and %' acquire
additional terms involving the location xo of the new
minimum. However, one still recovers a relatively simple
exact equation for B(E) IBg. Specifically, one finds that,
in this case, Eq. (67) is replaced by

a k~ TA.2
(E ( 7) ) }=k~ TL — L —

2
( 6'( r) ) )

an COO
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plings can reduce the overall equilibration time both

through the introduction of a new term

ccrc,

2(E ) and
through an increase in the effective linear coupling.

In any event, to the extent that R(xo, g) is only slowly

varying in time, the derivative B(E(g))/Bg can be re-
placed by B(A"(ri})/Bn And, to the extent that the
coefficients L and A,2 may be approximated as time in-

dependent, Eq. (72) can be solved analytically. The result
is an expression identical to Eq. (65), except that E is re-
placed by the shifted 8=E —Qo and

um, driven by the multiplicative noise, proceeding as

exp [
—Id g[X/Az(kit Tq) ]] .

Suppose, however, that the time dependence of X is im-

portant, and that X changes appreciably on time scales
« tR. In this case, one can no longer speak of a simple

approach towards equilibrium, since the form of the sys-

tem Hamiltonian is actually changing on a time scale
« t„. One now concludes that, in a first approximation

L coo
2

(75)

E (rl )/E(o) = [X(g)/X(0)]' ',
and that the coupling with the environment is only a per-
turbation on this simple power-law evolution.

If the energy E and the couplings A, cannot be treated
as independent of time, the analysis becomes more com-
plicated, but, at least when E is small, one can again for-
mulate an analogue of Eq. (67). If E depends explicitly
on g, the moment equation will of course acquire an addi-
tional term (BE/Brl). Suppose that the system may be
approximated as simply oscillating with squared frequen-
cy X(rl ) about xo =O. One then concludes that

BE 1 d=—(Xx ) lnX . (76}
B'g 2 d'g

Consistent, however, with the ansatz (61), Xx /2, can be
replaced by its "orbit averaged" value E/2 [this is the ex-
ception value associated with the 8'of Eq. (61)], so that
the moment equation may be written in the form

(E(7)))=—(E(rl)) lnX+k~TA, o
B 1 d

Bn 2

deal

k~ TA,2 ~2
0 (E(q)) — «'(q)) .

X

(77)

VI. CONCLUSION

The principal thrusts of this paper have been (a) the
motivation of a relatively general phenomenological
Hamiltonian, in terms of which to characterize the evolu-
tion of a "system" degree of freedom with its surrounding
environment, (b) the rigorous derivation of Langevin and
Fokker-Planck equations for a system described by this
model Hamiltonian, and (c) a qualitative analysis of the
new effects incorporated in these equations which are ab-
sent from other, more heuristic, descriptions. The model
considered in this paper has several potential applica-
tions, the most obvious being to the study of cosmologi-
cal phase transitions. Unfortunately, however, the
Langevin and Fokker-Planck equations derived here are,
except in a few simple cases, very difficult to solve analyt-
ically. For this reason, a numerical study applying the
model to several cosmological problems of interest, such
as the onset of new infl. ation and first order cosmological
phase transitions, is currently under way.

Suppose now that the time dependence of X is relative-
ly unimportant, i.e., that the time scale on which X
changes is long compared with the time scale on which
the environment effects the system. In this case, it makes
sense to speak of (at least) an approximate approach to-
wards equilibrium on a time scale set by the time-
dependent couplings. If the coupling between the system
and the environment is dominated by A,o, one thus infers a
decay of initial conditions and an approach towards an
equilibrium, driven by the additive noise, proceeding as
exP[ —Jdglko(rl)] A, nd s.imilarly, if the couPling is
dominated by A.2, one has an approach towards equilibri-
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