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Measuring the stochastic gravitational-radiation background with laser i-nterferometric antennas
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A study of the method of detecting a stochastic gravitation-wave background (SGWB) with laser-
interferometric gravitational-wave antennas is presented. The SGWB can be measured by correlating
the output of two or more detectors. The results in this paper can be applied to the planned new genera-
tion of kilometer length interferometers, such as the Laser Interferometer Gravitational-Wave Observa-
tory (LIGO) in the United States, or similar systems in other countries. Advanced detectors will be able
to limit the gravity-wave background energy density per logarithmic interval at 100 Hz to 2X10
times the closure density of the Universe. A survey of potential sources indicates that a pair of antennas
will be able to confirm or deny the existence of cosmic strings, or may detect the background produced
by extragalactic neutron star binaries. Elements of the optimal interferometer design and orientation for
detecting the SGWB, or any gravity wave, are given. In particular, the criteria for orienting a pair of an-

tennas, the trade-off between sensitivity and bandwidth, and the effect of antenna separation on the
correlation are presented. A procedure for obtaining the correlated signal from two interferometers is

given. The statistical basis of the correlation experiment is presented. The cause and effect of correlated
noise is examined. Filtering and data analysis issues are also discussed.

PACS number(s): 04.80.+z, 04.30.+x, 98.80.Es

I. INTRODUCTION

The construction of kilometer-length laser interferome-
ters to be used to detect gravitational radiation will
create a new branch of astronomy. These new antennas
will inspect the heavens by detecting the gravitational ra-
diation produced by extremely massive and energetic as-
trophysical events. Events that are expected to be seen
are supernovae, pulsars, and neutron-star binaries. Many
groups around the world are working on the design of
Michelson delay-line on Fabry-Perot systems than should
eventually achieve a strain sensitivity of h (f )
= 10 /PHz at 100 Hz [1—3]. The interferometers will

operate from the tens of hertz up to about 10 kHz. A re-
view of the current state of gravity-wave research is given
by Thorne [3].

Stochastic radiation is considerably different than burst
or periodic radiation. It is a background fuzz or a ran-
dom noise of gravity waves with no evidence of any sharp
specific character in either the time or frequency domain.
The stochastic gravitational radiation, should it exist, will
probably be produced by some cosmological event and
would pervade the Universe as a noise on the background
metric. The gravity waves are assumed to be stochastic,
stationary, and ergodic [4]. They are assumed to be iso-
tropic in that the statica1 properties can be determined by
looking at any section of the sky, just like the microwave
background. These gravity waves are completely charac-
terized by their power spectral density.

The SGWB certainly exists at some level and is prob-
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ably produced by various cosmological events. These
events could include phase transitions in the early
Universe, quantum fluctuations during inflation, the tran-
sition in the Universe's expansion rate from the exponen-
tial inflation case to the slower radiation-dominated case,
the decay of cosmic strings, or a host of other events.
The gravity-wave sources are distributed throughout the
Universe, and as the waves interact only very weakly
with matter, the background radiation will survive intact.
The only change in the character of these cosmologically
produced waves will be the redshift due to the expansion
of the Universe. The spectrum of the SGWB today will

range from frequencies as low as 1/TH„bb&, to as high as
10' Hz if not higher. Just like the microwave back-
ground, the gravity-wave background will be a randomly
polarized relic of the early Universe, and its observation
will give clues about the history of our cosmos.

The task of detecting the SGWB will be different than
for detecting a burst or periodic event. A single detector,
be it a laser interferometer or a resonant bar, will be able
to register and identify, but not confirm, a burst or a sine
wave. This is not the case for the SGWB. The signal
recorded by a detector from the SGWB will be indistin-
guishable from the detector's own intrinsic noise. With a
single detector the only certain thing that can be said is
that the level of the SGWB signal is less than or equal to
the detector's noise level. Unfortunately, there is no way
to turn the SGWB on and off to chop the signal. In order
to detect the SGWB, one must use at least two detectors
and perform a correlation, thereby extracting the com-
mon signal from the independent noise of each detector.

The gravity wave detectors measure the unitless strain
h (t). The correlation measurement gives the rms value
of the strain in the detectors bandwidth, h, „or its spec-
tral density Sh(f), which are related by
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site and for a pair separated by a continental distance.
Section VII is the conclusion.

The gravity-wave spectral density is related to the energy
density of this radiation by

p,„=f ps„(f)df
cf.

pwca)

dM, pw Sh
0

(1.2)

The energy density p „ is in units of erg/cm, while

ps~( f) is in units of erg/(cm Hz). A useful quantity to
express the amount of background gravitational waves is
the ratio of the gravity-wave energy density per logarith-
mic frequency interval to the closure density of the
Universe, p, . This ratio Qs„(f) is

II. INTERFEROMETER TRANSFER FUNCTIONS

In this section the response of a real laser-
interferometer system to a gravitational wave is briefly
reviewed. The general transfer for a standard Fabry-
Perot or a Michelson delay line, and for more advanced
systems, such as recycling, dual recycling, or resonant re-
cycling, have been presented before [13—18]. The appli-
cation of these transfer functions to a search for the
SGWB is discussed in this section. The optimum band-
width for a dual-recycling system used in a SGWB search
is addressed elsewhere [15].

The gravitational wave is expressed as a Fourier series.
If the perturbation to the background metric is real, the
gravity wave can be written as

ldps„ fp „f
p, dlnf p,

(1.3) d k
h,"(,xt)= I Ie'"" ""[h+(k,ri)e,.+. (k)

The value of p, used in this paper is p, =1.7X10
erg/cm . This assumes that the Hubble constant today is
100 km/(s Mpc).

Some of the hypothesized sources of a SGWB will fall
within the operating-frequency band and the range of
detectability of the proposed laser interferometers. These
events could be the decay of cosmic strings [5], unique
equations of state in the very early Universe [6,7], or a
background produced by the decay of extragalactic
neutron-star binary systems [8] or soliton stars [9]. In the
interferometer's operating-frequency band, the cosmic
strings may be responsible for a value of
Qs„(f) —10 —10 [10]. Extragalactic neutron-star
binary systems may create a background value of
Qs„(f)-3X10 ' at 100 Hz [8]. The dynamics of the
Universe after the Planck time influences the SGWB lev-
el. For instance, if the Universe underwent an
inflationary expansion phase, the SGWB value today
would have a range of possible values of
Qs„(f)-10 ' —10 at 100 Hz to 10 kHz [7]. Bubbles
created at the end of extended inflation could produce a
SGWB with Q „(f)-10 around 1 kHz [11]. If the
equation of state for the Universe is p = —p/3 from the
Planck time until 10 s, then a spectrum with a peak
value of Q „(f)-10 at 10 kHz would exist today [12].

This paper addresses how one will measure and quanti-
fy the SGWB using laser interferometers. Section II
discusses the general transfer functions functions of laser
interferometers. In Sec. III a description is given of how
one can find the optimum orientation of two interferome-
ters located anywhere on the surface of the Earth. This
solution optimizes the detector pair for a search of the
SGWB. Section IV contains the explicit analysis for the
extraction of the gravity-wave spectrum from the corre-
lated output of two or more interferometers. Section V
contains the statistical analysis of the correlation problem
and other statistical considerations. Section VI addresses
the problem of correlated noise, other than gravitational
waves, in both of the interferometers being used for the
observation. This is done for a detector pair at the same

+h „(k,rI)e,"(k)]+c.c. ] .

(2.1)

(2.2)

The light from the laser that enters the interferometer
can be expressed in terms of its electric field, Eoe
The interferometers considered operate under a dark-
fringe condition. This assumes that under ideal cir-
cumstances and in the absence of a gravity wave, there
will be no laser light exiting the interferometer in the
direction of the photodetector. See Fig. 1 where a delay-
line interferometer is illustrated. When there is a gravity
wave present, the output electric field at the antisym-
metric port photodetector is

E,„,= [h+ S~ (k, r))+ h „S„(k,g) ]Eoe (2.3)

The plus and cross refer to the two polarizations of the
gravity wave. The polarization tensors are given as
e,+(k) and e;J"(k).

The gravity wave is measured by a laser interferometer.
What is detected is a change in the intensity of the light
coming out the exit port of the interferometer. The sig-
nal is proportional to the difference in the phase of the
two light beams that recombine at the beam splitter. For
a gravity wave with an angular frequency of g, one looks
for the output laser light that has had its angular frequen-
cy changed from co to co+g. The definitions have all
been carried out with complex quantities and positive fre-
quencies. In a real situation the gravity wave will have a
time dependence of cos(gt+P) and will produce side-
bands on the laser light at the frequencies coke. The
lower sideband transfer function can be found by just re-
placing g with —g.

As an example, consider a traveling gravity wave com-
ing from a particular part of the sky, with an angular fre-
quency rI and a wave vector k, k=g/c. It has a com-
ponent h+ of one polarization and h x of the other. The
gravity wave is given by
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The fluctuating intensity of the observed light exiting the
interferometer will be due to the gravity-wave-produced
sideband beating with a local oscillator field [18]. S+ and
Sx are the transfer functions for the plus and cross po-
larizations of the gravity wave with the interferometer.
Different optical schemes will be better suited for a rnea-
surement of the SGWB than others. The schemes range
from broadband detectors, with a frequency range of a
few kilohertz, to highly sensitive ones, with an effective
bandwidth of only tens of hertz. The transfer functions
are general expressions that take into consideration the
direction from which the wave is coming and the polar-
ization. General expressions are needed because the
SQWB consists of randomly polarized waves from all
directions.

A simple delay-line interferometer will be used as an
example. Figure 1 illustrates such a system. The light
beams in each arm bounce back and forth, traveling a
distance of b Xl before exiting. The interferometer will
respond to an incoming gravity wave. In the gravity
wave's frame of reference, one has

gp gp +A p gp +h p +h p

and k= [2)/c] &&(0,0, 1). If the gravity wave's coordinate
system is represented as (X, Y,Z) and the detector's coor-
dinate system is (x,y, z), then the two systems are related

Y

g M2

Michelson Delay Line

Interferometer

g M)

LASER
M1 M2

x

%1
output

through three Euler rotations, namely,

X=R,( —%)R„(8)R,( —P)x . (2.5)

The relevant components of the metric in the detector's
frame are

FIG. 1. Example of a delay-line system. Light enters a cavity
through a hole in M1, traverses the cavity, of length I, a total of
b times, and exits through the same hole. The beams from the
two cavities recombine at the beam splitter.

h» =h 0+'e'" * ~"[cos2%(cos (}I)
—cos 8sin ((})—sin2% sin2it/cos8]

+ho"'e'"" )"[sin2%(cos ()Ii
—cos 8sin P)+cos2% sin2$ cos8]

[A(8,$,—% )h'+'+B(8, $, % )h'"']e'"'"

h22 =ho+'e'" * ""[cos24(sin (t
—cos 8cos (())—sin2% sin2()) cos8]

—ho"'e'" * ""[sin2%(cos icos 8—sin P)+cos2(I'sin2$ cos8]

= [C(8,$, (P)h(()+) +D(8,$,%)h'"'] '"'"

(2.6)

(2.7)

In terms of the interferometer s coordinate system, the angles 8 and iI} describe the direction from which the wave

came, while 4 defines the polarization. In terms of the Euler angles defined here, the wave vector in the detector's
frame is

k=(ri/c)(sing sin8, —cosgsin8, cos8) .

The Michelson delay-line transfer functions for the two polarizations are

( 1 P )R (b —2)/2sin 9 eilb(2'+ 9)/2c( AR CR )
ml . Ib

2X 2c x y

( 1 p )R (b —2)/2sin ) (lb(2'+ 9)/2C(BR DR )x y
(2.9)

(il /2c )(ck,. +g) (il /2c )(ck,. —g)
R, = e ' sine (ck, —g) +e ' sine (ck;+2))

2c 2c
1

sin(211/c )

where A. and co are the wavelength and angular frequency
for the laser beam, R is the reAectivity for the delay line
mirrors, P, is the loss of the beam splitter, and the sine
function is defined as sine(x) = [sinx]/x.

The term in the transfer function that depends on the

I

incoming direction and polarization for the wave is
&Rx CRy for the plus polarization and BRx DRy for
the cross polarization. These terms are present in the
transfer functions for all interferometer schemes. Their
effect is to diminish the transfer function from the ideal
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case of 8=/=4=0. When this is the case, these terms
reduce to A =1, C = —1, 8 =D =0, and R =R
=2c/(gl ). It should be noted that R„and R differ very
little from the ideal values of 2c/(r)l) over the entire
range of the angles 8 and P, and over the proposed fre-
quency range of the detectors, from 0 to about 10 kHz.
For instance, at 1 kHz, the extreme value of R occurs at
8=$ =m/2. The difference between the product
R„Xr)I/(2c) and one is 3X10 for a 4-km arm length.
The difference is only 0.025 at 10 kHz. The angular-
dependent terms enter the problem to an appreciable de-
gree through the terms A, 8, C, and D.

The transfer functions for all interferometer schemes
(delay line, Fabry-Perot, recycling, dual recycling, and
resonant recycling) can be written in the form

S+(k,g) =B(ri)[AR„—CR~]rjl/2c .
(2.10)

S&((k,r))=B(ri)[BR„DR ]r—)l/2c .

h =
—,'(h ), —h2~), (3.2)

h)) = A(8, $,%)h'+'+B(8, $,4)h'"'

h22=C(8, $, % )h'+'+D(8, $, %)h'"' (3.3)

tion of the wave. The angles a& and b& define the loca-
tion of detector one on the Earth. Specifically,
a, =yE —3m/2 and b, =m. /2 —

PN, where yE is east longi-
tude value and PN is the north latitude value. The vari-
able g& represents the angle between the local east-west
line and the interferometer arm that defines its x axis.
The x arm is uniquely defined if one demands that the z
point radially out from the Earth at the detector and that
one has a right-hand coordinate system. See Fig. 2.

Let us assume that a gravity-wave interferometer has
its arms along the x and y axes of the Earth-centered
coordinate system. The gravity-wave interferometer
would measure a signal with an amplitude of

S+(k, r))=B(r))[A —C],
Sx(k, ri)=B(g)[B D] . — (2.1 1)

The term B(ri) is one-half the transfer function for a nor-
mally incident and optimally polarized gravity wave.
B(rI) is only dependent on the frequency of the wave and
the characteristics of the interferometer. For the pur-
poses of a SGWB detection, one can make the approxi-
mation

and so

h =
—,'[h(')+'(A —B)+h(')"'(C D)]-

=h'+'F +h'"'F0 + 0 X

F+ =—'(1+cos 8)cos2$ cos2% —cos8 sin2$ sin2%,

F„=—,'(1+cos 8)cos2$ sin2% —cos8 sin2$ cos2% .

(3.4)

(3.5)

III. INTERFEROMETER ORIENTATION

In this section the optimum orientations of two laser
interferometers in search of the SGWB are derived [19].
These antennas are situated at different locations on the
surface of the Earth. The two arms of an interferometer
are assumed to be perpendicular to each other and of
equal length.

h =T(h» —h») =-,'[ho" (A, —B, )+h,'"'(C, —D, )]

="o+'Fi+(8 0»'p &i, bi, g i)

+ho" ix(8 0 + &i bi S'i) (3.6)

When a detector is located at some general location on
the Earth, F+ and F„become very long and cumber-
some. They are a function of the six Euler angles 8 P, 4,
a, b, and g. Detector 1 would measure a strain

A. Coordinate system

The coordinate systems that are used to express the
response of a detector to an incoming wave are described
first. The coordinates (X, Y,Z) will be associated with the
incoming gravity wave. The coordinates (x,y, z) will be
fixed with respect to the Earth. If one were at the north
pole, the x direction would point along the Greenwich
mean line, 0' longitude. The y direction points along the
90 E longitude line. The z direction is perpendicular to
the surface of the Earth at the north pole. Finally,
(x„y„z,), and (xz,yz, z2) refer to the local coordinate
systems of our two detectors.

The coordinate systems are related to each other by
series of Euler rotations. The rotations and coordinate
systems are defined to be

West

North

East

X=R,( —%)R„(8)R,( —P)x,

x, =R, (g, )R.(b, )R,(a, )x .
(3.1)

The angles 8 and P define the direction from which the
gravity wave is coming. The angle 4 defines the polariza-

South

FIG. 2. This displays the interferometer, in bold, in relation
to its local longitude and latitude lines. The angle g represents
the angle between the local east-west line and the i&interferometer

arm that defines its x axis.
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B. Solution for the optimum orientation

The optimum orientation of two detectors is found by
locating extrema in the correlated output of these two an-
tennas in an isotropic, stochastic background of gravita-
tional radiation. In other words, given the location of the
two detectors, specified by (a&, b& ), and (az, b2), one must
find the values of g& and g2 that correspond with the ex-
trema of

f dP f sin8d8(F&+Fz++F, „Fz&& ) .
0 0

(3.7)

This will then yield the best correlation measurement.
There is no F+Fx cross term because the correlation be-
tween the two polarizations of a stochastic and randomly
polarized background vanishes. Furthermore, the corre-
lation is independent of the polarization angle +, thereby
simplifying the calculation, as one may now set 4 equal
to zero. This is equivalent to averaging over the angle %.
A rotation of 90' about the detector's z axis does not
change the amplitude of the response of an inter-
ferometric gravity-wave antenna. Sometimes the extrema
of Eq. (3.7) are found for the situation where the orienta-
tion of one of the detectors is fixed, as certain detector
sites only allow a particular orientation. To be perfectly
general, an extrema should be found for the equation

f dg f sin8d8(F, +F2++F&xFz„)cask x, (3.8)
0 0

where k is the gravity wave's wave vector and x is the
vector from the center of detector 1 to the center of
detector 2. However, inclusion of the cosine term does
not significantly change the results. In fact, finding the
extrema to Eq. (3.7) is the best strategy for detecting the
SGWB. This point will be discussed further in Sec. IV.

There is a nice physical picture for the optimum orien-
tation of two interferometric detectors. When one finds
values of g, and g2 that correspond with an extrerna for
Eq. (3.7), one has the physical situation where one arm of
each interferometer points along the great circle that con-
nects the centers of each interferometer, while the other
arms are parallel to each other. Using this method, one
can easily find the optimum orientation of two detectors
located at different points on the Earth. The great circle
connecting the two sites defines a nice coordinate system
that makes the solution to Eq. (3.7) trivial. Consider the
scenario where a

&

=b
&
=g

~
=0 and a2 =a, b2 =g2 =g.

The solution to Eq. (3.7), normalized to the case where
the two interferometers are aligned at the same location,
1S

Great Circle

Detector Pl

Detector 82

FIG. 3. Definition of the angles for the two detectors with

respect to the great circle. The angle q is between the great cir-
cle and the I arm of the detector, while 4 is between the great
circle and the interferometer's bisector.

these angles. One needs to make the substitutions
YJ}=a, 4]=a+7T/4, g2=g —7T/2, and 42=g —m/4.
The result is

When both interferometers have the optimum align-
ment, with each having one arm point along the great cir-
cle connecting the two locations, then the solution for S~
depends only on the angle of arc around the Earth be-
tween them. This angle P is given by

P=arccos[cosb, cosb2+ sinb, sinb2cos(a, —a2 ) ] . (3.11)

The normalized general solution is

S„=—,'(1+cos P) . (3.12)

The relative orientation to optimize the detection of a
SGWB is the same as for the coincident detection of
gravitational wave bursts but the reduction in coin-
cidence sensitivity in a burst search with misalignment is
gentler [20].

IV. CORRELATION EXPERIMENT

This section presents the general solution for the corre-
lation of the output of two arbitrary interferometric
gravitational-radiation antennas and how it is to be relat-
ed to a SGWB. The solution is general in that the indivi-
dual interferometers can have any transfer function, they
can be located at any site on the surface of the Earth,
they can have any orientation at these sites, and their in-

trinsic noise spectral density may take any shape.

S„=—
—,
' (1+cos b )cos2q, cos2r12+ cosh sin2rj, sin2g2

= —
—,
' (1+cos b )sin2+, sin2+2+ cosb cos2%, cos2+2 .

(3.10)

5 2' 'rrf dP f sin8 d8(F, +F2++F,„F~„)8~ 0 0

=
—,
'

( 1+cos b )cos2a cos2g —cosb sin2a sin2g . (3.9)

Call the angle between the x arm of detector 1 and the
great circle g& and the angle between the x arm of detec-
tor 2 and the great circle g2. Also, call the angle between

the interferometer bisector of detector 1 and the great
circle 4& and the angle between the interferometer bisec-
tor of detector 2 and the great circle I'2 (see Fig. 3). The
solution S~ given above can be expressed in terms of

A. Stochastic gravitational-wave background

The gravitational-radiation background expressed as a
Fourier transform is given by Eq. (2.1). The h terms are
the Fourier transforms of h,"(x,t) for each polarization.
They are assumed to be stochastic random variables.
Also, it is assumed that the component h+(k, q) is un-

correlated with any other h+ (k', g'), unless k=k'. We
can express this formally as

(h+(k, q)h+(k', q')) =(hx(k, g)h„(k', q'))
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(4 2)

B. Measurable quantities

The first measurable quantity to consider is the output
of the interferometric gravity-wave antenna. What is

I

The magnitudes of the two polarization terms are the
same. It was assumed here that the background is isotro-
pic. It is also assumed that for a given k the two polar-
ization states are uncorrelated. The background is ran-
domly polarized, which can be expressed as

(h+(k, rl)h x(k, q)) =0 .

detected is the change in the intensity of the output laser
light due to a phase difference of the light in each arm of
the interferometer. When a traveling gravity wave of an-
gular frequency g passes through the interferometer, a
beam of laser light with components of angular frequency
g+co and g —co, where co is the angular frequency of the
input laser light, will be produced. The measurable quan-
tity will be the fluctuating intensity of the sideband beat-
ing with a reference local oscillator field [18]. The real-
valued output of interferometer 1 at time t and location
x, , due to the gravity wave h;I (x, t ), is

d kzi(t)= f [e'"*""'Ih +(k, g)S +(k, lr)+h„(k, rl)S„(k,z]t)J+c.c. ] .
27/

(4.3)

One can now express the correlation of the output to two gravity-wave interferometers located at I, and x2, with a
time delay ~ as

( )
~ 1 Pg rl ze n. 'i[k (x) —xz)+gr)]( )

z, (t)zz(t+~) =
z z dP sin8d8 e

c g

X li lz [( A )R„)—C)R)) )( AzR„z CzR„z )—8, (rl)Bz (rl )
2c

+(B)R„i D)Ry))(BzR„'z DzR z)8)(rl)

XBz (rl)]+c.c. (4.4)

where the transfer function term 8(zl) was defined in Sec.
II. Equation (4.4) is the general expression. All of the
quantities in the expression for (z,zz),„will be known,
except for the size and spectrum of the SGWB.

The expression for (z,zz ),„can be simplified by noting
that, for the range of frequencies in which the currently
planned long-baseline interferometers will be operating,
the terms R;rll/(2c) are virtually constant at one. Also,
the LIGO system is to be built with identical interferome-
ters at each antenna location. In this case the correlation
reduces to

(z, (t)zz(t+r) ),„

de SGp (rl)~8(rl)l
y(x„xz, g,r), (4.5)

0 C

y ( x ixz, 'g, 'r )

= f dP f sin8d8[(F, +Fz++F,„Fz„}]

Xcos[[k (x —xz)+gr]] . (4.6)

The preceding equation is the principal result of this pa-
per. All the angular dependent terms are within y, as it
contains all the information about the relative separation
and orientation of the two antennas. The value of ~y~
will range from an ideal value of (8n. /5) to zero.

1

4fB(q) f

(4.7)

C. Noise

The correlation measurement is limited by the noise in
each interferometer due to a host of different sources.
Most of the noise sources are expected to be uncorrelated
between the interferometers (a discussion of correlated
noise sources between different sites and the influence of
correlated noise in interferometers operated at a single
site is reserved for Sec. VI). Estimates of the noise in the
interferometer are continuously being modified with im-
provements in the technology and more thorough under-
standing of the intrinsic noise sources themselves. At the
time the calculations leading to this paper were made
(1991) the estimates given in the proposal for the LIGO
[23] based on Refs. [1,21,22] were used. In general (and
this is not expected to change significantly with techno-
logical development), the noise in the interferometers is
expected to be dominated by the following: ground
motion transmitted through vibration isolation stages at
low frequencies, thermal noise in the pendulum suspen-
sions at middle frequencies, and photon shot noise at
high frequencies. Figure 4 shows a representative noise
spectrum for initial interferometers being planned for the
LIGO. The interferometer is assumed to be a recycled
Fabry Perot with 5 W of laser light of wavelength
0.5145 X 10 cm.

In terms of the transfer function component 8(zl), the
shot noise limit is

1/2
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S
iY

(z,z, ),„
1/2

(1/2T) J N1(f)N2(f)df
0

(4.11)

The denominator can be thought of as the variance of the
correlation. The 95%%uo confidence interval of the correla-
tion is [24]

1/2

&z&z2),„+1.645 f N~(f)Nz( f)df2T 0
(4.12)

Log[f]

3.5

FIG. 4. Logarithm of the interferometer noise h (f) vs loga-

rithm of frequency.

x, (t) =z, (t)+n, (t), (4.8)

where z, is defined above in terms of the gravity wave
and the antennas' transfer function, then the spectral
density of the photon shot noise would be given by
N, (f ) =Ace/4P, where

where P is the laser-light power. The electric field of the
laser light that exits the interferometer is proportional to
the phase difference of the light beams of each arm. If
the output of antenna one is given by

The statistics of the correlation are explained in Sec. V.

K. Filtered data

The signal-to-noise ratio in the correlation can be im-
proved by passing the interferometer outputs through
filters. Call the filter d; it is a physically realizable filter
[d(r) =0 for r(0] with its Fourier transform D(f). For
the case where the two interferometers have identical
noise spectra and transfer functions, the filters D (f) will
be the same and the correlation signal is

(z, (t)z, (t+r),„
d rt 8Gp, (g) l&(rt ) I'ID(n) I'

y(x„x~,g, r),
0 C

(4.13)

lim —I n, (t)dt= f N, (f)df .
T~ao T 0 0

(4.9) while the variance of this will be
1/2

D. Inhuence of noise on correlation C'2 J Ni(f)Nz(f)ID(f)l df (4.14)

The presence of noise in each interferometer will affect
the measured correlation. The larger the noise, the
greater the uncertainty in the result. The two output sig-
nals will be expressed as

x, (t)=z, (t)+n, (t), x2(t)=zz(t)+n2(t) . (4.10)

The noise terms n, and n2 and the gravity-wave back-
ground are assumed to be stochastic and stationary with
a Gaussian distribution of zero mean. The signal-to-noise
ratio after a length of time T will be expressed as [4]

p, (f)l&(f) 'y(x„x„f)
D( ) =k

N)(f)Np(f)f'
(4.15)

where k is a constant. In this case the power signal-to-
noise ratio after a time T will be

The signal-to-noise ratio can be maximized with the
choice of the proper filter [25]. When one assumes that
the signal is much smaller than the noise, the ideal filter
will be

S 2G t. - pg(f)l&(f)l'y(x), xz,f )

2~2 J f2

df
N, (f)N2(f)

1/2

(4.16)

The limits on the energy-density background of the
gravity waves can be derived from this equation. For
some small frequency band spanning bf around a fre-

quency f, the 95% confidence limit on the gravity-wave
energy density would be

8m/5

ly(x)»2, f )I

ferometer. The limiting rms value of the strain detectable
against the interferometer noise would be

' 1/4 1/2

h, ,=~S 2~f h„(f)&1.645 .

2 3

n,„(f)=
p, G ly(x, ,x„f)I afT

1/2

(1.645)h„(f),
F. Orientation and location of the antennas

(4.18)

(4.17)

where h„(f) is the noise spectral density of the inter-
The limit that one can place on the SGWB is affected

by the fact that the antennas may be at different locations
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and have orientations that are not mutually parallel.
This effect enters the correlation through the term
y(x&, xz, ri), which is a function of the locations and orien-
tations of the two detectors. For the ideal case where the
two detectors are aligned and at the same location, one
has @=8m'/5. y(x„xz,g) may take negative values de-

pending on the orientation of the detectors. A rotation of
one of the detectors by 90 will switch the sign of y, but
leave its amplitude the same. The first interferometer
pair to be considered is an example where one has two
detectors separated by a continental distance. The angles
used are b& =45.3' and g&

=27' for detector 1, bz =55.1'
and go=59.9' for detector 2, with a&

—a&=50'. This
gives 40' for the angle of arc around the Earth separating
the two antennas. A plot of y vs f for this geometry is
given in Fig. 5. The function y cannot be solved in
closed form for this geometry and so a numerical integra-
tion was performed. Some examples of y are given by
Michelson [26] for simple aligned but displaced detectors.
The analysis presented here extends to detectors placed
on a curved Earth.

Note that there are certain frequencies for which y is
zero. It is impossible to perform a correlation measure-
ment at these frequencies. The zeros fall at about 37 and
75 Hz and repeat about every 70.6 Hz after these values.
The frequency 70.6 Hz corresponds to the distance be-
tween the two sites, 4.25X10 cm, divided by c. At low
frequencies y takes on its maximum amplitude of 3.92.
The next extrema occurs at 52 Hz with a value of 0.89,
followed by a value of —0.41 at 90 Hz. Extrema then
occur near 52+70.6n and 90+70.6n Hz, where n is some
integer. It has been stated [23] that the rms value of the
strain h that two detectors can detect is proportional to
&I+fD/c, which would imply that y should be propor-
tional to (1+fD/c) ', where d is the distance between
the antennas. This is not a fast enough decrease. It turns
out that for the detector-1 —detector-2 geometry the am-
plitudes at the extrema fall more like (1+fD/c), im-

plying that the rms value of the detectable strain should
go as (1+fD/c). This can be seen in Fig. 6. Envelope 1

is made up of the curves +3.92/(1+fD/c), while en-

velope 2 is made up of the curves &3.92/(1+fD/c) .
Both curves have the low-frequency value of 3.92, and

~ ~
~ ~

~ ~

500

-4

FIG. 6. Plot of y vs frequency (in Hz) for the detector-
1—detector 2 geometry along with envelopes 1 and 2.

the distance used is 4.25 X IO cm.
The location of the zeros for the correlation can be

changed by changing the orientations of both interferom-
eters. If one of the detectors is aligned such that one of
its arms points along the great circle connecting the two
detectors, the location of the zeros cannot be changed by
rotating the second detector. This is illustrated in Fig. 7
for the detector-1-detector-2 geometry. The orientation
of one of the detectors is allowed to rotate from the op-
timum orientation whereby both detectors have an arm
along the great circle connecting them. The only effect of
the rotation is to seriously decrease the amplitude of y.
Next consider the case where an interferometer's orienta-
tion is fixed at some position other than that where an
arm lies along the great circle. As an illustration, consid-
er detector 1 with a fixed value of g =27'. The orienta-
tion of detector 2 is allowed to change from the optimum
value of g =59.9'. Figure 8 shows the result. The low-
frequency zeros move slightly, while at higher frequencies
the zeros converge back together. The amplitude of y is
seriously reduced by doing this. The proposed
kilometer-length interferometers will not be rotatable an-
tennas. Once built, their orientation will be fixed. It is
not known what the spectrum of the SGWB will 1ook
like, but one may reasonably assume that it mill be fairly

~ IL
400 500

3

I

100
I I

200 300
Frequency

400 500

3 ~

-4--

FIG. 5. Plot of y vs frequency (in Hz) for the geometry of
b, =45.3 and g, =27 for detector 1, b&=55. 1 and g&=59.9
for detector 2, with a

&

—a& =50'.

FIG. 7. Plot of y vs frequency (in Hz) for the detector-
1 —detector-2 geometry. Detector 1 interferometer has one arm
along the great circle connecting the two sites. The other inter-
ferometer has an arm along the great circle for y1, an arm
11.25 off the great circle for y2, 22. 5 for y3, and 33.75 for y4.
Note that the zeros do not move.



5258 NELSON CHRISTENSEN

which thesecolor ess over e1 the range of frequencies in w
ize the roba-detectors will operate. In order to maximize e pr

bility of detecting t ethe SGWB, one should orient the inter-
ferometers so aso that the envelope of y is maximized, name-
ly, find the extrerna of Eq. (3.7). One can c ange
zeros, but on y a e1 at the expense of seriously reducing the

's amplitude. At a given frequency the optimum orien-
tation may be i eren a
ma of Eq. (3.7). However, the most importan

should be to detect t eh SGWB at those frequencies which
robabilit of detection, not at some other

randomly chosen frequency. One s ou con
search for the SGWB at those frequencies where y has a

cin a delay ~It should also be pointed out that introducing a e ay ~
in the correlation will not change ee the location of the
zeros. It can be shown that

y (x„x2,i), r)= dP sin, + i+,x 2x8d8(F F +F, xF 2x)c os[ [k (xi —x&)+rjr]]

Od6(F, +F2++F,xF2x )cos[[k (xi —xz ]]f
Q 0

(4.19)

Once the orientation of the two detectors
'
is fixed, the

zeros are also fixed.
In the case w enhen the two detectors are located on

different sides of the Earth, it is possible to solve for the y
term exactly. For detectors that are aligned and separat-
ed by 2R, where R is the Earth's radius, one has

C2
y =cos[4rrfR /c ) .

2n R
3c

64rr f R

C+sin[4n.fR /c ]
3c 3c

16' f R 256m.4f5R5

(4.20)

f hundreds of Hz, the envelope appearsFor frequencies o un
fD/c) ' . From the above expressionto go as (1+f c

11 o asthat the envelope will eventual y gcan see t a e
haracter of y isfD/c) ' at high frequencies. The cha y

'(1+f c a
much more complicated than what was p reviously as-

b 'ld '
t rferometric gravity-wave antennas. The

antenna that wi pro ah 'll bably be closest in distance
tedors in the United States will be construe eplanned detectors in e n'

in Europe. For the purpose of an examp e, y is ca c

I

e ord f r a correlation between samp le antennas separated
b North American (detectors 1 andnd 2) to European

ales. The orientation of detector(detector E) distance sca es. e
Eis chosen so that it is optima y 'g ' hd t11 ali ned with detector
The angles for detector E are b 3

=42 g 3
=55.

—a =129.3'. Th's gives 52. 3' for
d the Earth separating detectorsthe angle of arc aroun e

he for the twoE and 85.5'for detectors 2 and E. The y or e wand, an
in Fi s. 9 and 10. The low-correlations are illustrated in igs.

1 for the detector-1 —detector-E y isfrequency va ue or
-E it is —2. 14.—3 43 while for detector-2 —detector-E it is-

Note that the extrema for the three y s's calculated in
ent laces. This will helpthis section are located at differen p

SGWB limit at certain frequencies. W enin extracting a
fre uency,a for the three y's coincide at some frequ y,

0 (f ) at that frequency will be reduced by 3. is
gW

~ =92 and 198 Hz in the current ex-would be the case at = an
air ma result in aam le. However, an extrema for one pair may resu in a

172 Hz for the detector-1 —detector-E correlation. eatl z or

two ex remxtrema occur near each other, as happens at
tor of &2 in the limitd 146 Hz, and one gains by a factor oan

of 0 (f). In summary, adding a third dird detector increases
gW

ime more extrema are pro-the accessible frequency regime,

------ yl

—73
--- y4

~ ~

~ ~

F x:equency

~00 ~ ~00 ~

200~ ~300~ 100 ~
~ ~
~ ~

0

I

100
I I

200 300
Frequency

I

400 500

in Hz, for the detector-FIG. 8. Plot of y vs frequency (in Hz
tector 1 interferometer has one arm1—detector-2 geometry. Detec or

90 f=27 . The other interferometer has one arm g2 =59. orat gl = . e
1 =76.9 for y2, g2=89.9' for y3, and g2==104.9 for y4.

uencies, but converge to-Note that the zeros move at low frequ
gether at higher frequencies.

Hz for the geometry ofG. 9. Plot of y vs frequency (in Hz) gb=. .-d, = 'forbl =45.3 and g& =27 for detector
detector E, with a3 —a, =79. '.e, ' — =79.3'.
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2
—19--
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ega(f) ] =
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-20--

2

-3..

FIG. 10. Plot of y vs frequency (in Hz) for the geometry of
b&=45. 3' and g&=59.9' for detector 2, b2=42' and g2=55.9'
for detector E, with a3 —a2 =129.3'.

vided, and the null areas begin to get covered. In some
cases the extrema overlap and a nontrivial increase in

sensitivity is achieved.

-24--

G. Sensitivity limits -25-- Log10[hrms]

The correlation sensitivity for some sample interferom-
eters using reasonable parameters is presented in this sec-
tion. The initial long-baseline interferometers may be
shot-noise limited above about 200 Hz with 5 W of
0.5145-nm laser light in a recycled Fabry-Perot system.
Figure 4 shows the interferometer noise predicted for the
sample system investigated here. The planned long-
baseline interferometer systems hope to employ more ad-
vanced techniques as the technology is developed. It is
hoped that a recycled Fabry-Perot with 60 W of 0.5145-
nm light will be shot-noise limited above 100 Hz. In ad-
dition, a narrow-band dual recycling system is intended
to be used with 60 W of light [23,27].

The 95% confidence limit achieved by the correlation
between a full- and half-length system at a particular site
is illustrated in Fig. 11. This plot shows the sensitivity of
the three interferometer systems, the initial recycled
Fabry-Perot (No. 1), the advanced recycled Fabry-Perot
(No. 2), and the envelope for the advanced dual-recycling
Fabry-Perot (No. 3). The rms value of the strain sensi-
tivity is given by

' 1/4

h, , =&5 h„(f)v'2X1.645, (4.21)
T

where it is assumed that the bandwidth Af of the mea-
surement is equal to the frequency f and it has been as-
sumed that T=IO. Also shown is the sensitivity in
terms of the energy density of the SGWB, Qs„(f).

Figure 12 illustrates the sensitivity for the three inter-
ferometer designs, but where the full-length antennas are
located in the detector-1 —detector-2 geometries defined
above. The rms value of the strain sensitivity is given by
Eq. (4.18), where y for the detector geometry is exhibited
in Sec. IV F and Fig. 5.

There is another point that should be raised about the
limit one places on h, or Q (f). The standard prac-

0.5 1.5

"~$1

g10[Freqtsency]
I

2 2. 5 3 3.5

-19.":.

Igog10 [hrms]

-20 '

Log10[Omega(f)]=

-23-

~ ~

~ ~ ~e ~ ~ ~ ~ j ~,
—3

t

"~"4~v'V& ':- ". ~,:, .:...', .- ' 'yiJv&&4'

aJv
~ ~ t ~ ~
~ ~ ~ ~ o ~ ~

'V

~t tt at 2 lg

200 400 600

Frequency

800

FIG. 12. Plot of sensitivity to h, , and Qs„(f) (gray lines) vs

frequency for the initial recycled Fabry-Perot (No. 1), the ad-
vanced recycled Fabry-Perot (No. 2), and the envelope for the
advanced dual-recycling Fabry-Perot (No. 3) for the detector-
1—detector-2 geometry.

FIQ. 11. Plot of sensitivity to h, and Qs„(f) (diagonal gray
lines) vs frequency for the initial recycled Fabry-Perot (No. 1},
the advanced recycled Fabry-Perot (No. 2), and the envelope for
the advanced dual-recycling Fabry-Perot (No. 3). This assumes
a 4- and a 2-km interferometer at the same site.



5260 NELSON CHRISTENSEN

tice is to read the values from formulas (4.17) and (4.18)
and assume that the bandwidth of the measurement 6f is
about the same as the frequency at which the measure-
ment is concentrating. This is an approximation that
works well for broadband detection, but is incorrect for a
narrow-band measurement, such as dual recycling.
When optimum filter techniques are applied to the out-
puts of each antenna, then the 95% confidence limit is
given by formula (4.16), with S/N= 1.645. For dual re-
cycling the effective bandwidth is much smaller than the
frequency where the measurement is taking place. One
cannot approximate the integral by assuming a b,f=f.
Figure 13 shows the result of this. The sensitivity of the
advanced recycling Fabry-Perot {No. 2) and the advanced
dual-recycling Fabry-Perot (No. 3) systems according to
the approximation hf =f are plotted against Qs„(f).
The dots show the result when the optimum filter output
is properly integrated over frequency. The actual dual-
recycling limit is not quite as good as what one would
normally expect.

The LIGO system plans to expand the number of inter-
ferometers at each site as a later development [23]. The
plan is to have three full-length and three half-length in-
terferometers at one location and three full-length inter-
ferometers at the other site. This will result in 36 correla-
tions. Section V explains the statistics of a multiple
correlation with the use of the multivariate normal distri-
bution. Out of the 36 correlations, 18 will be from two
detectors at a similar site, called "near correlations, "
while the other 18 will be from having the detectors at
different sites, called "far correlations. "

For the near correlations, six will be from full-

length —full-length pairs, nine from full-length —half-

length pairs, and three from half-length —half-length
pairs. This will result in a decrease in the limit for

Qs„(f ) of 5.8 over the single full-length —half-length
correlation. As an example, consider the advanced dual-

recycling system with the bandwidth properly accounted
for. At 100 Hz the single full-length —half-length correla-
tion of 10 s limits the SGWB energy density to

FIG. 13. Solid lines show the sensitivity to Ils„(f) for the ad-
vanced recycling Fabry-Perot (No. 2) and the advanced dual-

recycling Fabry-Perot (No. 3) according to the approximate
solution where bf=f. The dots show the result when the op-
timum filter output is properly integrated over frequency.

Q (f)=2 X 10 ', while for all 18 near correlations the
limit would be Q (f)=4X 10

For the far correlation there will nine full-length —full-
length pairs and nine full-length —half-length pairs. This
will result in a decrease in the limit for Qs„(f) of 3.67
over the single full-length —full-length correlation. As an
example, consider an advanced dual-recycling system. At
126 Hz, where there is an extrema in y, the single full-
length —full-length correlation of 10 s limits the SGWB
energy density to Qs„{f)=5.5X10, while for all 18
near correlations the limit would be Q „(f) = 1.5 X 10

V. STATISTICS AND MULTIPLE DETECTORS

A. Two-detector statistics

Consider two time series. Each series is composed of
the signal s and its noise n. The ith component of the
time series for detectors Nos. 1 and 2 is given by

X1;=S;+n1;, X2; —S;+n2; (5.1)

It is assumed that the terms s, n „and n2 are all indepen-
dent stationary Gaussian random processes with zero
mean. A correlation will be calculated to determine the
variance of s, o, The variance cr, is assumed to be much
smaller than the variance for either noise term o.„1 or
o.„2. The correlation will be determined from a string of
N data points from the bivariate normal distribution via

N

X1;X2;
i=1

N

gx2,
N

g x„
i=1

S

1/2
&n1&n2

(5.2)

has a Student-Fisher t distribution with N —2 degrees of
freedom. When one demands a probability of 0.05 for a

Before it is possible to make a definite detection of o„
one will want to place a limit on its size. To do this in a
statistically proper way, one should use the Neyman-
Pearson lemma [24].

The Neyman-P ear son approach compares two hy-
potheses: the null hypothesis Ho and the alternative hy-
pothesis H, . From the data set one would like to deter-
mine which hypothesis can be supported. If the true
state is either Ho or H1, then one can make two types of
errors. A type-I error is when Ho is actually the correct
state, but the data lead one to declare that H1 is the true
state. A type-II error is when H, is the correct state but
one declares Ho to be true. The probability for a type-I
error is a, while the probability for a type-II error is P.
The probability a is called the "level of significance of the
test. "The term 1 —P is called the "power of the test. "

The Neyman-Pearson test can be used to put a limit on
the size of the correlation between two detector signals.
The data will be used to test the null hypothesis Ho:r =0
against the alternative hypothesis H&.r %0. Under the as-
sumption that r =0, the variable

' 1/2

(5.3)
1 —r
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type-I error, N »1, and the sign of the correlation is
known (positive, for example), then the limit on r and o,
will be

1 645 2
1.645~n1 n2r( ~2(

v'N v'N {5.4)

The correlation that is being tested for in this example is
either zero or positive. The probability of rejecting the
hypothesis H& rr. o and r)0 when it is actually true
and one has chosen a=0.05 is P. The power for the hy-
pothesis r &0 is

1 —P= —1+erf —[1.645 rv N—
]

1 1

2 v'2 (5.5)

If it suspected that there is some positive correlation
rp, one can also apply the Neyman-Pearson lemma. The
null hypothesis is Hp:r=rp while the alternative hy-
pothesis is H, :rArc, where the alternative hypothesis
can be expanded to two alternative phyotheses: namely,
H', :r) ro or H, r & ro [24]. When N data points from two
detectors are correlated, the result will be one number r.
The first task to take is to see if this number is consistent
with zero. For a level of si nificance of 0.05, any value of
r such that r &1.645/ N is consistent with the actual
correlation rp being zero. However, for the same level of
significance, there is a spread of values for rp that can be
acceptable. For a measured value r, there will be a prob-
ability of 0.95 that rp is in the interval

—1.96 1.96+r &ra &r+
N —3 N —3

(5.6)

The ideal scenarios presented above will differ from the
real case when one has data from two antennas. The
correlated output of two detectors in some bandwidth bf
will be

1" 86 ~f pf—g xi;x~;= df [B,B~+B;B~]y(f) .
i=1 C (2' )

(5.7)

The equivalent 95% confidence limit after a total integra-
tion time is Twill be

B. Multiple detectors

Consider M detectors, with N data points from each
detector, and each output is the sum of the signal and the
detector's intrinsic noise. The ith data point of the jth
detector is xJ; =s;+n; T. here will be M(M —2)/2 corre-
lations. The correlation between the ith and jth
detector's data is given by r; .. Assume that the variance
of the independent Gaussian noise in each detector is the
same. The null hypothesis for the Neyman-Pearson test
will be Hp. rj =0 for all i and j, while the alternative hy-
pothesis is H, :r; %0 for all i and j. An approximate test
statistic can be given by a y with one degree of freedom
[24]:

N 1™—5
i&j

(5.9)

2ai jos
rij 0 nl. (ynj

(Xi jOs (5.10)

The term a;j takes into account the difference in response
of each interferometer pair, while a; =a;I /(cr„&o „I). We
can use the same null hypothesis of r=0 to be tested
against the alternative hypothesis of r+0 Because. the
signs of all the a; are known, one can attribute the 2a
value of this variate for an o.-level test. For a type-I error
level of 0.05, and where X»1, a limit on 0., will be
given by

1/2

In general, the strength of the correlation will not be
the same for all pairs of detectors. In the multiple
gravity-wave antenna problem, the correlations will be
different for different detector pairs, but the ratios of the
correlations will be calculable. It is the relative orienta-
tion of the detectors, their displacement from one anoth-
er, their individual transfer functions, and their intrinsic
noise that will change the correlation strength. These
effects can all be calculated or measured. However, all
the detectors are responding to the same SGWB. It is the
magnitude of this background which is the uncertainty.

The correlation between the signal from detectors i and

j will be given by

o, &cr„(1.645)
N(al P+ ' ' ' +AM ] M)

(5.11)

C 27r 2

1.645 N1 N2 d (5.8)

There are M(M —1)/2 correlation terms in the denomi-
nator inside the radical. The power of this test for a
cr, & 0 hypothesis is

1 1
1 —P= — 1 —erf —{1.645 —o, [N(a, ~+ . . +aM ) M)]' (5.12)

In the case of actual gravity-wave antenna data being
correlated, the o., will correspond to the energy density
of the SGWB. For some bandwidth hf around the fre-
quency f, the energy density of the SGWB would be
o, =ps(f )bf, while the a; . terms are given by

8G[B,B*+B;*B]y,"(f)
c {2rrf ) QN, (f)N~(f)(bf )

(5.13)

where N can be expressed as N =2Th f.
As an example, consider two identical detectors at the
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same location. This will make y =8~/5. The antennas
will be the broadband recycling Fabry-Perot interferome-
ters with 60 W of laser-light power and an arm length of
4 km. Say the total integration time is 10 s and that
f=bf=150 Hz. Assuming that the energy density of
the gravity waves is very small and that a level of
significance of a =0.05 for the hypothesis 0., =0 is
desired, this system will be able to limit the ratio of
gravity-wave energy density per unit logarithmic interval
of frequency to critical energy density to
Qs„(f) & 1.8X10 . On the other hand, say a value of
Qs„(f)=10 is derived from the measured correlation.
This is about the value that one would expect from a
background of cosmic strings that were responsible for
galaxy formation. The power for the hypothesis that
cr, &0 and Qs„(f))0 would be effectively 1. There
would be no doubt about accepting the alternative hy-
pothesis. The range of possible values for the true
energy-density background that would be allowed by this
measurement at a level of significance of 0.05 would be
9.6X10 &Q (f) &1.04X10

The LIGO system [23] will consist of two 4-km-arm-
length interferometers at different locations, and a half-
length interferometer at one of the sites. This three-
detector system will be considerably different than the
simple model above. While one of the full-length inter-
ferometers will be at the same location and at the same
orientation as the half-length antenna, the second ful1-

length detector will be located on the other side of the
country. Not only will the orientation of the detectors be
different, but the correlation function will have a frequen-
cy dependence to it.

As an example, consider the case where a single full-
length detector is the above-defined detector 1, while a
full-length (detector 2) and half-length (detector 3) system
is located at the above-defined detector-2 site. The orien-
tation of the detectors and the frequency dependence of
the correlation were chosen according to the method dis-
cussed above. At 126 Hz there is a local maximum in the
frequency dependence of the correlation function. This is
where this example will be carried out. Assume that the
noise spectrum will be the same for all three detectors.

The three expected correlations, up to a common con-
stant, are r,2=0. 104ro, r»=5. 2X10 ro, and r23=ro.
The calculation of these values considered the lengths of
the interferometers, relative orientations, and distance
separations. The limit of the size of ro via the three-
channel multivariate normal method to a level of
significance of 0.05 would be ro & 1.634lv'N, while if one
used only the one correlation from the full- and half-
length systems at the same location the limit would be
ro ~ 1.645/&N. One hardly gains anything over the two
detectors at the same location scenario. The ideal case of
a correlation from two interferometers at the same loca-
tion is much better than the correlation from two anten-
nas separated by a continental displacement. Of course,
correlated noise at this common location has been ig-
nored for this example. Note that since the correlation
r, 2 is 10 times smaller than the correlation r23 it will take
100 times longer to place the same limit on the energy
density with r12 than by using r23. The limit goes as

1 1

v'N &2Th f (5.14)

C. Correlated noise at a similar site

The full- and half-length combination at one site ap-
pears to be a very convenient arrangement. However,
there will almost certainly be some common correlated
noise. This will be from such things as seismic noise,
electric power fluctuations, or residual gas pressure since
the two interferometers will be in the same vacuum sys-
tern. This will hinder the task of extracting the signal.
Whatever the cause of the correlated noise, it will place a
limit on the measurement.

Consider the two data streams

X1i =~i+n1i ~

—1
X2, =—,S;+n2, .

(5.15)

Next, call

N

2 ~av N g + lix2i pion]irn2
i=1

The correlation between channels 1 and 2 will be

2
2 +s +Pn1+n2

[( 2+ 2
)( ] 2+ 2 )jl/2

2
2 +s +P+n l~n2

+n 1+n2

(5.16)

(5.17)

It was assumed that the noise variance is much bigger
than the signal's variance. So the correlated noise will
contribute as much to the correlation as the signal when
p=o, /(2cr „,o „,). For a numerical example, say there is

a background energy density of gravity waves that has

Qs„(f ) =10,about that which would be produced from
cosmic strings. The detectors will be the broadband recy-
cling Fabry-Perot interferometers with 60 W of laser-
light power and arm lengths of 4 and 2 km. At 150 Hz
the signal variance to noise variance would be
1.66X10, and so a correlation between the two noise
terms of p =8.3 X 10 would mask the signal.

VI. COMMON NOISE
IN DIFFERENT INTERFEROMETERS

The extraction of the SGWB signature from the corre-
lated output of two interferometers can be limited by the
presence of a noise source common to each detector.
Common noise will contribute to the correlation. This
problem will be more severe for the case where two inter-
ferometers are at the same site and in the same vacuum
system. This is also the case where one has the most po-
tential sensitivity, and so it is important to see how bad
the limitations will be. The existence of a problematic
coherent noise source for two detectors separated by
thousands of kilometers seems unlikely, but is not com-
pletely excluded. The likely problematic noise sources
are considered.
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A. Seismic noise

S,(f)=10 ' cm /Hz
1 Hz

'4

(6.1)

Seismic noise will contribute to the noise spectrum of
the interferometric antenna. The ground motion will
cause the mirror masses to move as the vibration propa-
gates through the isolation and suspension system. This
motion of the mirrors will mimic the effect of a gravity
wave. Two interferometers at the same site will each
respond to the same seismic wave. This will certainly be
a problem at some level. The influence of seismic waves
on a correlation decreases as the interferometers are dis-
placed from one another.

Consider a full- and a half-length interferometer a cer-
tain site. Also, consider a stochastic background of sur-
face seismic waves, which propagate at velocity v,
(1 (v, (10 km/s). Most seismic waves are surface waves
[28]. This stochastic background of surface seismic
waves is assumed to follow the same stationary and er-
godic assumptions that were applied to the gravity waves.
For simplicity, both the longitudinal and transverse com-
ponents of the seismic displacement will be lumped to-
gether. The spectral density for the seismic noise is ex-
pected to be on the order of

for frequencies above 10 Hz.
The vibration isolation system will attempt to isolate

the masses from this ground noise. Consider a five-layer
stack of elastomer springs and masses, with a pendular
suspension that holds the mirror. The system will have a
transfer function of

T(f)=
2 ' 10

1Hz 7Hz
(6.2)

2
15 Hz

' 10

(6.3)

for frequencies above about 10 Hz [23]. The limit on the
energy density of the SGWB that can be detected by the
full-length —half-length system at the same site that is also
contaminated by seismic noise is given by

for horizontal isolation and for frequencies above tens of
hertz [23]. The proposed transfer function for vertical
isolation is

2 3

0 „(f)= S(f)iT( f)i JQ v'5/4
2Gp, L S

1/2
trfL

0
S

2n fL
v,

'2

+.J, f' +J,
S

2mfL ~
vs

2 1/2

(6.4)

This limit is independent of the length of integration time
and the type of interferometer used. If the isolation sys-
tem operates as well as intended, seismic noise will not be
a problem. The full-length —half-length system will be
able to limit the SGWB energy density to a level of
Qs„(f)-10' at 100 Hz if seismic noise were the dom-
inant noise source [19].

B. Fluctuations in the residual-gas column density
inside the common vacuum system

Another noise source to consider is from the column-
density fluctuations of the residual gas in the vacuum sys-
tem. A column-density fluctuation will change the num-
ber of molecules in the laser-light beam, and this in turn
will change the index of refraction and, thereby, the
phase of the light. This effect will produce coherent noise
in two interferometers only when they are both in the
same vacuum system. The primary cause of these fluc-
tuations will be from bursts of gas from the walls of the
system. These bursts will have a unique signature and
may be identifiable in the output data or from monitoring
devices such as UV-absorption spectroscopy [23]. If the
gas burst can be identified, then the data from the time of
the burst can be removed. Otherwise, it will add to the
value of the correlation.

The column-density fluctuation 5o. is the change in the
number of molecules per cm . If there is a gas burst con-

Scmfa5o(f)
L p, G

(6.5)

For an L =4 km system with the N2 value of
a=1.6X10 24 cm, one can limit 0 (f) to smaller than
2X 10 if the column-density-fluctuation spectral densi-
ty is smaller than 10 molecules per cm per &Hz.

The signature of an individual gas burst that the laser
beam sees is expected to be quite unique [29]. The fluc-
tuation will rise from zero to 5o.(0) in a simple tQ given
by t0=2w/v, h, where 8' is the 1/e radius of the beam
and v,h is the thermal velocity of the gas. The decay time

taining N molecules, then one has 5o =N/A, where A is
the cross-sectional area of the beam tubes. The noise in-
duced in an interferometer due to these fluctuations is
given by h„(f)=2na 5o(f) /L, where a is the polarizabil-
ity of the molecule, 5cr(f) is the spectral density of the
fluctuation in molecules per cm per VHz, and L is the
full-length interferometer's arm length. The gas bursts
would be expected to consist of N2, H20, or H2 mole-
cule s.

Since the beams for each interferometer are within the
same vacuum, the noise induced from a fluctuation is as-
sumed to affect each beam by the same amount. This is a
worst-case scenario. In order for the column-density
fluctuations to contribute as much to the correlation of
the output data as the SGWB, one must have
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for the burst is given by T= V/F, where F is pumping
speed for the vacuum system and V is the volume. For
the LIGO system the expected values are to=1.2X10
s and T= 100 s [23].

The column-density-fiuctuation signal 5o(t) can be
Fourier transformed to yield the spectral density. If
there is a burst with peak magnitude 5o (0) every

seconds, then the spectral density is
5o'(f)=5o'(0)~X(f)~/&r, where X(f) is Fourier trans-
form of the unit amplitude signal 50(t) Fo.r f=100 Hz,
a limit of Qs„(f) =2 X 10 can be achieved if
5o(0)/r'~ &6.25X10. For this limit on Qs„(f), one
could tolerate a burst producing a column-density change
of 6.25 X 10 N2 molecules per cm every second.

one site, the central masses will be only about 15 m from
each other. These two central masses will respond to the
same magnetic-field fluctuation. In this case the best lim-
it that can be placed on the energy density of the
gravity-wave background is

Sc pB (f)
Q „(f)=

16nL m I Gp,f (6.8)

Some sensible values for the interferometer will be m = 10
kg, 1=5 m, and L =4 km. The dipole moment p for the
mass is defined by the characteristics of the magnets
used. If one has a total of two magnets per mass, each of
which has Bo=500 G and a volume of V=O. 1 cm, then

C. Magnetic-field fluctuations
BOV

p=N =8 G cm
4m.

(6.9)

F'(f)x'(f)=
m (2mf)

(6.6)

The divergence of the magnetic-field spectral density
B (f ) G/&Hz is approximated by VB (f)-B (f ) /I,
where 1 is the characteristic distance to the ferromagnetic
objects that will disrupt the field. The noise limit in the
gravity-wave strain, h (f), for the interferometer of
length L with four masses is

F(f) PBm f
2Lm(~f ) 2Lm(m f ) I

(6.7)

For a system with a full-length —half-length system at

The next type of noise to be considered is that due to
fluctuating magnetic fields. This could be the major
source of correlated noise for a full-length-half-length
system at one site. It may even be a problem for two
detectors that are separated by thousands of kilometers.
There are a number of sources of magnetic-field fluctua-
tions in the regime around 100 Hz. Power lines will car-
ry and propagate disturbances. Lightning will create im-
pulsive events that can be detected thousands of miles
away. The Earth and ionosphere form a resonant cavity
that allows magnetic disturbances to propagate and
resonate at certain frequencies. Ionospheric currents
cause magnetic noise that propagates down to the Earth
along field lines and can be detected simultaneously at the
North and South poles and at midlatitudes.

The force on a magnetic dipole p by an external mag-
netic field B is F=V(p B). The dipole moment for a rnir-
ror mass will be caused by magnets attached to it. These
magnets are to be used as magnetic pushers for the isola-
tion system. If the magnetic pushers are not used, the
major source of a dipole moment will be due to iron im-
purities. The amount of iron in premium-quality fused
silica can be as high as 5 parts per 10 [30]. In order for a
force to be experienced, it is necessary for there to be a
spatial dependence in B. The gradient in the magnetic
field will be caused by the presence of ferromagnetic ma-
terials that are near the mass and thereby distort the
background field.

If the position displacement of the mass m and dipole
moment p, is x (f), in cm/&Hz and the spectral density
of the force is F(f ) in dyn/&Hz, then

If one wants to limit Qs„(f) to a value of 10 ' at 1 kHz
or 10 at 100 Hz, then the magnetic-field spectral densi-
ty should be less than 10 G/&Hz at these frequencies.

It is possible that magnetic pushers will not be used in
the isolation system for the mass. In this case the dipole
moment will most likely result from iron impurities in the
mass. Using the worst-case estimate for iron in fused sili-
ca, one would have about 50 mg of iron in a 10-kg mass.
The magnetic moment for this amount of iron in the
Earth's magnetic field would be about 8X10 Gcm .
This is a factor of 100 less than that for the magnets on
the mass. Since the limit on Qs„(f) goes as p, the
bounds given above will be reduced by 10

The next question is, what is the magnetic-field spectral
density that one can expect at a given site? In the fre-
quency regime from the tens of hertz up to a few ki-
lohertz, one sees a somewhat Gaussian background of
magnetic-field fluctuations, with a non-Gaussian distribu-
tion of burst events superimposed on it. This makes the
total probability distribution non-Gaussian. The back-
ground is predominantly caused by worldwide lightning
events and ionospheric activity, while the bursts are usu-
ally due to lightning events within hundreds of kilome-
ters. The background has resonances at certain frequen-
cies, called "Schumann resonances" [31], which are
caused by the cavity formed by the Earth and ionosphere.

Ginsberg [32] has measured the magnetic-field fluctua-
tions at Malta and Guam, regions of active magnetic-field
activity due to high thunderstorm activity. The value of
B (f) -4 X 10 ' G/&Hz at 100 Hz was measured at
both locations. If one imparts this spectral density onto a
full-length —half-length system, then the best limit that
one could achieve is Q (f)-2X10 ' at 100 Hz. If the
magnetic-field spectral density is as good as was mea-
sured in Guam or Malta during their noisiest season,
then the correlation between the outputs of the full- and
the half-length systems at a single site will not be severely
hampered.

A good correlation measurement for Q (f) may be
achieved by two interferometers at a single site in spite of
the magnetic-field fluctuations. Therefore a correlation
between two interferometers on opposite sides of the con-
tinent will surely not be restricted. However, coincident
burst events may be registered. A bolt with a peak
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current for 10 A and at a distance of 2000 km (roughly
halfway between interferometers located on the east and
west coasts of the U.S.) could produce a noise burst of
strain amplitude h —10,which is very near to the ex-
pected sensitivity of the early long-baseline antennas. If
one uses the measured event rate for lightning of
2X10 /(skm ), assumes a 500 km by 500 km area in
between east and west coasts and the fact that about 2%
of the lightning events have a current as large as 10 A
[33], then, on average, there will be a Jt —10 bursts
measured simultaneously in both systems every 17 min.
These burst will have a total magnetic-field strength of
10 G at a distance of 2000 km. There is much uncer-
tainty associated with this number. It is likely that the
bursts will be concentrated in time around periods of ac-
tive thunderstorm activity. The magnetic fields will have
to be monitored at the interferometer sites so that events
can be identified and removed from the data.

Another source of magnetic-field noise that should be
addressed is power lines. The power lines leading to an
interferometer site will be responsible for providing the
necessary megawatt of average power. It is likely that
the predominant source of magnetic-field fluctuations will
be caused by all the currents in the interferometer facili-
ty. The influence on a correlation between a full- and a
half-length system at one site will be through the two
central masses driven by the same field fluctuation. The
tolerable current noise for all the wiring can be found by
replacing the spectral density of the field B (f) by
I(f)(A/&Hz)=SB (f)r(cm), where r should be taken
to be about half the distance between the masses. I(f)
can then be considered to be the noise from the sum of all
the currents in the near vicinity ( —15 m) in between the
two central masses which carry the pusher magnets. At
100 Hz one could limit Qs„(f) to be less than 10 if
I(f) & 12 pA/v'Hz, Q „(f)& 10 if I(f) &3.8
pA/&Hz, or Q,„(f)&10 o if I(f)1.2 pA/&Hz. This

may prove to be diScult. However, the whole question
of magnetically shielding the masses has been omitted.
This will undoubtedly improve the situation.

VII. CONCLUSION

In this paper the issue of detecting the SGWB with
planned long-baseline laser-interferometric detectors is
addressed. There are many potential sources for the
SGWB that may be detectable with the systems. The
analysis of how one should optimally align two inter-
ferometers that are located anywhere on the Earth is
presented. This analysis is done so that the probability
for detecting the SGWB is maximized. An examination
of the correlation experiment involving two or more in-
terferometric detectors is given. The influence of detec-
tor orientation and separation on the correlation function
is investigated. Optimum filtering and the statistics at
correlation are also addressed. The sensitivity of this
correlation experiment is calculated. The advanced
LIGO system of a 4-km and a 2-km interferometer at one
site will be able to limit the energy density of the SGWB
to Qs„(f) &2X10 ' at 100 Hz with 107 s of integration
time. Two 4-km interferometers, separated by 40' of an-
gle of arc around the Earth will be able to attain a limit
of Q „(f)&6X10 at 126 Hz. The ultimate LIGO
configuration of three full-length and three half-length in-
terferometers at one site and three full-length interfer-
moters at the other site will be able to constrain the ener-

gy density to Qs„(f)&4X10 "at 100Hz.
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