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The optimum design, construction, and use of the Laser Interferometer Gravitational Wave Ob-
servatory (LIGO), the French-Italian Gravitational Wave Observatory (VIRGO), or the Laser Grav-
itational Wave Observatory (LAGOS) gravitational radiation detectors depends upon accurate cal-
culations of their sensitivity to de'erent sources of radiation. Here I examine how to determine the
sensitivity of these instruments to sources of gravitational radiation by considering the process by
which data are analyzed in a noisy detector. The problem of detection (is a signal present in the
output of the detector?) is separated from that of measurement (what are the parameters that char-
acterize the signal in the detector output?). By constructing the probability that the detector output
is consistent with the presence of a signal, I show how to quantify the uncertainty that the output
contains a signal and is not simply noise. Proceeding further, I construct the probability distribution
that the parametrization p that characterizes the signal has a certain value. From the distribution
and its mode I determine volumes V(P) in parameter space such that ts 6 V(P) with probability P
[owing to the random nature of the detector noise, the volumes V(P) are always different, even for
identical signals in the detector output], thus quantifying the uncertainty in the estimation of the
signal parametrization. These techniques are suitable for analyzing the output of a noisy detector.
If we are designing a detector, or determining the suitability of an existing detector for observing a
new source, then we do not have detector output to analyze but are interested in the "most likely"
response of the detector to a signal. I exploit the techniques just described to determine the "most
likely" volumes V(P) for detector output that would result in a parameter probability distribution
with given mode. Finally, as an example, I apply these techniques to determine the anticipated
sensitivity of the LIGO and LAGOS detectors to the gravitational radiation from a perturbed Kerr
black hole.
PACS number(s): 04.80.+z, 04.30.+x, 06.20.Dk, 97.60.Lf

I. INTRODUCTION

Under the present schedule, both the United States
Laser Interferometer Gravitational Wave Observatory
(LIGO [1,2]) and the French/Italian VIRGO [3] will be-
gin operation in the late 1990s. Long before that time,
theorists must lay a foundation for the study of gravita-
tional radiation sources. Part of this foundation involves
the construction of detailed, pararnetrized models of the
wave forms from expected sources; another part involves
the calculation of the anticipated sensitivity of the detec-
tor to each of these sources. Calculation of these kinds
are not only needed for LIGO and VIRGO: design and
technology studies for a Laser Gravitational-Wave Obser-
vatory in Space (LAGOS) are currently being pursued [4]
and calculations of the sensitivity of LAGOS to appro-
priate sources are needed to guide these studies.

In this paper I address the problem of calculating
the anticipated sensitivity of a detector, such as LIGO,
VIRGO, or LAGOS, to an arbitrary source of gravita-
tional radiation. The problem breaks up into two parts
which I term detection and measurement. To "detect" is
to decide whether the observed detector output contains
a signal from a particular source or is just an example of

noise; to "measure" is to assume the presence of a signal
in the detector output and to characterize the signal in
terms of the parameter(s) that describe the source (and
its orientation with respect to the detector).

Echeverria [5] recently examined some of these issues in
the particular context of determining the precision with
which one could characterize the mass and angular mo-
mentum of a perturbed Kerr black hole from observations
in a gravitational radiation detector. The foundation of
his analysis was the construction of a quantity similar to
the signal-to-noise ratio (SNR), and he asserted that the
parameters that characterize a signal observed in the out-
put of the detector are those that maximized this quan-
tity. This analysis is limited in two respects [6]: (1) The
validity of the formalism is restricted to the limit of high
SNR; and (2) the formalism cannot determine the ampli-
tude of the signal. In addition, the conceptual basis of
this calculation is not compelling: the determination of
the parameters characterizing a signal in a noisy detector
does not proceed by maximizing the SNR-like quantity
defined by Echeverria [5].

In contrast, the techniques developed here are all based
upon the construction of probabilities and probability
densities. For the problem of detection, I construct the
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probability that the observed detector output is consis-
tent with the presence (or absence) of a signal. In the case
of the measurement problem, where the detector output
is assumed to include a signal, the quantity constructed
is the probability density that describes the likelihood of
a given signal parametrization.

In Sec. III, I examine the twin processes of detection
and measurement from the point of view of probability
theory. The parameters characterizing a signal identified
in the output of a noisy detector are defined to be those
most likely to have resulted in the observed detector out-
put. Some of the results described in this section are
known elsewhere in the context of data analysis: they
are included here for completeness and so that they may
be compared with the techniques employed in Echever-
ria [5]. In Sec. III, I show how these same techniques
can be exploited to evaluate the anticipated sensitivity
of an instrument to a signal: i.e., how precisely can the
parametrization of a signal observed in the detector be
determined. I find both exact and, in the interesting
limit of a strong signal, approximate techniques for eval-
uating the expected precision with which an observed
signal can be described. As an example, in Sec. IV, I ap-
ply the approximate techniques developed in Sec. III to
the determination of the parametrization of the gravita-
tional radiation from a perturbed black hole, especially
the black hole mass M and dimensionless angular rno-
mentum parameter a. In Sec. V, I briefiy compare the
methods and results of Echeverria [5] with my own. My
conclusions are presented in Sec. VI.

II. DETECTION, MEASUREMENT
AND PROBABILITY

In this section I consider two related problems that
arise in the analysis of the output of a noisy detector:
detection and measurement. The problem of detection
is to determine whether or not a signal of known form
(i.e., deterministic, though parametrized by one or sev-
eral unknown parameters) is present in the detector out-
put. The problem of measurement is to determine the
values of some or all of the unknown parameters that
characterize the observed signal.

Note that the distinction between detection and mea
surement separates the determination of the presence or
absence of the signal from the determination of the pa-
rameters that characterize it: detection does not address
the value of the unknown parameters, and measurement
presumes the signal's presence.

Detector noise can always conspire to appear as an ex-
ample of the sought-for signal; alternatively, noise can
mask the presence of a signal. In either case, noise inter-
feres with our ability to determine the presence of the sig-

nal or the parameters that characterize it. Consequently,
any claim of detection must be associated with a proba
bitity signifying the degree of certainty that the detected
signal is not, in fact, an instance of noise. Similarly, when
an observed signal is characterized it is appropriate to
specify both a range of parameters and a probability that
the signal parameters are in the given range.

For example, I can examine the data stream from a
gravitational radiation detector to determine (with some
probability) whether the radiation from the l = ~m[ = 2
mode of a perturbed, rotating black hole is present, irre-
spective of the black hole mass, angular momentum, or
orientation with respect to the detector. If I conclude
that a signal is present in the data stream, then I can
attempt to determine bounds on some or all of these pa
rameters, such that I expect the actual parameters char-
acterizing the signal to fall within those bounds with a
given probability.

In the next several subsections I examine detection and
measurement in more detail. I assume that the statistical
properties of the detector noise are known, and also that
the form of the sought-for signal is known up to one or
several parameters. My discussion focuses on determin-
ing the probability that a signal of known form is present
in the output of a noisy detector, and on determining the
probability that the unknown parameters have particular
values.

While the discussion in Sec. IV is framed in the context
of the measurement of gravitational radiation from astro-
physical sources, the questions addressed in this (and the
following) section are purely statistical ones and contain
nothing that is specific to gravitational radiation, general
relativity, or any particular physical system or theory.
For more details, the reader may consult Wainstein and
Zubakov [7].

A. Detection

Consider a data stream g(t) which represents the out-
put of a detector. The data stream has a noise compo-
nent n(t) and in addition may have a signal component
m(t). The signal component is parametrized by several
unknown parameters (denoted collectively as p, , and in-

dividually as p„); hence

n(t) if signal not present,
n(t) + m(t; p) if signal m(t; p) present. (2 &)

Assume that p is continuous, not discrete. I will de-
scribe how to determine the probability that m(t; p,), for
undetermined p, is present in g(t), i.e.,

P(m~g) = [the conditional probability that a signal of the form m(t; p), for unknown p, is present given

the observed data stream g(t)].
Begin by using Baye's law of conditional probabilities to reexpress P(m[g) as

P(g~m)P(m)
P(g)

(2.2)
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where

P(glm)—:(the probability of measuring g assuming the signal m is present),
P(m)—:(the a priori probability that the signal m is present),

P(g):—[the probability that the data stream g(t) is observed].

(2.4a)

(2.4b)

(2.4c)

Also reexpress P(g) in terms of the two possibilities m absent and m present, and further reexpress the probability
that m is present in terms of the probability that it is characterized by the particular p:

P(g) = P(glo)P(o) + P(glm)P(m)

= P(glo)P(o) + P(m) d p p(p)P[glm(p)] (2.5)

where

P(0) = (the a priori probability that the signal is not present),
P(glo)—:[the probability density of observing g(t) in the absence of the signal],

P[glm(p))
—= [the probability density of observing g(t) assuming rn(t; p) with particular p is present],

p(y, ) = [the a priori probability density that m(t) is characterized by p].

(2.6a)
(2.6b)

(2.6c)

(2.6d)

Combining Eqs. (2.3) and (2.5), we find

(2 7)

where

)
P[glm(l )]

P(glo)

(2 8)

(2.9)

In Eq. (2.7) all of the dependencies of P(m g) on the
data stream g have been gathered into the likelihood
ratio A. Aside from A, P(mlg) depends only on the
ratio of the a priori probabilities P(0) and P(m). In
turn, the likelihood ratio depends on two components:
the a priori probability density p(m]p) and the ratio
P [g I rn(p)1/P (g 10)

In order to determine P(rnlg) we must assess the a pri
ori probabilities and calculate the likelihood ratio. It is
often the case that we know, or can make an educated
guess regarding, the a priori probabilities. Por example,
the sources may be Poisson distributed in time [deter-
mining P(0) and P(m)], and they may be homogeneously
distributed in space [determining p(r) o( r, where r is
the distance to the source]. At other times our assessment
may be more subjective or based on imperfect knowledge,
and in this case we can use the observed distribution of
p to test the validity of our assessments using the tech-
niques of hypothesis testing (Winkler [8) Sec. 7).

Now turn to the evaluation of P[g]m(p)]/P(g]0). To
determine this ratio, first note that the conditional prob-
ability of measuring g(t) if the particular signal m(t; p)
is present is the same as the conditional probability of
measuring g'(t) = g(t) —m(t; p), assuming that the sig-
nal m(t; p) is not present in g'.

P[glm(s )1 = P[g —m(v) Io]. (2.10)

Consequently, we can focus on the conditional probability
of measuring a data stream g(t) under the assumption

g, =g(t, ),
t, —t, =(i q)~t, —

At= T

(2.11a)

(2.11b)

(2.11c)

The probability that an individual g, is a sampling of the
random process n(t) is given by

l g~

(g, lo) (2.12)
[27(C„(0)]'~

and the probability that the ordered set (g, : i
1, . . . , N) is a sampling of n(t) is

P(glo) =

N

exp —
—,
' ) C,„'g,gg

j,A:=1

-l/2'
(2vr) det l]C„,, ll

(2.13)

where C:& is defined by

~pi —= ).Cn, pi Cij, (2.14)

C„„,= C„[(i—j) At] (2.15)

[Mathews and Walker [9] Sec. 14-6, Wain stein and
Zubakov [7], Eq. (31.11)]. Note that the normaliza-
tion constant in the denominator of Eq. (2.13) is inde-
pendent of g,', consequently, it does not afFect the ratio
P [g]m(p)]/P(glo). Since it is this ratio that we are inter-

I

that no signal is present [P(glo)].
In the absence of the signal, g(t) is simply an in-

stance of n(t). Assume that n(t) is a normal process
with zero mean, characterized by the correlation function
C„(r) [or, equivalently, by the one-sided power spectral
density (PSD) S„(f)]. In order to compute the ratio
P[g]m(p)]/P(glo), consider the continuum limit of the
case of discretely sampled data (g, : i = 1, . . . , N), with
the correspondence
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ested in, without loss of generality drop the normalization
constant from the following.

To evaluate Eq. (2.13) in the continuum limit, first
note that

1
6(t, —tl, ) = lim 6,),

Consequently,

(2.16)

2' fthm & 2~i ft~ pjI
3

1
lim

O t~O Qt2
T~oo

1
lim

det~O Qt2
T~oo

) 6t e'"~") 2 t C„(t, —t&)C-'(t„t~)
l

dtte 't" f dttC„(tt —tt)C '(tt, te)

27I''t f't Ct—1 (t t )
1= lim

Dt-e0 At~

1 1= lim —S„(f)C-'(f,t),).

dr e ' C(r) (2.17a)

(2.17b)

To proceed from Eq. (2.17a) to (2.17b), use the Wiener-Khintchine (cf. Kittel [10], Sec. 28) theorem to relate the
PSD S„(f)to the correlation function C„(r) and define

C '(f te)
—= —f dtC '(t ttje' 't'

Consequently, as we approach the continuum limit, we have

g~2~i fta
C '(f, tr, ) =—lim 6t

Et—+0

(2.18)

(2.19)

With C i and Parseval's theorem, we can evaluate the continuum limit of the argument of the exponential in
Eq. (2.13):

lim ) C,„'g,gg = lim.
2 ) bt C '(t, , tg)g(t, )g(tI, )

T~oo j A;
—g

OO

= lim z dt~ dtId C (tq, tA,, )g(tq)g(tg)

1= lim df dt's, C '(f, tI, )g'(f)g-(tI, )

df (f) dt„e&~tf&~ (t„)S (Ifl)—
d

g(f)g'(f)
S (If])

(2.20)

To summarize, the probability P(m~g) that a signal
of the class m(t; p, ) is present in the output of the de-
tector g(t) can be expressed in terms of three a priori
probabilities [P(0), P(m), and p(p)] and the ratio of two
conditional probabilities [P(m]g)/P(0~g)]. The a priori
probabilities must be assessed, while the ratio of the con-
ditional probabilities can be calculated. Often we know
or can make an educated guess regarding the a priori
probabilities; at other times our assessment is subjective
or otherwise based on imperfect knowledge. Finally we
establish a threshold for P(m]g) [or, equivalently, for A,
ln A, or some other surrogate of P(m~g)], and say that if
the P(m~g) (or its surrogate) exceeds the threshold then
we have detected the signal.

I will not discuss detection further, except to say that

)
P[glm(V)]

(glo)
=p(p) exp [2 (g, m(p)) —(m(p), m(p, ))] . (2.22)

The likelihood ratio A is found by substituting Eq. (2.22)
into Eq. (2.8).

Here and henceforth we will denote the Fourier transform
of r(t) as r(f).

Since the detector output g(t) is real, g'(f) = g( f)—
Define the symmetric inner product (g, h)

( ~) df
g(f)h"(f)

(2.21)S (Ifl)
for real functions g and h. In terms of this inner product,
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the choice of threshold is influenced by our strategy to
minimize errors. The two kinds of errors we can make are
to claim the presence of a signal when one is in fact not
present (a "false alarm" ), or to dismiss an observed g(t)
as noise when a signal is present (a "false dismissal" ). In
order to minimize the probability of a false alarm (con-
ventionally denoted a) we want a large threshold, while
to minimize the probability of a false dismissal (conven-
tionally denoted P) we want a small threshold. One ob-
vious strategy for choosing the threshold is to minimize
the sum n+ P, i.e. , to minimize the probability of making

1

an error. Alternatively, some other combination of o. and

P may be minimized, taking into account the relative se-
riousness of the difFerent kinds of errors. Regardless, it
is inadvisable to blindly choose a threshold for P(m~g)
without careful consideration of the false alarm and false
dismissal probabilities that arise and their relative sever-
ity.

B. Measurement

Turn now to the question of measurement. From
Eqs. (2.3), (2.5), and (2.9) we have

(2.23)

p[m(p) ~g]
= [the conditional probability that the particular signal m(t; p) is present in the data stream g(t)].

A(p)
A+ P(0)/P(m)

'

~pi ~pi
(2.27)

This final set of equations is in general nonlinear and may
be satisfied by several different p. Some will represent
local maxima, while others will correspond to local min-
ima or inflection points; thus, Eq. (2.25) is a necessary
but not sufficient condition for p, .

An important characterization of the strength of the
signal in a detector is the signal-to-noise ratio (SNR).

While vie assume in vrhat followers that the distribution has
a single mode, the generalization to a multimodal distribution
is trivial.

This conditional probability density is directly propor-
tional to A(p) and, since the denominator in Eq. (2.23)
is independent of p„ it is maximized where A(p, ) is max-
imized. If we assume that the signal is present, then the
probability density that it is characterized by p, is

A p,
p[m(p)[g, m] =

The goal of the measurement process is to determine
a volume V(P) in parameter space such that p c V(P)
with probability P. This volume is "centered" on the
mode of the distribution p[m(p)~g] in a way we define
later on. The mode of either p[m(p)~g] or p[m(p)~g, m]
is the p that maximizes A(p). Denote the mode by P.
While I will occasionally refer to p, as the "measured"
parametrization of the signal, bear in mind that p, is only
the most likely parametrization of the observed signal.

If we assume that the global maximum of A(p, ) is also
a local extremum, then p, satisfies

A(p) (2.25)
~pi

equivalently, p maximizes

»A(p) = »p(p) + 2 (m(p) g) —(m(p) m(p))

(2.26)

i.e. , it satisfies

d pp[m(p)lgl (2.29)
pfm(, ) (g,m]&@2

Note that since the distribution p[m(p)~g, m] is not
generally symmetric, p, is not necessarily the mean of
p. Also, if the distribution p[m(p) ~g] has more than one
local maximum then V(P) need not be simply connected.

To summarize, suppose we have an observation g(t)
which we assume (or conclude) includes a signal m(p)
(for unknown p). We construct the probability density

p[m(p)~g, rn] according to Eq. (2.24), and identify iso-
surfaces of p[m(p) ~g, m] as the boundary of probability
volumes V(P) according to Eq. (2.29). Finally, we assert
that p E U(P) with probability P.

III. MEASUREMENT SENSITIVITY

In Sec. II we saw how to decide whether a signal
is present or absent from the output of a noisy detec-
tor, and, if present, how to determine bounds on the
parametrization of the signal. Now I show how to an-
ticipate the precision with which a detector can place
bounds on the parametrization that characterizes a sig-
nal. In particular, consider an observed g(t) which con-
tains a signal m(t; p) for unknown p, . We are interested
ultimately in the distribution of

]

The "actual" SNR depends on the true parametrization
of the signal p, . We do not have access to p, ; however,
we do know that the most likely value of p, is p, , and we
define the SNR in terms of p, :

p = 2 (m(p), m(p)) . (2.28)

The factor of 2 arises because the power spectral density
S„(f) is one sided while m(f) is two sided. Note that p
is expressed in terms of the signal power (i.e., it is pro-
portional to the square of the signal amplitude). There
is some ambiguity in the literature over whether "SNR"
refers to p or p . We avoid the ambiguity by referring to
either p or p2 wherever the context demands it.

Having found the distribution p[m(p) ~g]

(or p[m(p, ) ~g, m]), we define the boundary of the volumes
V(P) to be its isosur faces. The probability P correspond-
ing to the isosurface p[m(p)]g, m] = K2 is
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(3.1)

where p is determined by the techniques discussed in
Sec. II. There are an infinity of possible g(t)'s that can

lead to the same P [corresponding to different instances
of the noise n(t)], and for each there is a different prob-
ability distribution p[m(p)~g] [cf. Eq. (2.23)] and a dif-
ferent set of probability volumes V(P). We will find the
probability volumes V(P) corresponding to

p(p, ~p) = (the conditional probability density that the signal parametrization is p, assuming that the mode

of the distribution p[m(p) ~g] is y,). (3 2)

I show first how to do this exactly, and then show a useful
approximation for strong signals.

The mode P of the distribution p[m(p, )~g, m] satisfies

2 mp. —mp, , p, + p,
Pj Pj

= —2 A) p 33Brn

B/lg

[cf. Eqs. (2.1) and (2.27)]. Since n(t) is a normal variable
with a zero mean, so are each of the (n, Bm/Bp )~on
the right-hand side of Eq. (3.3). Denote these random
variables v;:

on the joint distribution of v, .
Since v; are normal, their distribution is determined

completely by the means v, , which vanish, and the
quadratic moments

(3 5)

To evaluate the average on the right-hand side, we will
use the ergodic principle to turn the ensemble average
over the random process n into a time average over a
particular instance of n. Recalling that a time translation
affects the Fourier transform of a function by a change
in phase,

v, =2 n) p (3 4)
E[r(t+~)] = e-' 'f ~[r(t)],

write

(3 8)

The joint distribution of v; is a multivariate Gaussian and
its properties determine, through Eq. (3.3), the proper-
ties of the distribution of 6p, . Consequently we can focus

(n(t+ ~), r(t)) = dt e-"'f nf7. f
~ (f)

Consequently,

(3.7)

1 T
(n, r) (n, , s) = lim dr (n(t+7.), r) (n(t+~), s)+~~ 2T

f &(f) (f) z.;y. fI &(f') (f') -z.'y.

1
df

n(f)r (f) df, n(f )s (f )&(f fi)r ~ 2T 0o S„(f) S„(f')

d
n(f)n'(f) r (f)~ (f)

r ~ 2T S„(f) S„(f)
d

r (f)s (f)
2 S„(f)
1= —(r, s).

(3.8a)

(3.8b)

(3.8c)

In going from Eq. (3.8a) to Eq. (3.8b), we used the
definition of the PSD of the detector noise n(t):

S„(f)—:lim —]n(f) [ (3.9)

(cf. Kittel [10] Sec. 28). With the result in Eq. (3.8c),
we have

(3.10b)

In terms of the C;~ (i.e. the inverse of C, ), the joint
distribution of v; is given by

exp —
~) Cgg v~ v~

p(v) =
- i(a'

(2m) det i]C,, ']i
(3.11)

(3.10a) This is also the joint distribution of the quantities
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—2 mp —Dl p ) p — p
Bm Blnp
0p~ Op~

(3.12) a, —:(bp, , —b'p, ,)
=C,,- (3.20)

that appear on the left-hand side of Eq. (3.3); conse-
quently, we expect that for an observation characterized
by a given p the probability volumes V(P) are given im-
plicitly by

W

Bpi

and the correlation coeKcients r,z are given by

r,~—:cr, 'o '(bp, , —bp, ,) (by~ —bp.,)
C,~

a, o&
(3.21)

where

m(r)-m(r)
B (r) + (r),Bm Blnp
Bpg Bpg

(3.13)

In this sense we say that C,~ is the covariance matrix of
the random variables bp, .

In the strong signal approximation, the surfaces
bounding the volume V (P) are ellipsoids defined by the
equation

1exp —
~ C~ vv~

) (bp, —hp, ,) (bp —bp )C, =K,

where the constant K~ is related to P by

(3.22)

C,~ v, v~ (K - 1/2'
(2vr) det [iC,, 'i]

Bpg Bp~

The random variables bp, are related to the v by a linear
transformation,

Blnpbp'= —).c*~ ~~+ (r)
pj

(3.16)

consequently, bp are normal with means

(3.17)

and quadratic moments

(bp, —bp, ) (bp —bp ) =C, . (3.18)

The probability distribution p(bp~p) is a multivariate
Gaussian [cf. Eq. (3.11)]:

exp —2) C, (bp, —bp, ) (6'y, ~
—by, ~)

- S/2
(2~) det IIC'2 II

(3.19)

Note that the matrix C,~ now has acquired a physical
meaning: in particular, we see that the variances 0, of
bp, , are

This result is exact as long as the maximum P of A(p)
is also a local extremum of A(p).

As the SNR becomes large the distribution p(y.
~
p, ) be-

comes sharply peaked about p, and the determination of
the volume V(P) is greatly simplified. Suppose that p
is so large that for p c V(P) for all P of interest, the
difference m(p) —m(p) can be linearized in bp. We then
obtain, in place of Eq. (3.3)

C, x'x~ &K2

exp —
z ) C, x'z~

(3.23)
(2m. ) det

/
C,, [/

IV. APPLICATION:
A PERTURBED BLACK HOLE

In this section, I show how to use the approximate
techniques developed in Sec. III to find the precision with

Recall that the relative error in bp, is the condition number
times the relative error in C, : for a large condition number,
small errors in C,. introduced by the linearization approxi-
mation can result in large errors in bp.

It is often the case that not all of the parameters
that characterize the signal are of physical interest. In
that case, we may integrate the probability distribution
[Eq. (3.11) or (3.19)] over the uninteresting parameters,
leaving a distribution describing just the parameters of
physical interest.

Finally we come to the question of when the lineariza-
tion in Eq. (3.15) is a reasonable approximation. Two
considerations enter here.

(1) It is important that the probability contours of
interest (e.g. 90%) do not involve bp, so large that the
linearization of m(P) —m(p) is a poor approximation.

(2) It is important that the condition number (cf.
Golub and Van Loan [11]) of the matrix C, be suffi-

ciently small that the inverse C,~ is insensitive to this
approximation in the neighborhood of p, .~ These two

conditions will depend on the problem addressed. If the
validity of the linearization procedure is doubtful owing
to the violation of either or both of these conditions, then
we must fall back on Eq. (3.3) and the exact results in
Eqs. (3.13) and (3.14).
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which the mass and angular momentum of a perturbed
black hole can be determined through measurement in an
interferometric gravitational wave detector. This prob-
lem was first considered by Echeverria [5].

Consider a single interferometric gravitational wave de-
tector and a perturbed black hole of mass M and dimen-
sionless angular momentum parameter a. Focus atten-
tion on a single oscillation mode of the black hole, e.g.
the t = m = 2 mode. The strain measured by the detec-
tor has the time dependence of an exponentially damped
sinusoid characterized by the four parameters Q, f, V,
and T:

F(a)
2M'

F(a) = 1 — (1 —a) ~

100

(4.2a)

(4.2b)

is an accurate semiempirical expression for the real
part of the quasi-normal-mode frequency [Echeverria [5],
Eq. (4.4) and Table II]. The quality Q is the damping
time 7 measured in units of the frequency f:

Q = mf7. . . (4.3)

For the l = m = 2 oscillation mode of the black hole, Q
depends entirely on a:

Q = Q(a) = 2(1 —a) (4.4)

[Echeverria 5], Eq. (4.3) and Table II]. Finally, the am-
ptitude V i s of the wave form depends on the distance
to the source, the size of the perturbation, and the rela-
tive orientation of the detector and the source.

This peculiar parametrization of the amplitude re-
fiects our expectation that perturbed black holes are dis-
tributed uniformly throughout space (i.e. V Ix rs) and
that all relative orientations of the detector and the black
hole source are equally probable. Additionally, it refiects
an assumption that perturbations of any allowed ampli-
tude are equally probable; consequently, the a priori dis-
tribution p(V) is uniform. Let us also assume that p(a),
p(f), and p(T) are uniform and that there is no a priori
correlation of a, f, V, or T.

An interferometric gravitational wave detector is natu-
rally a broadband receiver, though it can be operated in
a narrow-band mode (cf. Vinet, Meers, Man, and Bril-

I

0 fort&0,
V ~ e ~fE i~~sin [2&f(t —T)] for t ) 0.

(4.1)

For convenience, assume that the perturbation begins
abruptly at the starting time T. The Pequency f de-
pends inversely on the mass of the black hole, and has
a weak dependence on its angular momentum: for the
t = m = 2 quasinormal oscillation mode,

let [12], Meers [13], and Krolak, Lobo, and Meers [14]).
Assume that the detector response function is uniform in
the frequency domain over the bandwidth of the gravi-
tational wave; consequently, the signal component in the
output of the detector [m(t, y, )] is equal to the wave form
h(t; Q, f, V, T) [cf. Eq. (4.1)]. Assume also that the noise
PSD (8„)of the detector is independent of frequency (f)
in the bandwidth (1/r) of the signal (I will discuss the
validity of this approximation below).

A. The signal-to-noise ratio

Af = —= —(1 —a) f1 vr g)gp
7- 2

(4 6)

For small a the bandwidth is approximately f, while for
large a the signal is monochromatic. For small a the
approximation that S„is constant over the bandwidth of
the signal is only a fair approximation for LIGO (cf. Vogt
[1], Abramovici et al. [2]) or LAGOS (cf. Faller et aL

[4)); however, it becomes a good approximation for both
detectors when a + 0.9 (corresponding to b,f/f & &).

The amplitude V depends on the detector orientation
with respect to the black hole, the amplitude of the per-
turbation, and the distance between the black hole and
the detector. Average pz over all possible orientations of
the detector with respect to the black hole (cf. Thorne
[15] Sec. 9.5.3) to obtain

16 Qz eM t'M)
5 F'(1+4Q') S„g r ) (4 7)

where eM is the total energy radiated by the l = m = 2
mode of the black hole perturbation and r is the distance
of the source.

When operated as a broadband detector, the LIGO
advanced detectors will be most sensitive to perturbed
black holes with 50Mo & M & 100Mo where S„
10 s Hz (cf. Krolak, Lobo, and Meers [14], Dhurand-
har, Krolak, and Lobo [16], Vogt et aL [1], Abramovici
et aL [2]). LAGOS will be most sensitive to perturbed
black holes in the range 10 Mo & M + 10 Mo, where
8„104z Hz (cf. Faller et al. [4]). Consequently

As a first step toward finding the precision with which
a, M, V, and T can be determined, we calculate the
SNR pz. With Ii given by Eq. (4.1), evaluate p using
Eq. (2.28) to obtain

2Qs

mfVzis(l + 4Qz)8„

This expression is valid to better than a percent as long
as the signal is observed for a period of time b,t + 2.5r.

In arriving at Eq. (4.5) we assumed that the noise PSD
is constant over the bandwidth of the signal so that S„=
Sg(f). The signal bandwidth b,f is approximately

(3Mpcl f M l /10 Hz

58G( ) &~
(4x10— ) E ~ j E50Moj 0 S„j

qi~z
t 3Gpci P M &s'2 f10 4&Hz

I q5 x10-s) g r y I, 10sMop q S

LIGO,

LAGOS,

(4.8)
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where

37 17Qz

200 I'z (1+4Qz)

- 1/2

(4 9)

p oc
M & 100M~,
M +50Mo (4.10)

for LIGO and

p oc
M +10~Mo
M & 106M' (4.11)

for LAGOS.
Little is known about the rate of, or the energy ra-

diated during, black hole formation (cf. Rees [17],
Kochanek, Shapiro, and Teukolsky [18]);however, owing
to the extreme sensitivity of both the LAGOS and LIGO
detectors, it seems a conservative estimate that the for-
mation of a black hole of mass 10 M~ + M & 10' Mo
anywhere in the universe will be detectable by LAGOS,

CQ

Cl

CO

c5

For frequencies outside of the range 100—200 Hz, the
LIGO PSD S„scales with frequency: for frequencies
greater than approximately 200 Hz (corresponding to
M & 50MO), S„scales as f (cf. Thorne [15], Kro-
lak, Lobo, and Meers [14]), and for frequencies less than
100 Hz (M & 100M~) it scales as f (cf. Dhurandhar,
Krolak, and Lobo [16]). Similarly, for frequencies out-
side the range 10 s—10 z Hz the LAGOS PSD S„scales
with frequency: for f + 10 zHz it scales as fz, and
for f & 10 sHz it scales as f (cf. Faller et at. [4]).
Consequently

and the formation of black holes with 50Mo & M
100MO will be observable in LIGO at least to the dis-
tance of the Virgo cluster ( 10 Mpc). Additionally, note
that the energy radiated in the t = 2 mode during the
radial infall of a test body (mass m) onto a Schwarzschild
black hole (mass M) is given by

AE= eM =10 (4.12)

(Davis, Ruffini, Press, and Price [19], Oohara and Naka-
mura [20]; similar results hold for Kerr black holes:
Sasaki and Nakamura [21], Kojima and Nakamura [22]).
Consequently, the capture of a solar mass compact object
(e.g. , a black hole or neutron star) onto a black hole of
mass 10 —10~Ms (corresponding to s 10 i4—10 is)
may also be observable to a distance of 3Mpc [cf.
Eq. (4.8)]

Figure 1 shows the factor G(a) [cf. Eq. (4.9)] as a func-
tion of a. This figure may also be regarded as a plot of
p(a) for fixed M, c, r, 8„, and detector-source orienta-
tion. With this interpretation, note how p decreases with
increasing a. The reason for this behavior is that at fixed
M, the frequency f and damping time scale r both in-

crease with a; consequently, a signal of smaller amplitude
(i.e. , smaller p~) will yield the same radiated energy.

B. Precision of measurement

(4.13a)

(4.13b)

(4.13c)e = f(T T), --

While the parameters Q and f are convenient for char-
acterizing the detector response, it is the determination
of a and M that is of direct physical interest. If the
perturbed black hole is also observed electromagnetically
(e.g. if it is the result of the gravitational collapse of
a star in a type-II supernova), then determination of
V and T may also be interesting. Regardless, we are
more interested in the covariance matrix for the parame-
ters (a, M, V, T) than for the parameters (Q, f, V, T).
It turns out, however, that it is simpler to first de-
termine the covariance matrix for the parametrization

(Q, f, V, T).
To find the covariance matrix for the parametrization

fa, M, V, T), first

define

the

thre-dimensionless param-
eters e', (', and (' by

J'" = f —J'—
V(' —= V —V,

and evaluate C,'. for the parametrization (Q, e', (', ('):

0.0 0.2 0.4 0.8 1.0

FIG. 1. The expected signal-to-noise ratio (SNR) of the
t = m = 2 mode of a perturbed black hole as a function of
the angular momentum parameter a. The dependence of the
SNR on the black hole mass, distance, total energy radiated,
and the detector noise PSD has been scaled out, leaving only
the dependence on the angular momentum parameter. For
more details see Eq. (4.8) and the surrounding text.

t (BQ'BQ) BQ'Bf)~ BQ'Bv) BQ'BT)f ~

Bh Oh 2 Bh Bh ~ Bh Bh
Bf'Fg ~ 3f'3v ~ Bf'BT

l (PN k)~f J

(4.14)

The components of C,'. appearing in Eq. (4.14) are
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Bh Bh 3+ 6Q2+ 8Q
BQ BQ 2Q'(1+4Q')

Bh Bh 3+ 4Q2

B ' Bf 4Q (1+4Q2)

4 2

B ' BV 12Q (1+4Q2)

(
Bh Bh 1 ~p
BQ' BT f 4Q2'

f'=
I

-+ O'
I

p',

Bh Bh ~p2(1+4Q')
Bf'BT 4Q

Bh Bh 1 ~2p2(1+4 ')
BT' BT f2 2Q2

f the covariance matrixrix Q' areThe components o e c

(4.15a)

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

(4.15}1)

(4.15i)

(4.15j)

4Q4+ SA2+ 1

2Q2p2

1
Q&' 2qsp2 '

3(4Q4+ 5Q'+ 1)
QC' 2qsp2

1
QC'

1 —2Q' (1 —4Q')
2Q4(1+4Q2) p2 '

3 (1 —Q')
2Q4p2

1 1 —4Q2

2~p' Q (1+4Q2) '

9 (1+2Q')'
~Ct'

3
2~qp2'

2Q2
O'0' ~2 (1+4Q2) p2'

(4.16a)

(4.16b)

(4.16c)

(4.16d)

(4.16e)

(4.16f)

(4.16g)

(4.16h)

(4.16i)

(4.16j)

Now ae ne ed fi the three-dimension pless arameters e, (,
snd ( by

Me:—M —M,
V(= V —V,

=T —T.

(4.17a)

(4.17b)

(4.17c)M(

ix C; for the par ametrizationTh covariance matrix C;j or e
(a, e, (, () is given in terms o, y

) .~ik ~kl~lj
k, L

(4.18)

where e syth symmetric matnx is given by

Md — 1 ~d 0da fM da

(fM) 0
1

0

0
0

(fM) )
(4.19)

l
Uncis a function only of a and p,L'k C' the matrix C,z is a unc

'
1 e ij~

and hss the elements

(1+2Q') (1+4Q') 1
2'2Q'Q"

2F ' F'QF (1+2Q') (1+4q') -2F
2QsQ' F2

2Q2+ 8Q4

2Q4 (1+4Q2) p2
'

9 (1+2Q')'
~((= 2Q4 2

8Q2

(1 + 4Q2) F2p2 '

q(1+2q2) (1+4Q2) F -F
~a. =

2FQ'Q"p'
3 (1+4Q') (1+Q')

2QsQ' p2

(4.20a)

(4.20b)

(4.20c)

(4.20d)

(4.20e)

(4.20f)

C)

ao
M

0&o
0

~ W

O+ ni
Cl

c5
O

0$

M

C)
CO

0.0 0.2 0.4 0.6 0.8 1.0

tandard deviation of the black holeFIG. 2. The expected stan sr ev

sl-t ol tio (S ) p
For more details see Eqs. (4.20s) and 4. s-
surrounding text.
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C g
= —(FQ'p ) (4.20g)

3 Q (1+Q ) (1+4Q~) F'+ (Q~ —1) FQ'
2Q4FQ/p2

(1-4Q~) Fq —Q(1+4Q~) F
Q (1+4Q') F'Q'p'

3
(0 qF

(4.20ll)

(4.20i)

(4.20j)

where F(a) and Q(a) are given by Eqs. (4.2b) and
(4.4). Finally, in terms of these coefficients, we have (cf.

Eqs. (3.20) and (3.21)j

OM =M O~,2= 22
2 2 2

OV ——V a~,
2 2 2o.T

——M cr~,

TaM = Ta~)

TaV —Tag~

TaT —Tag &

TMV —Te()

TMT —Tq()

TVT —T((.

(4.21a)

(4.21b)

(4.21c)

(4.21d)
(4.21e)

(4.21f)
(4.2lg)
(4.21h)

(4.2li)

CQ

o
CQ

O

o
CO
Cbo

CO

g)o

%eo

CQ
CO

C I

~ O

~ I++I0
+ o0

~ p0
Cd o
S

0

o
CO
Cb

o
0.0 0.2 0.4 0.6 0.8 1.0

CQ
C)o

0.0 0.2 0.4 0.6 0.8 1.0

ooo

oo
I

Q
QCo
Q0
g O
0 '

Cd o
~o
0

CQo
I

CD

CD
I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 3. The correlation coefBcients for errors in the angular momentum parameter a, mass M, initial moment of perturba-

tion T, and perturbation amplitude V as a function of angular momentum parameter. For more details see Eqs. (4.21d)—(4.21i)
and the surrounding text.
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where

(4.24a)

(4.24b)

b,M=M —M,
b,a=a —a.
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source of this class is described by a set of parameters:
e.g. , among the parameters describing the signal from a
perturbed black hole is the black hole mass and angular
momentum. Detection addresses only whether a signal
of this class is present in the observed output of the de-
tector, and not the particular values of the parameters
that best describe the signal.

Measurement follows detection: it refers to the deter-
mination of the values of the parameters that best char-
acterize the particular signal assumed to be present in the
detector output (it only makes sense to speak of measur-
ing the parameters of a real signal). For example, once we
have concluded that we have detected the signal from the
formation of a black hole, then we can go on to measure
the black hole mass and angular momentum.

In order to determine whether the observed output of
a detector includes a signal from a given class of sources,
we saw how to calculate the probability that the detector
output is consistent with the presence of the signal. That
probability depends on the characteristics of the detector
noise, the observed detector output, and a parametrized
model of the detector response to the signal. In addition,
it depends on several a priori probabilities that must be
assessed. When the calculated probability exceeds a cer-
tain threshold then we say that the we have detected a
signal. Setting the threshold requires careful considera-
tion of the relative severity of falsely claiming a detection
and incorrectly rejecting a signal.

To determine the values of the parameters that char-
acterize the detected signal, we saw how to construct
the probability distribution that describes how likely dif-
ferent parametrizations p are. We identified p as the
mode of the distribution, i.e., the parametrization that
maximized the probability density, or the most likely
parametrization. Owing to detector noise, Is differs in
a random fashion from the unknown p that actually de-
scribes the signal. We characterized our uncertainty over
the actual description of the signal by specifying a vol-
ume V(P) in the parameter phase space, centered on p,
such that p C V(P) with probability P.

We then proceeded to exploit these techniques to an
ticipate the precision with which the parametrization of
a particular signal can be determined by a given detec-
tor: i.e., we evaluated the sensitivity of the detector to

the signal from a class of sources.
To do so, we found the probability distribution of

p, —p, and defined volumes V(P) in phase space such
that p E V(P) with probability P. These volumes de-

termine the precision with which we expect we can de-
termine the signal parameters in a real observation. In
the interesting limit of a strong signal the anticipated
probability distribution of p, —p, for fixed p, is close to
Gaussian and the associated volumes V(P) are ellipsoids.
In this limit we found approximate techniques for deter-
mining the size and orientation of this ellipsoid. Both the
exact and approximate expressions developed provide a
powerful means of studying the sensitivity of a proposed
detector or detector configuration to a source of gravi-
tational radiation. These techniques are currently being
employed to study the sensitivity of the LIGO detectors
to binary coalescence [23], precessing axisymmetric neu-
tron stars [24], and nonaxisymmetric neutron stars [25].

As an example of the process of measurement, we eval-
uated the variance in the mass and angular momentum
of a perturbed black hole as determined by observations
in a gravitational wave detector. These results improve
upon those found earlier (cf. Echeverria [5]), and we dis-
cussed the origin of the differences.

The LIGO detector, currently under construction, and
the LAGOS detector, currently being designed, are both
very sensitive to gravitational radiation from perturbed
black holes. A perturbation of a 50Mo —100M~ black
hole that radiates as little as 10 7 of the black hole
mass should be observable with LIGO at the distance
of the Virgo cluster of galaxies, and a perturbation of a
10s M&—107 Mo black hole that radiates as little as 10 s

of the black hole mass should be observable by LAGOS
throughout the Universe [cf. Eq. (4.8)].
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