Errata

Erratum: QCD-based effective Lagrangian including quark mass effects: Calculation of f_k [Phys. Rev. D 39, 888 (1989)]

Herman J. Munczek and Douglas W. McKay

PACS number(s): 12.38.Aw, 11.10.Lm, 11.30.Qc, 11.30.Rd, 99.10.+g

The following misprints in the original manuscript should be corrected.

The integrand factor in the equation above (32a) should be $1/(\ln y)^{1+d}$.

There should be no $1/\pi$ factor in the second term of Eq. (33).

The definition of k below Eq. (C5) should read $k \equiv (k_1 + k_2)/2$.

There should be a factor 6 rather than $\frac{1}{6}$ in the definition of $\langle r_{\pi}^2 \rangle$ in Appendix C. Equation (C8) should have a factor 6*i* rather than $\frac{1}{4}$.

The expression for E_2 in Appendix C should have a factor D' instead of Σ' in the first term in the brackets multiplying x.

All calculations were done with the correct formulas.

We thank Chris Belyea for pointing out the misprint in the definition of $\langle r_{\pi}^2 \rangle$.

© 1992 The American Physical Society

Erratum: Hyperfine-interaction meson spectroscopy and the linkage between constituent-, dynamical-, and current-quark masses [Phys. Rev. D 40, 3670 (1989)]

V. Elias, Mong Tong, and M. D. Scadron

PACS number(s): 12.70.+q, 14.80.Dq, 99.10.+g

The Taylor seies in the caption to Fig. 1, p. 3672, is correctly given by

 $m_{\pi} = \hat{m}_L \{ 2(1+\tau) - (\hat{m}_L / m_{\rm dyn}) (14\tau + 8\tau^2) / 3 + O((\hat{m}_L / m_{\rm dyn})^2) \} ,$ where $\tau \equiv K / (m_{\rm dyn})^4$.

© 1992 The American Physical Society

Erratum: *CP* violation in the decay $K_L \rightarrow \pi^+ \pi^- e^+ e^-$ [Phys. Rev. D 46, 1035 (1992)]

L. M. Sehgal and M. Wanninger

PACS number(s): 13.20.Eb, 11.30.Er, 13.40.Hq, 99.10.+g

In the phase convention adopted for the bremsstrahlung term g_{BR} [Eq. (9)], the magnetic dipole coupling g_{M1} should have the phase $g_{M1}=i|g_{M1}|e^{i\delta_1}$, and not $g_{M1}=|g_{M1}|e^{i\delta_1}$ as assumed. This affects the relative phases given in Eq. (24):

$$\Theta_1 = \arg(g_{M1}g_{BR}^*) = \Phi_{+-} + \delta_0 - \overline{\delta_1} - \frac{\pi}{2} \mod \pi$$

(instead of $\Phi_{+-} + \delta_0 - \overline{\delta_1} \mod \pi$),

<u>46</u> 5209

$$\Theta_2 = \arg(g_{M1}g_{E1}^*) = \Phi_{+-} - \frac{\pi}{2} \mod \pi$$

(instead of $\Phi_{+-} \mod \pi$).

As a consequence, the CP-violating asymmetry given by Eq. (26),

 $\langle A \rangle = 15\% \cos\Theta_1 + 38\% \cos\Theta_2 \left| \frac{g_{E1}}{g_{M1}} \right|,$

is $(14.3\pm1.3)\%$, significantly larger than the result $(3.8\pm1.4)\%$ stated in the paper.

© 1992 The American Physical Society

Erratum: Review of Particle Properties [Phys. Rev. D 45, S1 (1992)]

K. Hikasa, K. Hagiwara, S. Kawabata, R. M. Barnett, D. E. Groom, T. G. Trippe,
C. G. Wohl, G. P. Yost, B. Armstrong, G. S. Wagman, J. Stone, F. C. Porter, R. J. Morrison,
R. E. Cutkosky, L. Montanet, K. Gieselmann, M. Aguilar-Benitez, C. Caso, R. L. Crawford, M. Roos,
N. A. Törnqvist, K. G. Hayes, G. Höhler, D. M. Manley, K. A. Olive, R. E. Shrock, S. Eidelman,
R. H. Schindler, J. J. Hernández, G. Conforto, and R. A. Eichler
(Particle Data Group)

PACS number(s): 14.20. - c, 14.40. - n, 14.60. - z, 14.80. - j, 99.10. + g

On page III.5 (and on page 205 of the *Particle Properties Data Booklet*), in the table on Atomic and Nuclear Properties of Materials, the radiation length for SiO_2 should be 10.2 cm. The radiation length in g/cm² is given correctly. The line should read

In the expression on page III.36 relating ln \mathcal{L} to the χ^2 sum, a constant was omitted. The equation should read

$$\chi^{2} = -\frac{1}{2} \ln \mathcal{L} + \text{const} = \sum_{1}^{N} \frac{[y_{i} - F(x_{i};\vec{a})]^{2}}{\sigma_{i}^{2}} .$$
(2.9)

The expression is given correctly in the Particle Properties Data Booklet.

The two structure function definitions for F_3 given on page III.52 contain an extra factor of x. For the reaction $e_L p \rightarrow vX$ the expression should be

$$F_{3} = 2[f_{u}(x,Q^{2}) + f_{c}(x,Q^{2}) + f_{t}(x,Q^{2}) - f_{\overline{d}}(x,Q^{2}) - f_{\overline{s}}(x,Q^{2}) - f_{\overline{b}}(x,Q^{2})],$$

and for $vp \rightarrow e^{-X}$ the corrected expression is

$$F_{3} = 2[f_{d}(\mathbf{x}, \mathbf{Q}^{2}) + f_{s}(\mathbf{x}, \mathbf{Q}^{2}) + f_{b}(\mathbf{x}, \mathbf{Q}^{2}) - f_{\overline{u}}(\mathbf{x}, \mathbf{Q}^{2}) - f_{\overline{c}}(\mathbf{x}, \mathbf{Q}^{2}) - f_{\overline{t}}(\mathbf{x}, \mathbf{Q}^{2})]$$

The expressions are given correctly in the Particle Properties Data Booklet.

On page VI.29, the title for the section on the τ decay parameter

AXIAL VECTOR COUPLING CONSTANT RATIO g_V/g_A

should be changed to read

v_{τ}/a_{τ} , RATIO OF COUPLINGS TO Z.

Similarly, on page II.3 (and on page 12 of the Particle Properties Data Booklet), the τ decay parameter should read

 $v_{\tau}/a_{\tau}=0.01\pm0.04$.