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Effective potential and quadratic divergences
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We use the effective potential to give a simple derivation of Veltman’s formula for the quadratic diver-
gence in the Higgs self-energy. We also comment on the effect of going beyond the one-loop approxima-

tion.
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There has been some interest recently [1-8] in the na-
ture of the quadratic divergences present in renormaliz-
able field theories, both in general and in the standard
model (SM). The quadratic divergences in the SM in the
Higgs self-energy are indicative of the fact that the “natu-
ral” order of magnitude of the Higgs-boson mass is at
least ~M, where M represents the scale of new physics
beyond the standard model [9]. Much of the interest in
supersymmetric theories (from a phenomenological point
of view) derives from the fact that [excluding U(1) D
terms] they are quite generally free of quadratic diver-
gences [10]. They thus admit the possibility of “natural-
ly” light scalar particles.

Quadratic divergences in the SM context were first
studied by Veltman [9] in the context of dimensional reg-
ularization. He showed that, as long as regularization by
dimensional reduction [10] (DRED) is employed rather
than conventional dimensional regularization (DREG),
the requirement of the absence of quadratic divergences
at one loop in the standard model can be expressed by the
formula

3mph+6mi+3mi—12m}=0. (1)

Here my, my,, mz, and m, are the masses of the Higgs
boson, W boson, Z boson, and top quark, respectively.
For simplicity, we have dropped contributions from the
lighter quarks and leptons. The generalization of this re-
lation to an arbitrary renormalizable gauge theory may
be found in Ref. [1]. In the same reference, it was noted
that imposing both Eq. (1) itself and that it be renormal-
ization group (RG) invariant leads to two constraints
which cannot be simultaneously satisfied for any m, and
my, while in Ref. [4] it was shown that, if strong-
interaction contributions to the RG evolution are ig-
nored, then the predictions m, =115 GeV and my =180
GeV are obtained. We will comment later on the effect of
higher orders on these predictions.

Although originally derived in the context of DRED,
Eq. (1) is reproduced by any straightforward regulariza-
tion method that does not involve continuation in dimen-
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sion, for example, nonlocal regularization [4] or point
splitting [8]. We shall see why below, when we provide a
particularly simple derivation of Eq. (1). With DREG,
on the other hand, a different expression is obtained [9].
This arises as follows. The coefficients of the m}, term
and the m2 term in Eq. (1) are in fact 2(d’—1) and
(d’'—1), respectively, where d'=g,,g"" and g,, is the
metric tensor. With DRED, d’'=4 because the continua-
tion to d dimensions is done by compactification, while,
in DREG, d’'=d since the whole Lagrangian is continued
to d dimensions. Then the fact that with either DRED
or DREG quadratic divergences are manifested as poles
at d =4—2/L (where L is the number of loops) leads
with DRED to Eq. (1), but with DREG to

3mpy+2mp+mi—12m2=0. )

DRED is a scheme in which the number of spin de-
grees of freedom is not changed, there being three physi-
cal states associated with a massive vector and four asso-
ciated with a massive Dirac fermion. DREG implicitly
varies the number of vector-boson degrees of freedom by
altering the polarization sum. This is unphysical, as is
further illustrated by the fact that it changes in each loop
order. As our discussion below will show, any cutoff
scheme that retains the correct number of spin degrees of
freedom for each particle, as any truly physical cutoff
would do, will lead to Eq. (1) rather than Eq. (2).

We turn now to the derivation of Eq. (1) promised
above. Consider the formula for the one-loop correction
to the effective potential in an arbitrary gauge theory:

Vi($)=(647) " [ d*k STr{In[k>+M* )]} , (3
where
STr=3 +3 3 -2 3 . @)
scalars vectors fermions

The coefficient for fermions reflects use of a Weyl basis.
Appropriate counterterms must be added to render V,(¢)
finite.

We are using the Landau gauge; V,(¢) is in general
gauge dependent, but it is easy to verify that the quadrat-
ically divergent part of it is gauge invariant in R, gauges,
at least at one loop [11]. Writing
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2
1n[k2+M2]=1nk2+—A:—2+ . (5

it is clear that requiring the absence of quadratic diver-
gences amounts to imposing the relation'

STrM?=0 . (6)

The regulator ambiguities referred to above have been
finessed by postponing the evaluation of the Feynman in-
tegrals; evidently, if a cutoff is used, then the choice we
have made is a common cutoff for all loops. Now it was
shown by Ferrara, Giradello, and Palumbo [12] that Eq.
(6) is automatically satisfied in supersymmetric theories.
What about nonsupersymmetric theories? Naive applica-
tion of Egs. (4) and (6) to the SM leads to the relation

mj+6mi +3mi—12m2=0, @)

which differs from Eq. (1). This apparent paradox was
noted but left unresolved in Ref. [8], and so we felt it
worthwhile to provide an explanation and incidentally a
derivation of Eq. (1) from Eq. (6).

The key is in the realization that M? is a function of ¢.
In a supersymmetric theory, Eq. (6) is true for all ¢ and
thus represents simultaneous satisfaction of three sets of
constraints, corresponding to terms in ¢2, ¢, and ¢°, re-
spectively. The ¢° constraint reflects the cancellation of
the zero-point energies of the fields (when quantized with
respect to the state ¢=0) [13].

Turning to the SM, we take the tree-level potential to
be

V0=—%m2¢2+2%¢4 (®)

(we have exploited gauge invariance to replace the scalar
doublet by a real scalar ¢).
Then we have

STtM*(¢)=H+3G+6W+3Z—12T , )

where H=—m?+1A¢?, G=—m?+1A¢?, W=1g%¢?
Z=1(g?+g'*)¢?, and T=1h?¢*h being the top-quark
Yukawa coupling. When ¢=(¢), H, W, Z, and T be-
come mp, my, m%, and m?, respectively, and G =0.
Note that Eq. (9) does not involve a term linear in ¢, be-
cause the SM does not admit a cubic scalar invariant.
Now it is easy to see that we cannot impose Eq. (6) for

general ¢, since the m? terms in Eq. (9) do not cancel.
This is not, however, a divergence in the two-point func-
tion and is irrelevant to naturalness considerations. It is
the quadratic divergences in the Higgs-boson mass that
concern us; evidently, requiring them to be absent
amounts to requiring

1 & o

— —STrtM*=0, (10)

2 3¢?

IThe fact that in dimensional regularization f dk /k*=0 is
due to a cancellation between ultraviolet and infrared diver-
gences specific to the method; the ir divergences must be sepa-
rately regulated if dimensional regularization is employed.
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which amounts, of course, to cancellation of the term
quadratic in ¢. It is important to realize that this is a re-
lation among the dimensionless couplings of the theory.
It does not depend, for example, on the sign of m2. If,
however, we multiply Eq. (10) by (¢ )2 and use the rela-
tion

rMe)r=3m} , (11)

then it is very easy to see that Eq. (10) leads to Eq. (1).
This derivation of Veltman’s formula is elegant and also
useful in showing that the result is not dependent on the
use of DRED.

Finally, we should explain the origin of Eq. (7). If we
take Eq. (9) and evaluate at = (¢ ), where () is given
by Eq. (11), then we indeed obtain

STIM*({¢))=m}h+6mi +3m2—12m? . (12)

So requiring Eq. (7) amounts to requiring that the
value of the effective potential at the minimum be free
from quadratic divergences. As we have emphasized
above, the value of the effective potential (even at the ex-
tremum) is not relevant to the issue of whether the Higgs
boson can be naturally light. To reiterate, imposing Eq.
(1) renders the radiative corrections to the Higgs-boson
mass free of quadratic divergences (at one loop). Impos-
ing Eq. (7) would remove the quadratic divergence in the
vacuum energy, which, however is quartically divergent
in the SM, because its particle content differs from that of
a supersymmetric theory (see Ref. [13]).

Finally, we comment briefly on the issue of higher-
order corrections. If one requires the absence of quadra-
tic divergences order by order, it is clear that an infinite
number of constraints must be satisfied, which is seem-
ingly improbable in the absence of an identifiable symme-
try. But what if one admits the possibility of cancellation
between different orders of perturbation theory; might
one then have that Eq. (1) merely suffered radiative
corrections of generic order g2m?? In the context of
DRED (or DREG), this appears difficult to implement
since, for example, at two loops one finds poles at both
d =2 and 3, the former (and, it was conjectured, the
latter [1-4]) being related to the one-loop d =2 pole via a
generalized RG. Let us see, however, what happens in
some kind of cutoff scheme. (The following argument is
heuristic inasmuch as issues of scheme and gauge depen-
dence are ignored, but we believe the essential points
made would survive a more careful treatment.) Consider
a theory with many couplings A; but a single mass pa-
rameter m2. Then the bare parameter m} is given by

mi=m*+A%S f,(A)In"A/u+ - -, (13)
n=0
where u is the RG scale and we have kept only quadrati-

cally divergent terms. From the fact that udm?/du is
finite, it is easy to deduce that

)

d
(n +l)fn+1=:u'afnzﬁi§fn . (14)

The absence of quadratic divergences amounts to re-
quiring that f, =0 for all n; but note that, of course, the
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vanishing of f, does not of itself imply the vanishing of
fn+1- Thus an infinite number of constraints are indeed
required to ensure the absence of quadratic divergences
to all orders (contrary to a recent claim) [14]. The pre-
dictions of m, and my mentioned earlier (see also Ref.
[14]) were obtained by solving the equations f,=f,=0
at leading order for the SM. It is straightforward to
evaluate f, to leading order using Eq. (14) and to show
that it is nonzero when the one-loop 3 functions are sub-
stituted. Thus the scepticism evinced in Ref. [4] with

respect to the predictions would seem to be justified, even
if one were prepared to swallow the opportunistic
suppression of the strong-interaction terms.

It remains conceivable, of course, that the new physics
whereby the SM resolves its naturalness problem is such
that Eq. (1) remains intact.
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