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The allowed weak decay channels of muonium are studied in detail. They acquire additional
significance in the context of possible M-M oscillations that probe beyond the standard model. The
muonium decay rate and annihilation rate are found to be 1.000023 and 1.045X 10~ '°, respectively, in

units of the free muon decay rate.

PACS number(s): 13.35.+s, 12.15.Ji, 36.10.Dr

I. INTRODUCTION

The muonium atom consisting of a positive muon as
the nucleus and an electron is a unique system where an
oppositely charged particle-antiparticle pair of different
flavors exists in a Coulomb bound state. Composed en-
tirely of nonhadronic constituents, muonium provides an
ideal laboratory for fundamental tests of QED and ex-
clusively electroweak interactions. Although the stan-
dard model has proved competent in explaining existing
experimental findings [1], attempts to dispense with some
of its precepts continue. The muonium (M) atom ac-
quires additional significance as its possible conversion to
antimuonium (M) provides incisive tests for physics
beyond the standard model [2].

The stability of the muonium atom is constantly jeop-
ardized by the strong susceptibility of its muonic nucleus
to weak decay We investigate the different weak decay
modes of muonium allowed by the standard model and
discuss their relevance to M — M experiments [2,3]. Per-
mitting flavor mixing and lepton-number violation, the
M — M transitions become possible via doubly charged-
Higgs-boson or Majorana neutrino exchange [4,5] and
this has been experimentally examined [6,2]. The latest
report [3] constrains the M —M coupling (G to
G, <0.16Gp. _

The experimental signatures of the M —M are inti-
mately related to the allowed weak decay channels of the
muonium, the latter being dominated by the weak decay
of its muonic nucleus. The neutrino annihilation exit
channel corresponding to weak capture is strongly
suppressed because of the nonavailability of the electron
at the weak vertex of the muon.

To obtain a comprehensive view of the decay modes of
muonium, we have computed the allowed decay modes
(Figs. 1-3)
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(u'e”)—¥v,+v, (via weak capture) . ()

Figure 4 describes the lepton-number-violating M — M
transition mode.

II. MUON DECAY FROM MUONIUM

The bare weak decay of the u™ is shown in Fig. 1. Col-
lapsing the intermediate-vector-boson propagator to its
local point coupling as justified for such low-energy pro-
cesses [7], the weak Hamiltonian can be written

Hy=(G/VD[4,0%, .0, ],
with O, =y, (1+ys) . ()

This must be dressed in the Coulomb field of the spec-
tator (Fig. 2). Since the binding is weak and the spatial
separation of the spectator is large, the modification of
the free rate due to the environment is small and deter-
mined by a,,, the radius of the muonium system.

As the M — M precision experiments [2,3] detect the
decay lepton and spectator lepton as signals for u decay
from M or M, it seems relevant to reexamine the exact
spectrum of these final-state leptons. Interference of slow
spectator positrons emitted from the tail of the positron
distribution in 4™ decay from M, with the slow positrons
expected from M decay and looked for as its signal, could
be eliminated by analysis of the distribution. We investi-
gated this process earlier, neglecting mass terms of the
recoiling spectator [8]. We dispense with this approxima-
tion in the present work and present the spectra of the
spectator electron in muon decay from muonium. p— de-
cay from M would yield the same spectator spectrum for
the spectator positron. The matrix element including the
bound-state wave function and its overlap with the final
spectator can be written as, for bound u decay [4],

FIG. 1. Bare u* weak decay.
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FIG. 2. u* decay from muonium dressed in Coulomb field of
spectator.

M;=HyI, (4)
where
1= [ g,ne™"d’r, (5)

p, refers to the spectator momentum, and 1; is the
initial-state wave function.

The total rate is obtained by integrating the spin-
averaged square of M over the final phase space [7].
The neutrinos are integrated over in their center-of-mass
frame as for free muon or 7 decay [7]. Thereafter, shift-
ing to the rest frame of the muonium atom, which is as-
sumed to be coincident with its muonic nucleus, we have

A=(CG?/M,)d>p,d’p,(1/E,E|)P,Qpl ,51*], 6
where
I,5=(m/6)[P8,3+2P,Pygl, M

C is a relevant constant, and «a,f3 are to be summed over.
P,,Q are four-vectors of et and y+, while P is the total
four-momentum carried by the neutrinos. E,E; and
P1,P; are the energies and momenta of e * and spectator
e, respectively.

The kinematic limits on the charged leptonic phase
space is obtained from the conservation 8-function con-
straint as

2VSE,+p,pu)+p}—E?—2EE,
=S +E2—p?—2VSE,, (8

where V'S is the total entrance channel four-momentum
given by

S=P§=(P,+P,)* and u =cos(p;,p,) - 9

Since the decay lepton is practically a pure Michel one
and the distribution heavily favors maximum decay lep-
ton momenta, we take it as massless at present to enable
analytic integration of the final phase space.

The maximum value of E, is then obtained from Eq.
(8) as
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FIG. 3. Muonium annihilation into neutrinos.

M M
IOIT T T RN
'||||||||||| H]llllllllllz
i A
THHHHH HHHH

e~ e*

FIG. 4. Muonium going to antimuonium by Higgs-boson ex-
change.

ET*=(W*—p2)/[2(W+p,u)], (10)
with
W=VS —E, . (11

In contrast, the spectator distribution is strongly
peaked at very low momenta and so the spectator mass
must be retained. Integrating over the decay lepton and
its angle with the final spectator, the spectator spectrum
has the form

32R ,WH’K x2
dR,=—— T dx , (12)
aym ,WoMyG, (x°+n°)
with
Go=[(W/W,?—x2], x=p,/W, and n=1/a,, .
(13)

W, is the maximum value of p;, R, is the free muon
decay rate, a,, is the radius of muonium, and M|, is the
rest mass:

H=(S/W})—x?*—QE,W/W3), (14)
K=QW?/W})—x>—(S/W3)+(2E,W/W3) . (15)

The final decay rate is obtained by integrating over the
spectator and is reported in Sec. I'V.

III. MUONIUM ANNIHILATION
INTO NEUTRONS

It is also important to explore in parallel the muonium
annihilation into energy carried by a (v.¥v,) lepton-
antilepton pair according to Eq. (2). This was originally
discussed by Pontecorvo [9] who obtained ~ 107! for its
branching ratio to free muon decay from dimensional
considerations. We have revisited this process in more
detail.

This annihilation process must be completely prohibit-
ed from the singlet state of muonium because of helicity
constraints (Fig. 5). The final-state V,,V. pair must be
emitted in opposite directions by momentum conserva-
tion as the muonium annihilates practically at rest. As
the v, and ¥, must have opposite helicities, the exit chan-
nel selects exclusively the triplet entrance channel. This
is similar to the helicity suppression of pion decay by the
electronic mode. In the event of the massive neutrino
model, however, the process would acquire a finite proba-
bility. As the triplet set suffers no such prohibition,
muonium annihilation forms a viable mode of muonium
disappearance from its triplet state. In dense media the
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e- — u* B=(P,—m,S, Q)P +m,S,)(Q;) (18)
Spin of D Spin of 3, or, on simplifying,

FIG. 5. Suppression of singlet entrance channel for M —7%,v,
by helicity constraints.

triplet-to-singlet transition is so fast that the weak cap-
ture is not likely to occur. However, in the vacuum
scenario, the process could compete with the M —M
transition if this has a very small coupling constant or its
branching ratio is very small. Despite the obvious experi-
mental difficulties involved in detecting an exclusively
double neutrino final state, we have computed exactly the
process. In case the M — M coupling or branching ratio
is in reality also negligibly small and the absence of the
decay electron of the muon of muonium is noticeable, the
interference of the annihilation channel would be impor-
tant.

The matrix element for M —v,¥, can be obtained from
the muon decay case by crossing symmetry by replacing
the outgoing positron (Fig. 1) by the incoming electron
(Fig. 3).

Energetically, this capture or annihilation mode is
favored over pure decay as the electron mass goes into
the positive- rather than negative-energy balance. How-
ever, it is severely suppressed by the extreme rarity of the
electron density N, at the weak vertex. As the electron
actively participates in the weak dynamics in contrast
with its spectating role for channel 1, N, acquires crucial
importance. The density of electron states N, is taken, as
for electron capture from atoms by nuclei, as the square
of the bound-state wave function taken at contact, i.e.,

Ne:|¢M(r=0)|2=713/1r=1/(7ra;24) . (16)

Since a,,~(137/m ), one naively expects a suppres-
sion of the rate by of ~4.45X 10~ '* as the relevant factor
is (ay, /mu)3, when compared with the free muon decay
rate. This naive estimate ignores the different phase-
space distributions of the final state and any spin depen-
dence of the process. In actual fact the annihilation
selects a two-body final state, where the exiting particles
are massless or at least effectively so.

In addition, as already mentioned for the singlet-spin
state, the reaction is totally forbidden for massless neutri-
nos, while it is allowed for the triplet state (Fig. 5).

Introducing spin projection operators S, and S, for the
muon and electron, respectively, and the appropriate
phase-space factors for this two-body final state, we have,
for the rate,

A=C, [ d’q,d*q,8%P,—P,—P,)B , 17

where C, is the relevant constant and B is the square of
the matrix element summed and averaged over spin
states. q;,q, and P,,P, refer to the momenta and four-
vectors for the two neutrinos.

Using zero-momentum spinors for the muon and elec-
tron as is customary for particles in bound states [10] and
imposing the identity between the energy and mass com-
ponents of their four-vectors (i.e., p,=0,p, =0), one has

B :mume[(E(z)/4)+(E0/2)(Suql—seqZ)
—(S,-q,)(S,-q,)] . (19)

The phase-space integral is trivial for this two-particle
final state and yields a constant. Using the momentum
6-function dictate q; = —q,,

B=m,m,[(E;/4)+(E;/2)(S,+S,)q,
+(8,q,)(S,-q;)] . (20)
For massless neutrinos,
lq,I’=E}/4=|q,|* 1)
and
B =m“me(E(2,/4)[1+(ﬁ1-Sy)('€|1-Se)+(Su+Se)-ﬁ1] )
(22)

Numerical values are discussed in Sec. IV.

IV. RESULTS AND DISCUSSION

The spectator electron distribution for muon decay
from muonium is shown in Figs. 6 and 7 for its occupa-
tion of different regions of phase space. Figure 6 shows
the strong peaking at p ~(7/V'3) arising from the over-
lap of the bound-state wave function with the final spec-
tator. This overlap constrains spectator energy values to
within 14 eV for the majority of events and permits the
detection of these in the M — M probing experiment by
acceleration in vacuum. Since the acceleration field ac-
celerates spectating positrons left behind in p— decay
from M to ~ 10 keV energy, the distribution broadens the
positron line by about 1.5%. This broadening may not be
detectable in the latest experiment as the electric-field in-
homogeneity dominates the line and causes an ~3%
correction [3], but may be resolved in future higher-
precision experiments. On the other hand, the tail of the

0 L 1 1 L
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Spectator momentum (in KeV) ——

FIG. 6. Differential decay rate in units of free muon decay
rate as a function of spectator energy in MeV.
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FIG. 7. Suppression of the differential rate for spectator en-
ergy in MeV range.

spectator distribution corresponding to its highest values
describes the area where the decay is farthest from its
Michel maximum and has its lowest energy values. For
1’ decay from M, this corresponds to the emission of
very slow positrons which could simulate the positron
spectators in the M — M conversion event. This region of
phase space is, however, suppressed by about 20 orders of
magnitude from the peak value, as shown (Fig. 7), and
therefore is not expected to cause appreciable violation of
the M —M detection. Equation (12) can be integrated
analytically to yield

R =R, /R, =(W?>/m)(1+{n/[aWy(1+0*/W})]
—n* /W) . (23)

Terms of order (/W) and (7/W,)* have been retained
as higher powers are reduced ~ 10~ '2 compared with the
leading terms.

The term (/W,) in Eq. (23) causes the rate to be
enhanced slightly over the free muon decay rate as the
negative term is smaller and the resultant rate for muon
decay from muonium is obtained as 1.000023 times the

free muon decay rate from Eq. (23).

It should be noted that in the present analyses mass
terms of the decay lepton have been neglected as for the
normalizing free rate. These would add correction terms
of order (m,/m,, )2 and for massive neutrinos (mve /m, )2

and (m, /m u)z as usual for both the free decay and de-
I
cay from muonium. The radiative corrections also would
be the same as those for the free decay except for the ad-
ditional diagrams connecting the muon and decay posi-
tron to the spectator. These can be considered equivalent
to the continuous exchange of Coulomb photons, giving
rise to the bound state in the entrance channel and the
Coulomb correction in the exit channel.
The former is accounted for by the bound-state wave
functions. Since the spectrum is dominated by the high
value of the relative velocity v, the final-state Coulomb
cross section determined by £=Ze?/v is negligible for
this system.
For the muonium annihilation channel, referring to
equations (14), for the singlet state,
S,=—8,

and
B—0

by helicity constraints. For the triplet state,
B=m,mE 2.

The branching ratio is
R,=X,/A;=1.045X10" 17,

where A, is the annihilation rate and A, the free ut de-
cay rate.
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