
PHYSICAL REVIEW D VOLUME 46, NUMBER 11 1 DECEMBER 1992

Comparison between relativistic, semirelativistic, and nonrelativistic approaches of quarkonium

C. Semay
Universite de Mons-Hainaut, Faculte des Sciences, 19Avenue Maistriau, B-7000 Mons, Belgium

B.Silvestre-Brac
Institut des Sciences Nucleaires, 53 Avenue des Martyrs, F-38026 Grenoble Cedex, France

(Received 11 May 1992)

We study the connections existing between relativistic, semirelativistic, and nonrelativistic potential
models of quarkonium using an interaction composed of an attractive Coulomb potential and a confining
power-law term. We show that the spectra of these very different models become nearly similar provid-
ed specific relations exist between the dimensionless parameters peculiar to each model. As our analysis
is carried out by taking advantage of scaling laws, our results are applicable for a wide range of physical
parameters.
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I. INTRODUCTION
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Consequently, the effective masses m;, and the effective
potential V„„whichdepend on the average momentum
( p ), vary from level to level. But the authors point out
that, in the nonrelativistic formalism, the virial theorem
implies that (p ) is a constant when the interaction is

Some recent works [1,2] shed some light on the
theoretical interpretation of the potential models of
QCD. These models are convenient tools to calculate
most properties of hadrons. Acceptable results are pro-
vided by relativistic as well as by nonrelativistic ap-
proaches [3—5]. Both types of models use generally the
same kind of "QCD-inspired" interaction, namely, a
short-range part dominated by one-gluon exchange and a
confining long-range part described by a power-law po-
tential. However, they differ drastically in quark mass
and kinematics: while in the nonrelativistic models the
light quarks (u, d ) have mass of the order of one-third of
the nucleon mass and obey a Schrodinger equation, in the
other models the light quarks have very small mass, and
accordingly, their motion is ultrarelativistic.

Several works have been devoted to the comparison of
nonrelativistic and relativistic quark models. Lucha and
Schoberl [6] showed that the semirelativistic two-body
Hamiltonian (in natural units fi=c = 1)

H="t/p +m, +Qp +m2 + V(r)

can be approximately recast in the form of a nonrelativis-
tic Hamiltonian

reduced to a confining logarithmic potential. In this case
the effective quantities m; and V„,are independent of the
level of excitation.

It was noted by Rosenstein [7] that the Schrodinger
equation with linear potential

2

+br+a f„=E„P„ (1.4)

P(r)= f e ' "g(r')d r' .1
(1.6)

In the work of Ono [8], it is shown that a two-body
Klein-Gordon equation, including a scalar potential
Vz(r) and a fourth component Vr(r) of a four-vector po-
tential, is formally identical to a Schrodinger equation
supplemented by the effective energy-dependent potential

Vs(r) [E—Vr(r)]V' (r,E)= Vs(r)+ V~(r )+
8p 8p

(1.7}

where p is the reduced mass and E the nonrelativistic en-
ergy. The author proves that, from bb to uu systems, V'
does not appreciably differ from Vz+ Vv provided Vz
contains a negative constant. He also gives some physical
reasons which suggest the necessity of such a constant
potential.

Bhaduri and Brack [9] have calculated the spectra of
the one-body Dirac equation for a massless quark with
different confining interactions. They show that it is pos-
sible to choose an effective mass and an effective potential

and the ultrarelativistic Klein-Gordon equation with a
quadratic potential

(1/p + ,'co r +c—}P„=e„P„ (1.&)

transform to each other under the transformation p~br
and r~p/b provided Mco =b and a =c. Therefore, the
eigenvalues of these equations are the same and the wave
functions are connected by the Fourier transform
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in a Schrodinger equation to reproduce quite well the rel-
ativistic spectra. Moreover, the Dirac magnetic moments
may also be reasonably well reproduced by the
Schrodinger formalism provided the nonrelativistic for-
rnula of the magnetic moment is modified for the excited
states.

In the work of Gunion and Li [10], the spectra result-
ing from a relativistic treatment of a linear scalar
confinement potential were calculated using one-body
Klein-Gordon and Dirac wave equations. The authors
show that, for a given choice of parameters and a given
orbital angular momentum value, the Klein-Gordon and
Dirac wave equations yield essentially identical spectra.
Moreover, they show that these spectra do not differ very
much from those of the nonrelativistic treatment for the
first few low-lying states.

These studies shed some light on the connections exist-
ing between potential models with relativistic and nonre-
lativistic kinematics, but many points remain question-
able. In the work of Lucha and Schoberl [6], only the
sernirelativistic approach is considered, and it is not clear
that the effective Schrodinger Hamiltonian (1.2) is still
relevant for nonlogarithmic potentials which could ap-
preciably modify the effective masses and potential from
one level to another. The duality relation found by
Rosenstein [7] between Eqs. (1.4) and (1.5) concerns only
one-body systems; moreover, the confining power-law po-
tential, which yields the correct Regge trajectories for the
relativistic equation of motion, is not quadratic but linear
[11,12]. The work of Ono [8] is a two-body analysis, but
the quarks are treated as spinless particles; the situation
is exactly the opposite in the work of Bhaduri and Brack
[9] and in the work of Gunion and Li [10].

In Ref. [13] the spectrum of the two-body Dirac equa-
tion was calculated with zero current masses and a linear
scalar confining potential. It is shown that practically the
same spectra can be obtained with a two-body
Schrodinger equation using a wide range of potentials
and constituent masses. In this paper, our purpose is to
develop this work by comparing the spectra of nonrela-
tivistic, semirelativistic, and relativistic potential models
of quarkonium with a quark-antiquark interaction which
is the sum of an attractive Coulomb potential and a
confining power-law potential. Taking advantage of the
scaling laws we point out results which are to a large ex-
tent independent of the parameters of the models. In Sec.
II we present the three Hamiltonians with their specific
scaling properties and we define a quantity suitable for
measuring the difference between the spectra. Section III
is devoted to an analytical comparison of the different
models, which is possible when the interaction is reduced
to a confining term. In Sec. IV, we carry out the compar-
isons for the complete Hamiltonians. Concluding re-
rnarks are presented in Sec. V.

II. MODELS AND SCALING LAWS

2

H~=m~(1)+m~(2)+ + W~(r)
2px

m~(1)m~(2)
with p&= mz(1)+ m~(2)

Hs=+p +ms(1)+Qp +ms(2)+ W~(r),

(2. 1)

(2.2)

(2.4)

but for the relativistic model, the Lorentz character of
the potential has to be specified. As the particles are only
confined by scalar potentials, we can use a confining in-
teraction which is proportional to the operator —,'(P, +P2)
or P,P2. Although the expression P,Pz comes naturally
from the reduction of the Bethe-Salpeter equation, we
choose the other operator because it leads to simpler ra-
dial equations for the two-body Dirac equation. The
Coulomb potential is due to one-gluon exchange, so it is
treated as the time component of a four-vector potential.
The constant potential is introduced in the same way
since its function is to shift the entire spectrum. 8'~ is
then given by

W~ = — +—(p, +p2)A~r +AR .
r 2

(2.S)

We study the solutions of these Hamiltonians by taking
advantage of the scaling laws. We introduce a dimen-
sionless space variable x proportional to r whose conju-
gate variable is q= —iV„and a dimensionless mass ~z.
These quantities are defined by

(2pk, )'~~'+ 'r for nonrelativistic model,
X= k' '+"r for other models,

—I /(a~ + 1)
~~(i)=m~(i)X~

For the nonrelativistic model, the eigenenergies, which
depend on the principal quantum number n and the total
orbital angular momentum /, are given by the following
formula

Hz =(a& —a2).p+P, mz(1)+P m2z(2)+ W~(r) . (2.3)

In these expressions, p= —i V, is the conjugate momen-
tum of the space variable r=r, —r2, and r=~r~. The po-
tential between the quark and the antiquark W~ (X
denotes N, S, or R) contains a confining term Azr , sup-
plemented by a Coulomb part —y~/r, which is the static
interaction due to the one-gluon exchange (y=4a, /3,
where ns is the effective strong coupling constant which
differs from one model to another). A constant potential
A~, which can be interpreted as a simple means to take
into account unknown multigluon processes, is used to fix
the ground state of the spectrum. Accordingly, for the
Hamiltonians (2.1) and (2.2) the total potential is

We consider three different models: nonrelativistic
(N), semirelativistic (S) and relativistic (R). The relativ-
istic model relies on the two-body Dirac formalism [12].
In the center-of-mass frame the corresponding Hamil-
tonians are given by

E„&=m~(1)+m~(2)+A&
1/(a~, +2)

(2p~) ' (2.7)
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where co„I is solution of the dimensionless equation

q — +x "—co„t co(x)=0,
X

(2.8)

and

(a~+))/(a~+2) 2a)v(1)~)v(2)

(2.9)

S ir(as+ i) s
Ea, t =As+~s ~a, (((rs(1) irs(2) as ys) (2.10)

where co„I is a solution of the dirnensionless equation

Qq +as(1)+Qq +(~s(2)

We remark that the mass dependence of the spectrum is
very simple because the masses appear dynamically only
through the reduced mass. Moreover, when y~=0, Eq.
(2.8) is independent of the masses. This is a well-known
peculiarity of the nonrelativistic model which is not
present in the other models.

The eigenenergies of the semirelativistic Hamiltonian,
which also depend only on n and l, are given by the for-
mula

J=l+1, and s =1]. It can be checked numerically that
the eigenenergies E(, )

considered in sum (2.14) are nearly
degenerate when yz is small (see Ref. [13] for the case
az = 1 and yz =0). The quantities co„(are related to the
eigenenergies E„")by relation (2.12).

It is worth noting that the dimensionless levels co"„Iand
co„I depend on four parameters while the quantities co„I

depend only on two parameters, and that, following for-
mula (2.7), one of the two nonrelativistic masses can be
chosen independently of the spectra, for instance to fix
the magnetic moments of the baryons. In the nonrela-
tivistic limit, the dirnensionless levels are connected by
the relation

lim [~„&(a, s', a, y) —K K ]
K, K ~+ oo

cq —a/(a+2) N (a ~(a+))/(a+2))co„I a, y

(2.15)

with

2KK

(a+a')
The difference between two spectra [E„t] and [E„"()

will be measured by calculating the average "gap"

7S ~2s S+x —co„t w(x) =0 . (2.11)
gEx —r— y ~Ex E r~

n, l

(2.16)

The scaling laws for the relativistic model are the same
as for the semirelativistic one. The corresponding
eigenenergies are thus given by the formula

R '~~'~+'] RE(,
)
=A~+A,

„ to(, )(s~(1),a„(2),a~, y~ ), (2.12)

where co~,
I

is a solution of the spinorial dimensionless
equation

(a) —a2) q+p)KR(1)+pgKtt(2)

where the sum includes N& levels. This gap obviously de-
pends on the states considered in the sum (2.16). In the
following we shall only compare the lowest part of the
different spectra. Accordingly, we shall consider all the
states which are characterized by a number of quanta
N& =2n+I below a given value N&'" that we always take
equal to 4, and thus Nz =9.

III. COMPARISON WITH A CONFINING
POTENTIAL ONLY

+—(P, +P2)x —a)i, }
w(x) =0 (2.13)

ER J

g (2J+1) (2.14)

where the sum +J includes four levels (two levels only
when l =0}characterized by the same principal quantum
number n, and whose corresponding wave function is
characterized either by a definite orbital angular mornen-
tum l [for states such that P=( —1), J=l, and s =0, 1]
or by a dominant component with orbital angular
momentum equal to l [for states such that P =( —1) +',

and [t ] represents the set of quantum numbers which
identify the states (total angular momentum J, parity P,
and when they are well defined, total spin s and total or-
bital angular momentutn 1) [12]. As the Dirac equation
(2.13) includes autotnatically spin effects, we define the
centers of gravity E„I, which depend only on n and l, us-

ing the usual formula

g (2J+ 1)E(, )

d2

dp

l(l+1) —y'+g„,(a) w(y) =0, (3.1)

where we have g„t(2)=4n+21+3, and g„o(1)is the

In this section we carry out analytical comparisons of
the spectra of the nonrelativistic and semirelativistic
Hamiltonians with the spectrum of the relativistic Hamil-
tonian taken as a reference spectrum. Our purpose is to
point out the connections existing between the different
spectra, knowing that the price to pay is possibly the use
of approximate solutions or approximate Harniltonians.
The calculations are performed with the interaction re-
duced to a confining potential (yx =0) in cases where we
can expect the largest differences between the models,
that is to say, the qq system (q =u or d} and the qQ sys-
tem (Q is a very heavy-flavor quark). The mass of the q
quark being generally taken very small in the models
with relativistic kinematics, we assume that
mz(q)=ms(q)=0. It is then possible to express solu-
tions of the different Hamiltonians in terms of the solu-
tions q„&(a)of the dimensionless equation
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(n+1)th zero of the Airy function Ai(x). An approxi-
mate formula for g„1(a) with a )0 exists [12], but we
shall use the exact values of q„&(a)obtained by numeri-
cal integration of (3.1).

A. qq system

For vanishing masses and Coulomb potential, the ap-
proximate solutions of Eq. (2.11) are [14]

co„1(lrs(1) =O, as(2) =O, as, ys =0)

+1 s/(a~+])as
vr(2n + l +—)

as
(3.2)

and in Ref. [12] we find the approximate solutions of Eq.
(2.13),

co„i(Kg ( 1 ) =O, ir~ (2) =O, az, y„=0)

=2 " Qil„1(2a~ ) . (3.3)

Qbviously we have, exactly,

~„,I(a~, rN =0)=rl„I(u~) (3.4)

~NE„I =2m~(q)+A~+, il„I( —', ),
m~i "(q)

(3.5)

The exponents of the confining potentials are chosen in
order to obtain the linear Regge trajectories in the
different models. As lim& +„g„I(a)-1 ' '+ ' [12], we
take az =as = 1 and az =—', (in agreement with Ref. [15]).
Consequently, the spectra are given by the formulas

4
qEx r-~7„,~ ~dx

N =p
Q

(3.12)

As the slope of the Regge trajectories fixes the value of
QA, ~ around 500 MeV, we find hE =45 MeV. This
result is to be compared with the lowest and highest lev-
els of the relativistic spectra which are located, respec-
tively, at 1225 and 2345 MeV when Az =0.

Two remarks must be made concerning these analyti-
cal results. First, the exact solutions, with the same exci-
tation energy, for the relativistic and semirelativistic
Hamiltonians with zero masses and linear confining po-
tential are not degenerate. This is only the case for the
approximate solutions (3.6) and (3.7). If we use the exact
solutions of Eqs. (2.11) and (2.13), we find hE =63
MeV instead of 0. This large discrepancy is due to the
poor accuracy of formula (3.2). The use of exact solu-
tions of Eq. (2.13) gives b,E" =37 MeV, which is very
close to the result found with approximate solutions (3.3).
Second, the values chosen for the parameters a~, a&, and
ms(q) are those which generate the linear Regge trajec-
tories, that is to say, which minimize the gap between the
levels of the different models in the region of large values
of I. Consequently, they are certainly not the best values
to minimize the gap defined in the previous section.
Varying the values of a~, as, and ms(q), we calculate
new exact values of d„I, and we can then make AE
as small as -23 MeV for a&=0.873. In the same
way, AE can be reduced to -27 MeV with
ms(q) ~4+k,s. As we shall see in the next section, this
last result is due to the fact that relativistic and semirela-
tivistic spectra have different behaviors as a function of x.
The new dimensionless levels are presented in Fig. 2,

E„I =As+ Qrr7 s(4n +2l+ 3),
E„"I=A+++2A&(4n+2l+3) .

(3.6)

(3.7)

The approximate spectrum of the semirelativistic model
(3.6) coincides with the approximate spectrum of the rela-
tivistic model (3.7) if we take As =A„and As =(2/n )A,„.
In this case AE =0. The situation is more complicat-
ed for the nonrelativistic spectrum. Setting Ep p =Ep p

and Ep &
=Ep

~& we obtain

gX

2m(q) +A~ =0.241+A ~ +A„,
/m~ (q)=1.092+k~ .

(3.8)

With the conditions expressed above, we can write the
eigenenergies in the form

E„i —A~ + QA.~ d„I,
where d„I are dimensionless quantities given by

=/2g /' (2j

d„I
=0.241+ 1.092'„,( —,

'
) .

(3.9)

(3.10)

(3.11)
NO X=R X=5 X=N

We compare them in Fig. 1, where we can see that at
least the highest level of each group with the same num-
ber of quanta nearly coincide for the three models. The
gap between two spectra is then given by

FIG. 1. Comparison between the dimensionless approximate
qq spectra [d„",], [d„,I, and [d„,I including all the states with
quantum numbers n and L such that X& =2n + I ~ 4. A number
above a level indicates its degeneracy with respect to n and l.
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gx

E„i =ms(Q)+As+As

&s+ 1
n.(2n + I +—', )

2as

as /(as+ 1)

(3.17)

The solutions of the Hamiltonian (3.15) are given by

E„(=m~(Q)+m~(q)+A~
. ir(a„+2)

[2m~(q }]'" n. , i( x} (3.18)

3

In the literature the quark masses are generally such that
mz(Q) & mz(Q) & mR(Q) and m~(Q)=m R(Q) +m~(q).
We shall take mz(Q) and mz(Q) in terms of mR(Q) so
that the ground states of the three models coincide. Ex-
pressing the links found between the parameters of the
semi- and nonrelativistic models and the parameters of
the relativistic one for the qq system, we obtain, with

R &s 1 and&+ 3

2 .. N0 X=R X=S X=N

with

E„(™R(Q)+AR+QXRd (3.19)

FIG. 2. Same as Fig. 1 but with exact values of d„Ifor op-
timum values of parameters az, as, and ms(q) (see text).

d&R ~3/4(1)

d' =0 159+g'/ (2},
d„'I =0.035+0.918ri„I(-', ) .

(3.20)

(3.21)

(3.22)

where we can see that the centers of gravity of groups of
levels with the same number of quanta coincide quite well
for the three models.

The calculations are carried out by making the two
first levels equal in the models. A better agreement be-
tween the spectra can be found by changing these two
reference levels as is done in Ref. [13].

The different definitions of the mass of the Q quark are
then connected by the relations

4

B. qQ system

Q being a very heavy-fiavor quark, the Hamiltonians of
the different models are written as follows

HR =(a]—a2) p+ —,'(p, +p2)A R r "+pram R (Q)+ AR,

(3.13)

Hs='t/p +ms(Q)+assr +As,
2

H~=m~(Q)+mN(q)+ +A~r "+AN .
2mN(q

(3.14)

(3.15}

2

The Hamiltonians (3.14) and (3.15} are approximate
Hamiltonians obtained assuming that mz(Q)»p and
p~=mN(q). The approximate solutions of the Hamil-
tonian (3.13) are given in Ref. [12]. We have N~ X=R X=S X=N

(3.16)

From formula (3.2), the approximate solutions of the
Hamiltonian (3.14) are

FIG. 3. Comparison between the dimensionless approximate
qQ spectra [d„'I ], [d„'I [, and [d„'I J including all the states with
quantum numbers n and I such that N& =2n+I ~4. A number
above a level indicates its degeneracy with respect to n and l.
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(3.23)

m ~( Q) =m„(Q)+ m~( q) —0.206+A ~ . (3.24)

~Xn Fig. 3 we compare the dimensionle qss uantities d„I.
that the nonrelativistic spectrum is very simi-We can see a

s ectra is given by formula (3.12) where we replace

—m (~)—P~ are, respectively, 945highest values of E„I —mR ~—
1867 MeV. The agreement between the re ativis icand 18 e

and the semirelativistic spectra is no g
DER ~= 67 MeV.

IV. COMPARISON FFOR COMPLETE HAMILTONIAN

As the one-gluon-exchange procecess has a large contri-
s it is interesting to test tobution to the meson masses,

'

n thiswhat extent t emo e scw h d 1 an yield similar results when t is
d on. In this section, we shall corn-interaction is turne

low-1 in levels of the three moue s wip th 1o y g
te Harniltonian, but we s a res ric

tions to systems composed of quar s wi e
1 =rr~(2) =rrz]. The spectra are obtained by accu-

For the relativistic model we only consi er
linear confinement in order to obtain goo

Rentl the dimensionless levels co„I de-
nl on ~ and yR. As A, R is aroun

we consider the levels co„I with ~R rom o
include in our stu y y
The parameter yR is taken from 0 to . , w ic

values of the effective strong coupling con-
stant. As the semirelativistic model is c ar

i ar to that of the relativistic model, we also
t d th d'consi er on yd 1 linear confinement an stu y e

with ~ from 0 to 3 and yz fromm 0 tosionless levels co„I wi
1.5. For the nonrelativistic model we do not impose a
fixed value or e

andthe dimensionless levels co„I p dde end on az an

We shall vary the value of a~'Yx~x
from 0 to 1.5 and the values of ~~ from 0 to0 to 1.5, as

=1 for most of the parameter values con-K~ — or mos
sidered. A zero value for a~ means thas that the confining po-
tential is logarithmic.

From formulas (2.7), (2.10), and (2.12) we can write, for
each model considered

(4. 1)

En I EOO n I ~00X X

EX
(4.2)

lues are independent of A and B . Since we
om are the lowest part o t e i erewant to comp

and E as the referencechoose the lowest levels E0 0 an 0, as
red the level witlevels (for all the situations considered,

=0 = 11 he first excited state). When
and IP "&) are equal, the real

=0 and 1=1 is genera y t e rs
two relative spectra I R„& an

EX A X+BX X

where A and B are quantities with the dimension o
and where cu„I depend on dimensionless parame-

ters. Whatever the values ofay„Imay e, i is a
of the s ectrum by asible to fix the values of two levels o e p

f A nd B . Consequently, instead ofood choice of A an
shallc

'
1 E of two energy spectra, we shacomparing the leve s

„ I o
compare the dimensionless quantities

y=O y=1 5

RR„lr nl

2

I ~ I ~ ~ I

1 2

K=0

1

0

K=3

FIG. 4. Relative spectra tR„I oof the rela-

odel as a function of ~& and y&.
2n+ I =2 for short-dashed curves, or ong-
dashed curves, 4 for solid curves.

R
R „1 R nl

~ ~ ~~ I ~ ~ ~ ~
1

0.0 0.5 1.0 1.5
I I I

0.0 0.5 1.0 1.5
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R nl
5R nl

~ ~ I
1

0

v=3

I ~ FIG. 5. Relative spectra I R „ i oof the
semire a iv'lativistic model as a function of ~s and

2n+I=2 for short-dashed curves, orXs-
1ong-dashed curves, 4 for sol&d curves. Note
that R i 0(0 Ks 3,ys=1.5) (1.

1

S
R nl

SR nl

1

0.0 0.5 1.0 1.5
1

0.0
~ a I

0.5 1.0 1.5

corresponding spectra I E„I J and ( „ I I
X &E" & can always be

made equal too.
note that all the relevant characteris-It is important to no e a

lues of the rela-tics o a spec rf trum are contained in t e va ues o e
. The R I curves are thus universal cuurvestive levels R«. e

„ I c
for a wide range ofand give the appearance of the spectra for a wi e ran

hysical parameters. In particula,ar the order of the levelsp y
d and the crossing points of levels could

be expressed by relations between the physica parame-
ters. Consequent y, isl th' formalism is a powerful tool to
point ou genert ral characteristics of the models.

odels con-In Figs. 4-6 we present for the three mo e s

R"n, NR„l

1

0.0 0,5 1,0

a=O

I ~ ~ ~ ~~ ~ I ~ I ~

1,5
~ ~ ~I ~ ~ ~ ~1

0,0 0,5 1.0

0=1.5

1.5 FIG. 6. Relative spectra (R„i J of the non-
relativistic model as a function of az and ~&.
2n+I=2 for short-dashed curves, 3 for long-
dashed curves, 4 for solid curves.

3

N
R „, N

R nl

2

1

0.0 0.5 1.0 1.5
1

0.0 0.5 1.0
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sidered the values of R„& for a number of excitation
quanta N& =2n + I equal to 2, 3, and 4. In this work, the
number of quanta, which is a rigorous notion only for an
isotropic harmonic oscillator, is used as a convenient
quantity to classify the levels. As we can see from the
figures, the levels with the same excitation energy N& can
be arranged in groups for some ranges of the parameters.
Moreover, the spectra are always such that R, p(Rp2
for N&=2, R, , &RQ3 for N&=3, and R2p&R& 2&Rp4
for N&=4; though some levels characterized by N&+,
quanta can be located below levels characterized by N&
quanta. Obviously, in the nonrelativistic model, the
groups of levels are well distinguishable when ~N is small
and aN quite large. We remark that for fixed values of K

and y, the relative semirelativistic and relativistic spectra
are clearly different. Crossings of levels appear with
smaller values of y for the semirelativistic spectra. More-
over, the separation between groups of levels increases
with ~, whereas the situation is opposite for the relativis-
tic spectra.

To carry out the comparisons, we choose a reference
relative spectrum {R„1(pz, qz)) which depends on two
parameters pz and qz for a set of quantum numbers (n, l )

such that N& ~N&"=4. Then we vary the two parame-
ters pz and qz of another relative spectrum

{R„I(p„,q Y) ] in order to minimize the quantity

4

lR. , I(px qx) R., I(pY, q—Y)l, (4.3)
N =p

Q

where the two spectra are such that Epp=Epp and
Ep ~

=Ep &
~ Obviously, the values of p ~ and q z that min-Y X

imize AR and the lowest value reachable for this
quantity depend on the states we consider to carry out
the comparison. Different results would be obtained by
changing the two reference levels or by including in sum
(4.3) more states than just those with the lowest number
of quanta. We have from (4.2)

0, 5

0,0
0.0 0.5 1.0 1.5

FIG. 7. Relation between the parameters a and ~, which min-

imize AR, calculated with N&'"=4 for the two relative
spectra {R„,(a, r=0) ] and {R„~(a= 1, r) {.

tained as well by the potential V, = Ar'+B with a =0. 1

as by the potential V2= —y/r+A, r. We can check the
similarity of the two corresponding spectra by com-
paring the relative spectra {R„,(a, v=0)] and

{R„&(a= I, r =y% ) ] . For a given value of ~ for V2,
we calculated the value of a for V& which
minimizes the gap hE between the spectra of each
Hamiltonian. We found that for v varying from 0 to 1.5,
5R is always below 2.3X10 . So the average gap
is less than 12 MeV. Figure 7 shows the ideal values of a
which minimize the gap as a function of v.. We present in

Fig. 8 the relative spectra {R„&(a=1,r=0.7)) and

{R„t(a =0.592, r=0)] for which bR is 1.4X10
In fact, the equivalence between spectra yielded by po-

Ex EY (Ex Ex )(Rx R Y
) (4.4)

The average gap between the two spectra {E+II and

{E„I I is then given by

+Ex Y—(Ex Ex )QR x Y (4.5)
qN

From experimental spectra, we can estimate that
Ep &

Ep p is around 400 —600 MeV from bb to qq sys-
tems. In the following we always take the value 500 MeV
for the theoretical differences Ep &

—Ep p. Consequently,
AR —10 yields an average gap between two spec-
tra which is AE —5 MeV.

All the calculations are carried out imposing the equal-
ity of the two levels (n, l ) =(0,0) and (0, 1). It is possible
that another choice of the two reference levels could
lower the gap between spectra [13]. Consequently, the
values of hR presented in the following must be con-
sidered as upper bounds of the minimal possible values.

No
a=- 1 a=0.592

A. Comparison between dift'erent nonrelativistic Hamiltonians

It has been stressed by Martin [16] that the quarkoni-
urn spectra in the nonrelativistic approach can be ob-

FIG. 8. Comparison between the two relative spectra
{R„I(a =1, r=0 7)] and {R„,(a =. 0.592, r=0) { for which
AR ' =1.4X IO . All levels such that 2~N&=2n+I 4
are shown.
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tentials V, and V2 is very good for a wide range of the
exponent of V„provided a peculiar relation exists be-

tween the parameters of the two interactions.

TABLE II. Relative spectra t R„"~(sz =0, yz =0) j and

[R„,(ale =1.354, r„=0.857)j for which hR" N=6. 4X10
and estimation of the difference 5 in MeV between the absolute

corresponding levels E„"&and E„&using Eo, —Eo o =500 MeV.
bR" is calculated with N&'" =4.

B. Comparison between nonrelativistic and other spectra R„I R 6 (MeV)

For given values of ~z and yz of the relativistic Ham-

iltonian, we calculated values of az and ~~ of the nonre-
lativistic Hamiltonian which minimize the gap hE
Actually, for some values of the relativistic parameters,
very similar values of the gap can be obtained with
different couples (az, r~). In Table I are shown only the
nonrelativistic parameters which yield the absolute mini-

ma of the gap. We can see that for reasonable values of
y~-0. 5 —1, the agreement between the two spectra is

good, especially for large values of the quark mass. We
compare in Tables II and III the relative spectra R„I and

R„I,which give respectively the worst and best values

obtained for the average gap. We can remark that some
nonrelativistic levels are in better agreement with their
relativistic counterparts than others. From Table I it is
apparent that no universal values of az and ~z exist
which minimize the gap. These parameters are very sen-
sitive to the values of ~z and yz. However, it is worth
noting that for 0.5 ~ yz & 1, the values found for az are
located between ——', and —1, which are the values com-

monly used for confining potentials in nonrelativistic
models.

The nonrelativistic spectra were also compared with
the semirelativistic ones. The results, which are given in
Table IV, show that the agreement between the spectra is
reasonable, but not as good as in the case of the compar-
ison with the relativistic spectra. Some large values of
hR present in Table IV are due to the fact that we
did not consider values of ~z greater than 1.5.

TABLE I. Values of a& and r& of the nonrelativistic Hamil-
tonian which minimize the gap hE", calculated with
N&'"=4, as a function of the parameters ~& and y& of the rela-
tivistic Hamiltonian. The quantity b R is also shown. An
asterisk indicates that a lower value of AR" could be found
with ~&) 1.5.

1.779
1.807
2.482
2.497
3.089
3.104
3.111

1.596
1.807
2.393
2.540
2.951
3.104
3.230

91.4
0.0

44.5
21.5
69.0
0.0

59.3

C. Comparison between semirelativistic and relativistic spectra

V. CONCLUSIONS

The success of the description of mesons and baryons
by relativistic as well as by nonrelativistic potential quark
models is a very intriguing situation [6—10]. Developing

Solutions of Hamiltonians (2.2) and (2.3) have the same

Regge trajectories E„I-l' '+" for light quarks in-

teracting only via a confining potential A,r' and have the
same nonrelativistic limit apart from spin effects; but
their spectra can be very different, especially when a
Lorentz-vector interaction is turned on (see Figs. 4 and
5). In Table V we calculated the values of a's and ys
which minimize the gap hE for given values of ~z
and yR. The two spectra can be made similar but, as ex-

pected from the analysis of Figs. 4 and 5, with values of
semirelativistic parameters which are not the same as
their relativistic counterparts. Lowest values of hE"
are generally found for ~~ & ~& and yz & yz, that is to
say, when the semirelativistic model is close to the nonre-
lativistic one. Thus, the physical meaning of the parame-
ters in these two models might certainly be very different:
for instance, current quark mass values for relativistic
models such as the Dirac equation, and well-fitted con-
stituent quark mass values for semirelativistic Hamiltoni-
ans.

1.5

1.0

a~ =1.113
~~ =0.864

AR =0.028

0.687
0.000
0.017

0.818
1.029
0.028

0.785
0.642
0.009

0.766
1.500*
0.025

0.778
1.084
0.007

0.572
1.385
0.023

0.809
1.500*
0.008 RnI RN 6 (MeV)

TABLE III. Relative spectra IR~, (irz =2, y~ =1)j and
tR„I(a~=0.778, r~=1.084)j for which AR =0.7X10
and estimation of the difference 6 in MeU between the absolute
corresponding levels E„"Iand E„I using Eo &

—Eo p =500 MeV.
AR is calculated with N&'" =4.

0.5

0.0

1.000
0.393
0.038

1.354
0.857
0.064

0.728
0.184
0.021

1.177
0.557
0.044

0.689
0.296
0.012

1.087
0.355
0.031

0.833
0.748
0.008

1.076
0.307
0.024

1.363
1.674
1.981
2.195
2.277
2.493
2.637

1.363
1.650
1.981
2.179
2.285
2.477
2.639

0.0
12.1

0.0
8.2
4. 1

8.3
0.9
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TABLE IV. Values of a& and ~& of the nonrelativistic Harn-
iltonian which minimize the gap hE, calculated with
X&'"=4, as a function of the parameters ~z and rz of the
semirelativistic Harniltonian. The quantity AR is also
shown. An asterisk indicates that a lower value of AR
could be found with ~& & 1.5.

TABLE V. Values of az and rz of the semirelativistic Hamil-
tonian which minimize the gap AE, calculated with
X&'"=4, as a function of the parameters ~& and r& of the
semirelativistic Hamiltonian. The quantity hR is also
shown. An asterisk indicates that a lower value of b,R
could be found with ~z & 3.

1.5
a„=O.495
g~ = 1.500*

SR'-"=0.081

0.351
1.500*
0.056

0.000
1.500*
0.075

0.000
1.500*
0.013

1.5
~q = 1.396
rs =O.222

ERR —s 0018

1.063
0.636
0.022

1.393
0.919
0.027

2.748
0.932
0.018

1.0
0.798
1.500*
0.080

0.766
1.500*
0.053

0.658
1.500*
0.035

0.540
1.500
0.029

1.0
1.754
0.109
0.033

3.OO0*

0.380
0.021

2.947
0.558
0.018

2.960
0.700
0.019

O.S
0.705
0.698
0.066

0.753
0.657
0.043

0.379
0.120
0.032

0.766
0.858
0.020

O.S

2.059
0.002
0.059

3.OO0*

0.226
0.039

3.OOO'

0.315
0.030

3.000*
0.390
0.026

0.0
0.839
0.557
0.049

0.735
0.000
0.029

0.846
0.000
0.017

0.897
0.000
0.018

0.0
2.463
0.000
0.081

2.258
0.000
0.061

2.718
0.000
0.049

3.OO0*

0.000
0.043

a previous analysis of this feature [13],we have compared
the spectra of nonrelativistic, semirelativistic, and relativ-
istic quark-antiquark Hamiltonians with a reasonable
QCD-inspired interaction.

In a first step, we have considered the case of a purely
confining potential with the zero-mass approximation for
the light quark (q) in relativistic dynamics. By means of
analytical results, we showed the following.

(i) The qq spectra for the three different dynamical
models considered can be made very similar provided ap-
propriate connections exist between the physical parame-
ters.

(ii) The similarities between spectra are widely
preserved for systems containing a light quark and a
heavy-Aavor antiquark, although the parameters used are
fixed from the qq system.

As is apparent from relations (2.7) and (3.8), the nonre-
lativistic light-quark mass m~(q) can be fixed indepen-
dently of the energy spectrum of the qq system, thanks to
the presence of an adjustable constant potential.

In a second step, we have turned on a Coulomb attrac-
tive interaction. Removing the physical parameters by
the appropriate scaling laws, we pointed out results
which are applicable to a wide variety of quarkonia. Pro-
vided particular relations exist between the physical pa-
rameters of the models to be compared, we found the fol-
lowing.

(i) The nonrelativistic spectra obtained either by a

power-law potential plus a constant or by a linear
confining potential plus a Coulomb attractive interaction
can be nearly the same.

(ii) 'The relativistic spectra for linear confining plus
Coulomb attractive potentials and the nonrelativistic
spectra for power-law confining plus attractive Coulomb
potentials compare quite well for relevant values of the
dimensionless parameters peculiar to each model.

(iii) The mass dependence of the semirelativistic spec-
tra is very different from that of the relativistic spectra,
and consequently, it does not compare very well with rel-
ativistic and nonrelativistic spectra.

From this work, we cannot conclude that one of the
models considered is preferable, but it is generally recog-
nized that models with relativistic dynamics are more
rigorous from the theoretical point of view. Our hope is
that the good equivalence found between relativistic and
nonrelativistic spectra for two-quark systems persists for
multiquark systems. In that case, the reliability of the
nonrelativistic quark model, which can be more easily ex-
tended to multibody dynamics than relativistic models,
would be reinforced.
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