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In quark-model calculations of the meson spectrum, fully covariant two-body Dirac equations dictated

by Dirac's relativistic constraint mechanics gave a good fit to the entire meson mass spectrum (excluding

Qavor mixing) with constituent world scalar and vector potentials depending on just one or two parame-

ters. In this paper, we investigate the properties of these equations that made them work so well by solv-

ing them numerically for quantum electrodynamics (QED) and related field theories. The constraint for-

malism generates a relativistic quantum mechanics defined by two coupled Dirac equations on a 16-

component wave function which contain Lorentz-covariant constituent potentials that are initially un-

determined. An exact Pauli reduction leads to a second-order relativistic Schrodinger-like equation for a
reduced eight-component wave function determined by an effective interaction —the quasipotential. We

first determine perturbatively to lowest order the relativistic quasipotential for the Schrodinger-like

equation by comparing that form with one derived from the Bethe-Salpeter equation. Insertion of this

perturbative information into the minimal interaction structures of the two-body Dirac equations then

completely determines their interaction structures. Then we give a procedure for constructing the full

16-component solution to our coupled first-order Dirac equations from a solution of the second-order

equation for the reduced wave function. Next, we show that a perturbative treatment of these equations

yields the standard spectral results for QED and related interactions. The relativistic potentials in our

exact Schrodinger-like equations incorporate detailed minimal interaction and dynamical recoil effects

characteristic of field theory yet, unlike the approximate Fermi-Breit forms, do not lead to singular wave

functions for any angular momentum states. Hence, we are able to solve them numerically and compare
the resultant nonperturbative energy eigenvalues to their perturbative counterparts and hence to stan-

dard field-theoretic results. We find that nonperturbative solution of our equation produces energy lev-

els that agree with the perturbative spectrum through order a . Surprisingly, this agreement depends

crucially on inclusion of coupling between upper-upper and lower-lower components of our 16-

component Dirac wave functions and on the short-distance behavior of the relativistic quasipotential in

the associated Schrodinger-like equation. To examine speculations that the effective potentials (includ-

ing the angular momentum barrier) for some states in the e+e system may become attractive for small

separations, we study whether our equations predict pure QED resonances in the e+e system which

might correspond to the anomalous positron peaks in the yield of e e pairs seen in heavy-ion col-
lisions. For the Po state we find that, even though the quasipotential becomes attractive at separations
near 10 fm and overwhelms the centrifugal barrier, the attraction is not strong enough to hold a reso-
nance. This result contradicts recent predictions of such states by other authors based on numerical solu-

tions of three-dimensional truncations of the Bethe-Salpeter equation for which the QED bound-state
wave equation has been treated successfully only by perturbation theory.

PACS number(s): 11.10.Qr, 11.10.St, 12.20.Ds

I. INTRODUCTION

Recent quark-model calculations of the meson spec-
trum [1-2] using fully covariant two-body Dirac equa-
tions [3—5] derived by Crater and Van Alstine from
Dirac s relativistic constraint dynamics [6—10] gave a
good description of the light-quark as well as the heavy-

quark meson masses resulting from world scalar and vec-
tor potentials. Although static potentials that have a
close connection with quantum chromodynamics (QCD)
such as the Adler-Piran potential [11] or the cruder
Richardson potential [12] were responsible for the quality
of the fit to the heavy mesons, the good quality of the
simultaneous fit to the lighter mesons (with the same one
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or two potential parameters used for the entire spectrum)
was due to exact two-body relativistic kinematics com-
bined with the minimal interaction structure of these
equations for vector and scalar potentials. In particular
the structure of the vector potentials in these equations
was originally abstracted from the classical electro-
dynamics of Wheeler and Feynman by two of us [13].
We shall show in this paper that this structure may be
obtained from QED, by first deriving the Todorov quasi-
potential equation [13,14] from the Bethe-Salpeter equa-
tion and then comparing it to the two-body Dirac equa-
tions. One may formulate these quantum-mechanical
equations for semiphenomenological meson studies with
interactions taken from QCD or for electrodynamic
bound-state calculations with interactions dictated by
QED. Since the Abelian vector structure [15] of electro-
dynamics carries over to the short-distance structure of
QCD, in order that the equations be appropriate for
QCD bound-state calculations, they must give correct
answers to the appropriate order in the fine-structure
constant a when applied to QED bound states. In previ-
ous work, Crater and Van Alstine have been able to solve
analytically the full 16-component coupled Dirac equa-
tions for the electrodynamic case to obtain a family of ex-
act solutions for parapositronium [16], with energy spec-
trum in agreement with standard approaches to QED
through order a . Does the agreement with QED extend
to unequal masses and to all angular momentum states?
If so, this agreement would constitute the first successful
test of the strong potential structure of two-body relativ-
istic wave equations for QED for states of arbitrary angu-
lar momentum. It is imperative that such a test be done
in order to discover whether a nonperturbative treatment
of these or any other candidate equations faithfully
represents the field-theoretic dynamics obtained rigorous-
ly from perturbation theory as in QED or semi-
phenomenologically from QCD. In order to carry out
this check, we first treat our "minimal interaction con-
straint equations" perturbatively for the electromagnetic
interaction. We show that they yield the correct two-
body spectrum through order a when one treats as per-
turbations to the static Coulomb potential the various
corrections of order 1/c generated by the spin structure
of the Dirac equations alone. Unlike the equations pro-
duced by other approaches, the Schrodinger-like form of
our two-body Dirac equations possesses local spin-
dependent and Darwin terms that are quantum-
mechanically well defined. Since our equations are de-
void of highly singular effective potential terms that ap-
pear in most three-dimensional truncations of the Bethe-
Salpeter equation and in the Breit equation [17], we can
go on to solve our equations nonperturbatively.

We shall demonstrate in this paper that a numerical
solution of the two-body Dirac equations of constraint
dynamics yields energies for the n = 1,2, 3 levels of
fermion-antifermion systems in QED that agree through
order n with those produced by a perturbative treatment
of these equations and with those produced by standard
perturbative approaches to QED. Furthermore, as a
check on the scalar and timelike vector interactions for
our equations, we shall demonstrate nonperturbatively

that our equations yield no hyperfine splitting for those
interactions, in agreement with a perturbative treatment.
In each case we shall treat the general unequal mass sys-
tem, including only the potentials that arise from the sin-
gle exchange diagram and ignoring the contribution of
the virtual annihilation diagram to the equal-mass case.

Crater and Van Alstine originally abstracted the elec-
trodynamic vector interaction in these equations from
classical electrodynamics in order to describe the semi-
phenomenological short-range interactions of QCD [1,2].
Because numerical solution of our equations reproduces
the standard perturbative bound-state spectrum of QED,
we have a set of two-body relativistic wave equations for
electrodynamics whose nonperturbative predictions for
other phenomena in QED ought to be taken as seriously
if not more seriously than those of other field theoretic
equations that have not been similarly checked. Just
such a situation presents itself in the interpretation of re-
cent results in heavy-ion physics. Wong and Becker [18]
have speculated that the unexplained anomalous peaks in
the yield of e e pairs in heavy-ion collisions [19—24]
might result from purely QED resonances [25,26] in the
e +e system produced by strong potential electro-
dynamic structures in the appropriate two-body wave
equation. If there is such a resonance, first one must
study it using a wave equation [27], and second this wave
equation must be treated nonperturbatively and covari-
antly, not by perturbative, semirelativistic means. In this
paper we investigate what the two-body Dirac equations
have to say about such states. The fact that in our equa-
tions (in Schrodinger-like form) each term of the quasipo-
tential is quantum-mechanically well defined all the way
into the origin is critical to our investigation. We make a
numerical search for resonances in the Po continuum
states of positronium. We show that numerical calcula-
tions of the phase shift for energies of 1.4—1.8 MeV
agree with perturbatively computed phase shifts. Thus,
we find theoretical evidence that no such resonances exist
in our electrodynamic constraint equations. We find that
even though the local QED quasipotential for the 'Po
state becomes attractive at small distances and
overwhelms the centrifugal barriers as in the model of
Wong and Becker [18], the QED quasipotential is not
deep or wide enough to hold a resonance. This result
directly contradicts the results obtained by Vary and
Spence [28] from standard nonlocal truncations of the
Bethe-Salpeter equation.

As we shall see in this paper, when we solve the two-
body Dirac equations numerically, we find that relativis-
tic potential structures that do not contribute in the usual
perturbation theory play a significant role. What is the
origin of these structures in two-body Dirac equations?
The basic relativistic interaction in our equations is deter-
mined by the Bethe-Salpeter equation via the Feynman
scattering amplitudes of the relevant quantum field
theory. The resulting two-body Dirac equations then as-
sume different forms depending in part on the Lorentz
character of the chosen field-theoretic interaction and in

part on the spin structure dictated by the mathematical
compatibility of the two coupled wave equations. To-
gether these nonperturbative requirements completely
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specify spin dependence. Our equations inherit the basic
potential structure of the single-particle Dirac equation
corrected by recoil terms dictated by compatibility (a rel-
ativistic version of Newton s third law [5]). The require-
ment of compatibility also automatically controls the rel-
ative time by forcing its elimination from the invariant
potential in the center-of-moinentum (c.m. ) frame.

Later in this paper, we shall recast the two-body Dirac
equations for electrodynamics into the Schrodinger-like
form:

[p +4 (A) —(e —m )]/=0

in which 4 (A) is a (16X16)-component c.m. -energy-
(to-) dependent, relativistic quasipotential matrix, depen-
dent on an invariant function A derived froin field theory
at the lowest order. Those terms in Eq. (1.1) in 4„
beyond the collective minimal (Todorov) form [29]
2e A —A (see Sec. II for a definition of m and e ) we
will call "strong potential" terms. The role played by
these terms can be fully investigated only by nonpertur-
bative means (for example, through numerical solution of
the resultant eigenvalue equation). In past work [1,2] on
two-body Dirac equations, we had tacitly assumed (along
with authors of all other treatments of the Bethe-Salpeter
equation of which we are aware) that a full nonperturba-
tive, numerical treatment of the equations would yield
standard spectral results since the "weak-potential" form
of the equations (including the usual 1/r and 5-function
potentials) reduced to a form [14,30] known to generate
the standard spectral results. But, in view of the failure
of another two-body equation, the Breit equation, to gen-
erate its own perturbative results when some of the Breit
terms are included nonperturbatively [31,32], can we
trust this assumption? If it were not true for a particular
equation when applied to the vector interaction of pertur-
bative QED, how could we trust results produced by that
particular equation in a purely nonperturbative applica-
tion (dominated by a related vector interaction) such as
to the quark-antiquark bound states of QCD. Any candi-
date two-body wave equation, applied to QCD with such
an interaction, must reproduce, if applied to QED, the
perturbative QED spectrum when that equation is treat-
ed nonperturbatively regardless of the agreement of its
semiphenomenological spectrum with the meson spec-
trum.

The ordinary one-body Dirac equation with external
Coulomb potential certainly yields agreement between
nonperturbative solution and perturbative evaluation. In
that case, the exact solution produces a spectrum that
agrees through order a with that given by perturbative
treatment of the Darwin and spin-orbit terms obtained
from the usual Pauli reduction of the Dirac equation. As
two of us found in a previous paper [16], the two-body
Dirac equations of constraint dynamics for the e+e sys-
tem in the 'JJ states also possess a family of exact solu-
tions with total c.m. energy w given by a Sommerfeld for-
mula

w =m 2+2 I+

=2m ma
4n

a
[n +g ( I + —,

' ) —a —I —
—,
' ]

4 411

2n (21+1) 64 n4

1/2 1/2

(1.2)

These energies are in agreement through order a with
those of the perturbative solution of the same equation
and also with those of standard approaches to QED. As
we shall see the two-body Dirac equations of QED extend
this agreement to the n =1,2, 3 levels for all allowable j
and unequal masses. This agreement has not been
demonstrated for the traditional three-dimensional trun-
cations of the Bethe-Salpeter equation [17]. Such trunca-
tions do yield the correct QED spectrum for fermion-
antifermion systems through order a (from single-
photon exchange) when treated perturbatively. In all of
these traditional treatments, one starts with a bound-state
Coulomb wave function (whether nonrelativistic or rela-
tivistic) and uses first-order perturbation theory to com-
pute Breit corrections corresponding to Darwin, spin-
orbit, spin-spin, and tensor interactions. However, these
three-dimensional truncation s have not been solved
analytically or numerically for QED [33] with enough ac-
curacy to demonstrate agreement with a perturbative
treatment of these equations through order a .

Our paper is organized as follows. In Sec. II we review
the constraint formalism for the two-body Dirac equa-
tions containing mutual world scalar and vector poten-
tials. We suggest that the reader who is already familiar
with constraint dynamics and wishes to skim through the
detailed presentations of our new results read Secs. VI
and VII first and then return to the earlier sections of the
paper for details. In Sec. III we begin our presentation of
new results by showing how we obtain the relativistic in-
teractions of our equations from the appropriate pertur-
bative quantum field theory in concert with the minimal
interaction structures of the two-body Dirac equations in
both their constituent Dirac and collective Schrodinger
forms. This procedure determines the quasipotential 4„
of Eq. (1.1).

In Sec. IV, from the coupled Dirac equations, we
derive an eight-component Schrodinger-like form of the
equations, which we later solve numerically. In the pro-
cess we show how to use the solutions of the
Schrodinger-like equations to construct the full 16-
component solutions of the two original Dirac equations.
In Sec. V we give a perturbative treatment of the weak
potential form of these equations for later comparison
with the nonperturbative solution. In Sec. VI we arrive
at the first nonperturbative numerical result of this paper.
There, we examine the eigenvalues obtained from nurner-
ical solution of the Schrodinger-like forms derived in Sec.
IV and compare these with the corresponding perturba-
tive results of Sec. V. In each case, we find that the non-
perturbative bound-state spectrum produced by solution
of the fully coupled system of equations yields the pertur-
bative results within an error of order a . We find that
the coupling between upper-upper and lower-lower parts
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of the 16-component wave functions in our equations is
crucial to this agreement. This dependence is unexpected
since that coupling does not contribute through order a
in the perturbative evaluation of these equations. More-
over, we find that the parts of the quasipotential essential
for agreement with the perturbative results become
significant only at separations on the order of a few
fermis. Thus, insofar as the order-a spectral results are
concerned, these two-body Dirac equations give correct
results when used well below the Compton wavelength.
This agreement allows us to test with confidence the hy-
pothesis of possible e+e resonances in the Po state. In
Sec. VII we use a further decoupling of the equations, de-
rived in Appendix D of Ref. [46], to compute phase shifts
using both perturbative and nonperturbative treatments.
We find no evidence for a pure QED resonance in the
e+e system, in direct contradiction to the results of
Spence and Vary [28]. Finally in Sec. VIII we compare
various properties of our two-body Dirac approach with
those of other relativistic two-body wave equations.

II. REVIEW OF TWO-BODY DIRAC EQUATIONS
FOR TWO SPIN-2 PARTICLES FOR WORLD SCALAR

AND FOUR-VECTOR INTERACTIONS

A. "External potential" or "Minimal interaction"
forms of the two-body Dirac equations

We begin by examining explicit covariant forms of the
two-body Dirac equations [3—5] that two of us have
developed for use in semiphenomenological meson-
spectroscopy calculations [1,2] and for investigations of
the electromagnetic positronium system [16]. For two
relativistic spin- —, particles interacting through scalar and

vector potentials, the two compatible 16-component (or
4X4 matrix) Dirac equations [1—5] of constraint dynam-
ics are

y„[yi (pi —Ai)+m, +S, ]q=O,

+2P=y52[y2 (p2 2)+m2 s2]~

(2. 1a)

(2.1b)

[&i ~zlij'=0. (2.2)

In detail [2,5, 16] the vector potentials At' are given in

terms of three invariant functions 6, E1, and E2 by

The subscript i =1,2 stands for the lth particle so that
m, and m2 are the masses of the interacting fermions. In
Eqs. (2.1) the potentials Af' and S; introduce the interac-
tions that the ith particle experiences due to the presence
of the other particle. (Thus we will refer to these forms
of the two-body Dirac equations either as the "external
potential forms" or the "minimal interaction forms. ") In
meson calculations motivated by QCD the Lorentz-
invariant scalar potentials S,. are semiphenomenological
while the vector potentials A,I" are composed of two in-

dependent covariant parts: one semiphenomenological
(long range and confining) like the scalar interactions,
and the other (short range) closely tied to perturbative
quantum field theory. The first part contains only long
range timelike pieces (parallel to the total four-
momentum of the two particles), while the second is elec-
tromagneticlike (short range), containing field theoreti-
cally specified portions of timelike and spacelike pieces
(transverse to the total four-momentum of the two parti-
cles). The specific forms of the covariant spin-dependent
terms in the interactions are consequences of the neces-
sary compatibility of the two Dirac equations

. 6A" = (e E) i y.———
1 1 1 2 2

BE) l
+BlnG y2 P P "+(1—G)p" ——BG y2y~2,

2

(2.3a)

, 6Ai= (~i E»+i yi. — —BE)
+BlnG y, P P"—(1—G)p" +—BG y, y", ,

1

(2.3b)

while the scalar potentials S; are functions of G and two additional invariant functions M, and M2..

i BM
S1=M1 —m, ——Gy2

2

BM2S=M —m+ —Gy-2 2 2 2 1

1

(2.4a)

(2.4b)

In the case of lowest-order QED, S, =0, and the spacelike and timelike vectors are not independent but combine into
the electromagneticlike four-vectors

G(e, —ez) e, +@~ lA]" = e — +
1 1 2G

P "+(1—G)p" ——BG.y y",
2 22' (2.5a)

G(e2 Ei) &i+62' lA"= e — +2 2 2 2G
P "—(1—G )p"+—BG -y y" .1 1
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In Eqs. (2.3}and (2.5) the variable

P=p, +pz (2.6)

M, (A, S)=m&+G (2m S+S ),
M2(A, S)=mz+G (2m S+S ) .

(2.12a)

(2.12b)

e, =(w +m, —m2)/2w,

e2=(w +mz —m, )/2w (2.7)

so that e, +e2=w. In terms of these energies the usual
relative momentum defined by p &

=e&P+p, p2 =e2P —p
becomes

p = ( e2p, —eNz ) /w . (2.8)

In order that Eqs. (2.1a) and (2.1b) be compatible [i.e.,
satisfy (2.2)] it is necessary that the invariant functions
E

& E2 6 M ] and Mz depend on the relative separation
x =x, —x2 only through the spacelike coordinate four-
vector [7—9]

x"=x"+P"(P x) (2.9)

which is perpendicular to the total four-momentum P. In
ge era Ei E2 6 Mi and~2 maydependon

is the total four-momentum. In our metric —P =w is2= 2'
the c.m. energy squared so that P = —1 where P =P/w.
The variables e,- are the conserved c.m. energies of the
constituent particles given by

m =m]m2/w,

e =(w —m, —m2)/2w

(2.13a)

(2.13b)

are the relativistic reduced mass and energy of a fictitious
particle of relative motion. The corresponding value of
the on-mass-shell relative momentum squared then takes
the form

The invariant function S(r) is primarily responsible for
the scalar potentials since S;=0 if S(r)=0 while A(r)
contributes to the S, [if S(r)WO] as well as to the vector
potentials A,~. Demanding that the Schrodinger form of
the two-body Dirac equations incorporate the collective
minimal (Todorov) interaction structures, we find that
the simple forms given iri Eqs. (2.12) give the correct non-
relativistic and semirelativistic limits. (The details of this
argument are likewise given in Refs. [4,5,34]). Thus the
five invariant functions M„Mz, E„E2,and 6 are con-
strained to depend on three independent invariant func-
tions S, A, and V. (In QED applications, V=O and in
lowest order S=0.) The kinematical variables

x2 r2 j2 I l& and p2 (2.10}
g2 m 2

W N (2.14)

b (w)—= [w —2w (m, +m2)+(m, —m~) ]/4w

where l„=e„,&P x jp~. Note that the invariant r is the
interparticle separation in the c.m. system. In this paper
we shall assume that the invariant functions depend only
on r.

In general E, , E2, and 6 are related to each other
[13,5] and for QCD applications are functions of only two
invariant functions V(r) and A(r), whose forms we take
to be

and

Ef(A, V)=G [(e,—A) 2e V+V ], —

Ez(A, V)=G [(e2 A) 2e —V+V—],

62— 1

1 —2A /w

(2.11a)

(2.11b)

(2.11c)

From the expressions (2.3) and (2.5) of the vector poten-
tials we see that the invariant function A(r} is responsi-
ble for the covariant electromagneticlike parts of A,~

while V is responsible for the additional independent co-
variant timelike parts of A,~. Even though the depen-
dences of E, , E2, and 6 on A and V are not unique, they
are constrained by the requirement that they yield the
correct nonrelativistic and semirelativistic limits.
Demanding that the Schrodinger form of the two-body
Dirac equations incorporate the collective minimal (To-
dorov) interaction structures [29] of Eq. (1.1), we find the
simple forms given in Eqs. (2.11) satisfy these require-
ments. (The details of this argument are given in Refs.
[5,13,34].} In general M& and Mz are related to each oth-
er [4,5] and for QCD applications are functions of the
two invariant functions A(r) and S(r):

For the electromagneticlike vector interactions the
minimal interaction form of the two-body Dirac equa-
tions (2.1} is a consequence of gauge invariance. In any
one-body wave equation, gauge invariance exhibits itself
in two related ways. For the system of particle and field,
(Abelian} gauge invariance manifests itself as invariance
under change of the vector field by the addition of the
gradient of an arbitrary scalar combined with local phase
variation of the wave function. This is achieved through
the derivative structure of the field equations in concert
with the minimal coupling of the potential to particle.
However, once one eliminates the vector potentials in
terms of source motions in a fixed gauge, the minimal
structures persist as dynamical structures of the resulting
particle equations. For example, in the case of a single
charged particle interacting with an infinitely heavy mas-
sive charge, the resulting Klein-Gordon or Dirac equa-
tion, with Coulomb potential obtained from the full
particle-plus-field problem by elimination of the field po-
tential in a fixed gauge, contains the dynamical potential
as a minimal subtraction from the energy and retains the
phase change with a compensating addition of the gra-
dient of a scalar to the vector potential minimally sub-
tracted from the momentum. Thus, "gauge invariance"
of the resulting particle equations is a dynamical symme-
try inherited from the original system of particle and field
through the elimination of the vector field in a fixed
gauge.

Similarly, the two-body Dirac equations (2.1) contain
vector potentials (one for each particle) obtained from
quantum field theory from the Bethe-Salpeter equation in
the Feynman gauge [35] (see Sec. III below} or from clas-
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a
(A", + Az )=0, (2.15)

sical field theory in the Lorentz gauge. Thus, the two-
body Dirac equations are two-body counterparts of the
one-body particle equations with eliminated field and
should possess an analogous inherited dynamical "gauge
invariance" if they retain any invariance at all. In fact,
we find that since our equations are two simultaneous
wave equations on one wave function with two (albeit re-
lated) four-potentials, Eqs. (2.1) turn out to be invariant
under any gauge transformation of the form
At'~ A,i'+a", y(x~ ) with y the phase change of the single
wave function. The origin of the two dynamical poten-
tials 3", and 3~2 as solutions for vector fields in the
Lorentz gauge shows up as the property

M, =m, coshL+m2sinhL,

M~ =m2coshL+m, sinhL,

F. , =e,cosh J+e~sinh J,
E2 =e2cosh J+e, sinh J,
G=e

(2.16a)

(2.16b)

(2.16c)

(2. 16d)

(2.16e)

two associated one-body problems. However, for appli-
cations in which the identification of these five invariants
in terms of either a perturbative or semiphenomenologi-
cal field theoretic scattering amplitude is desirable, two of
us have found a hyperbolic representation [36] of these
five invariants in terms of three other invariants, L, J,
and Q. This representation is

which is a consequence of the fact that A", + A ~z ~ P "f
where f=f(x~ ). This property of the potentials is
forced upon us by the compatibility (2.2) of the con-
straints.

B. Hyperbolic forms of the two-body Dirac equations

L( x~), J(x~), and Q(xz) generate scalar, timelike vector
and spacelike vector interactions respectively. As shown
in the next section, this representation puts the two-body
equations in a form whose interactions are simply related
to the Bethe-Salpeter equation via the Feynman scatter-
ing amplitude. If we use (2.16) and the "theta" matrices

The expansions (2.11) and (2.12) for the five invariant
functions in terms of the three invariants A(x~), V(x~),
S(x~) are important for semiphenomenological and other
applications that emphasize the relationship of the in-
teractions in our equations to external potentials of the

8",:iQ—,'y~, y—I", @=0,1,2, 3, i =1,2

, =—V'-,'1,
we can rewrite (2.1) as

(2.17a)

(2.17b)

s, /=[GO, p+E, o, P+M, o, +iG(o a98, 8 +8 aJo, Po P —8 aLo„o, )]/=0, (2.18a)

z,q=[ Ge, p+—z, e, P+M, e„iG(e, a—ce„e„+8,aJe, Pe,P e, aLO„O„—)]/=0. (2.18b)

Simplification of these equations results if we introduce the following invariant matrix functions b, k(x~), with

k =L,J, Q. For scalar interactions

G)L(xj )

L
I, IzL (x~ )

G, , (2.19)

where I, and Iz are the identity operators and G, =28»85z. For tirnelike vector interactions

GzJ(x, ) y, Pyz PJ(xJ )
(2.20)

where 02=20, -P02.P, and for spacelike vector interactions

G39(x~ ) y, ~.yz~Q(x~ )

2 2
0, ,

where 03=20]~-02~. For convenience we define

b T
=9I+6 I +b v= ,' [GzJ(x~ )

—G,L(xq)+ GI'S(x—q) ] .

In terms of these matrix functions, the compatible two-body Dirac equations become

cV&g=[e 8&.p+cosh(2b J)e&e&.P+sinh(2b J)ezez P+m&cosh(26L .)ez&+mzsinh(2b«)e&z+e iez ab ]$T=0.

(2.21)

(2.22)

(2.23a)

SzP=[ —e O.zp+c soh(2b J)e ze.zP+si nh( 2b J)e, OP +m czohs(2b 1)e,z+m, sinh(2bL)e» —e ie, abT]/=0 . (2.23b)
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Remarkably, the linear combinations

S,g= [cosh(b, )S,—sinh(A)$2]/=0,

S~g= [cosh(b )S2—sinh(b, )$, ]/=0

(2.24a)

(2.24b)

of the constraint equations given in (2.23) have very sim-

ple forms. Since 8& =Gz= —,'(6&6z —83) =1 we are able
to use various hyperbolic identities to simplify (2.24). In
particular, by bringing the matrices on the left of each S';

to the right we find that [36]

S,g = [S,ocosh(h)+ S~osinh(b. ) ]/ =0,

S2$= [42ocosh(b, )+S,osinh(b, )]/=0 .

(2.25a)

(2.25b)

(One can even start from free Dirac equations in the
form of Eqs. (2.25) with constant b, and introduce in-
teractions by "gauging, " i.e., letting 6 become point
dependent [36].) In Eqs. (2.25) S,o and eV2o are the free
Dirac operators [37]

$,0=0&.p, +m &0» =0&.p+e, 0& P+m &0»,

$20 82 p2 ™2852 82 p+6282 P+m2852

(2.26a)

(2.26b)

In (2.1) [or (2.18)] the relativistic potentials are two-
body analogs of, and in the limit m, ~ ao (or m2 ~ 00 } go
over to, the ordinary external potentials of the one-body
Dirac equation. The Lorentz character of these interac-
tions is apparent from the "external potential" or
minimal interaction form of the equations. On the other
hand, the hyperbolic forms (2.25) display the Lorentz
character of the interaction through the y matrix struc-
tures of the scalar h. These matrix structures of its
Lorentz-invariant terms are dictated either by the pertur-
bative agreement of the hyperbolic interactions with the
corresponding interactions of the Bethe-Salpeter equation
or by phenomenological considerations. Equations (2.25)
are closely related to another form of the two-body Dirac
equations introduced by Sazdjian [38]. In the notation
used here his equations are

(+io+ +2o~)4=0

( cV~o+ eV|ok )/ =0

(2.27a)

(2.27b)

The Sazdjian equations are equivalent to ours in the
weak-potential limit [39].

We use the forms (2.25) to relate the matrix potentials
5 to a given field theoretic or semiphenomenological
16X 16 matrix Feynman amplitude. For example, a rna-
trix amplitude proportional to y~&yz„corresponding to an
electromagneticlike interaction would according to (2.20)
and (2.21) dictate that J= —0 (see Sec. III below). Ma-
trix amplitudes proportional to either I~I2 or y, P&2 P
would correspond to serniphenomenological scalar or
timelike vector interactions. The hyperbolic forms (2.25)
of the two-body Dirac equations lead to a particularly
simple version [36] for the norm of the 16-component
Dirac spinor. On the other hand the minimal interaction
or "external potential" forms (2.1) [or (2.18}]of the two-
body Dirac equations are simpler to reduce to the
Schrodinger-like forms most useful for numerical calcula-
tions of bound and scattering states.

III. FIELD THEORETIC IDENTIFICATION
OF THE QUASIPOTENTIAL

In the quark-model calculations for meson spectrosco-
py described in Refs. [1,2] the identifications of the in-
variant forms V, 4, and A or L, J, and 9' were taken
from static potentials obtained from an educated guess,
(Richardson's potential [12]) or from an effective non-
linear classical field theory based on mean field approxi-
mations to QCD (the Adler-Piran potential [11]). In con-
trast, for QED we obtain the invariant form of the quasi-
potential 4 directly from field theory. In this section
we show how the invariant function A contained within

is obtained from lowest-order QED. Before doing
this for the Dirac equations we review the constraint
equations for spinless bosons to guide our effort.

In recent work [2] two of us used Sazdjian's "quantum
mechanical transform" [40] of the Bethe-Salpeter wave
function to derive the "quasipotential equation" of To-
dorov [14] from a field theory for spinless particles. The
Todorov quasipotential equation is an inhomogeneous in-
tegral equation which relates the quasipotential 4 ap-
pearing in a Schrodinger-like, three-dimensional equation

[p~+4 (x~,pj)]f (x~)=b (w)g (x~) (3.1)

to certain matrix elements of the off-mass-shell, field
theoretic, relativistic scattering amplitude. It is closely
connected to the present work through Eq. (3.1) which it
shares with constraint dynamics.

A. The quasipotential equation for spinless particles

The two, coupled, Klein-Gordon equations of con-
straint dynamics [7—10,5, 13] can be written as

with

(p;+m; +4—;)f =0, i=1,2 (3.2)

Pg = wf— (3.3)

The compatibility requirement [%$„%2]g =0 implies
[7—10,4, 5, 13] that if 4&=42=4 then

—,'(~& —~2)4 =
—,'[(p, —p2) —(m2™f }]

Ppg =0 —. (3.4)

=[p~+4 (x~,p~) —b (w)]g (x~)=0, (3.5)

determines this off-shell behavior through the quasipoten-
tial @ . For scattering states in an arbitrary Lorentz
frame

iP X

(2m. }
(3.6)

Thus, even though g is off mass shell it does satisfy

(p, +mf)g =(pz+mz)g [8,13]. The right-hand side
of (3.4) implies that in the c.m. system the wave function
is independent of the relative time [x~ =(O, r)]. A second
independent combination of the constraints &, and &2,

w ( Epl ) +Epf 2 )Q~
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with

))'j'+q (xi )=g' 'q (x) ) —[2w(p~ —b'(w) —ie)]

X V„(x~,p~)g(+' (x~),

w I )+m2

where

y(.", (x, )
—=(2~)-""'"'

w, q&

(3.7)

(3.8)

f d xP'+' (x )e '""=2qr5(P k)f'+' (k, ), (3.9)

' (k )=f d x 5(P x)g'+' (x )e

whose inverse transform is

(3.10)

where P'+' (k~) is itself given in terms of the position

space wave function by the covariant three-dimensional
transform

with q) =b (w) and V =2w4 . The corresponding
momentum space wave function is given by the four-
dimensional Fourier transform

d kq(+ )
( ) 5(P.k )y(+ ) (k )

ik.x
wq, ).

(2 )3 ~'p

Equation (3.7) then yields

(3.11)

3 I

g'+q (k) )=5 (kj —
qj ) —[2w[kj b(w—) ie]}—' f V„(k),k') )g'+' (k') ), q, (3.12)

in which

5'(pi qi) = f—d(P p—)5'(p q)—
and

fd'k,'= fd'k 5(P k )

with V related to the Fourier transform of V„(x),p) ) by

V (k), ki)=V (ki —kI, kI) .

Note that the momentum space constraint wave function is not g'+ ) (k~ ) but rather 5(P k )P'+' (k, ).

If we define the scattering amplitude T (p), q) ) in the usual way

T.(pi qi) = f d'piV—.—(pi pl )P".,,', (pi »

(3.13a)

(3.13b)

(3.14)

(3.15)

multiply Eq. (3.12) by —V, and integrate we are led to a Lippmann-Schwinger equation for this amplitude in terms of
the quasipotential V

V.(pi pl)T.(pl ql)+V. (pl ql)+ „,' T.(pl ql)=o
(2qr) 2w(pI —b (w) —ie)

Symbolically this equation is of the form

T +V„+V GiT =0

in which G~ stands for

1

(2') 2w(p) b —ie)—
The scattering amplitude then automatically satisfies the elastic two-body unitarity condition [14]

(3.16)

(3.16')

(3.17)

m
,p

w (2qr)
(3.18)

The Lippmann-Schwinger equation (3.16) gives the relativistic quantum mechanical scattering amplitude T in terms of
a prescribed quasipotential V„. Equation (3.16) is Todorov s inhomogeneous quasipotential equation. However, that
equation is usually solved for V in terms of a T which is identified with the field theoretic scattering amplitude
T (p~, q~ }. In Appendix A we present an explicit momentum space derivation of the Todorov inhomogeneous quasipo-
tential from the inhomogeneous Bethe-Salpeter equation

T (p;q)=K (p;q) — f d k K (p;k)GI+)(e)P+k)Gz'+)(e2P k)T (k;q)—
(2m )

(3.19)
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[relating the Bethe-Salpeter kernel K (p~, q1 } that plays
the role of the potential in the homogeneous Bethe Sal-
peter equation to T (p~, q1)]. Like the formal operator
derivation given earlier [2] by two of us, it uses Sazdjian s
quantum mechanical transform of the Bethe-Salpeter
wave function. However, the new derivation shows the
connection with earlier three dimensional approaches
[41,42] and emphasizes the role of elastic two-body uni-
tarity.

To summarize, the two constraint equations (3.4) and
(3.5) play two different roles. Equation (3.4) forces the
relative energy (in the c.m. system) to vanish while the
Schrodinger-like equation (3.5) describes the effect of the
dynamics and puts the system on a collective mass shell
(of total energy w in the c.m. ). Other than the require-
ment that the constraint potential 4 depend on x only
through x~, the constraint equations give no further re-
striction on the dynamical content of the constraint po-
tential (for spinless particles). When constraint dynamics
is being used in conjunction with quantum field theory,
the potential 4 can be determined from an appropriate
quantum field theory by way of (3.16) [Eq. (A19) in Ap-
pendix A or in terms of Eqs. (A17) and (A18)]. When the
field theoretic starting point is the Bethe-Salpeter equa-
tion, the connection must be made through an object, the
Sazdjian projection, in which the relative time (about
which nothing is said in the Bethe-Salpeter equation) is
eliminated as in (3.4) or (A12). Thus, one starts from the
Bethe-Salpeter equation (3.19) and ends with the con-
straint equation (3.1) with the constraint potential 4
determined from (3.16), or (A18) and (A19).

Transformations from the two-time four-dimensional
Bethe-Salpeter equation to one-time three-dimensional
quasipotential equations have a long history dating back
to early work of Logunov and Tavkhelidze [41] and
Blankenbecler and Sugar [42]. In subsequent papers Yaes
[17] and Gross [17] pointed out that there are in fact an
infinite number of such three-dimensional reductions of
the Bethe-Salpeter equation. The equations presented
here and that of Sazdjian are particular cases, motivated
by constraint dynamics, that lead to simple Schrodinger-
like wave equations.

B. The quasipotential equation for two spin-2 particles

1. Constraint dynamics

«(0S(—&20S24'= —P (0=0 .

Now since P p /=0, we have

—2404= 2—~rod=(pi b—'}4 .

As a result, we find that

(3.21)

(3.22)

—2$10S1$= —2$20SH!i

=(P b+—4"')/=0
where

e' "= —2z(oz20b, "',

(3.23)

(3.24)

which relates Sazdjian's 6"' to the quasipotential of our
relativistic Schrodinger equation.

=K+K~(0'&20'()51(952T . (3.25)

We remove the y matrices from the denominator. We let

and

4~10+20~5(852T ~ (3.26)

R—4((', 0 (('20851852K .

Thus we have

(3.27)

~++4 +10 ~20 4+10~20~51~52T

=%+KG+G+ 'T (3.28)

where G;+—:(p; +m; —ie) ' is the Feynman propagator
for the spinless case. Because of the similarity between
the spinless equations (3.1) and (3.19) and the second-
order form of the spin- —,

' equations (3.23) and (3.28), we

can use the derivation of the Todorov inhomogeneous
quasipotential equation for the spinless case given in Ap-
pendix A to prove that the (lowest-order) Sazdjian trans-
form of the Bethe-Salpeter wave function for the spin- —,',
spin- —' case is

2

2. Field theory

In order to determine 4'" and from it the correspond-
ing 5"' from field theory, we consider the inhomogene-
ous Bethe-Salpeter equation for two spin- —,

' particles:

T=K+K[(y@(+m, )(y2p2+m2)] 'T

When spin is included we describe the quantum system
in terms of two compatible Dirac equations (2.25). At
this stage we are only interested in first-order field-
theoretic amplitudes. For these, our equations are ap-
proximately the weak potential forms

(3.20a)

(3.20b)

(p + p"('}qb((w)%,

but with an x~ and spin-dependent quasipotential

q)(1)—
2w

Comparison of this with (3.24) identifies b, ' "as

( ) )
~51~52Tg(1)—

(3.29)

(3.30)

(3.31}
which are Sazdjian's forms of the two-body Dirac equa-
tions [38].

Now we obtain from these two equations forms analo-
gous to those we used in the spinless case. First, because
[$(p A%20] 0, we find that

We have shown how, in lowest order, the four-
dimensiona1 Bethe-Salpeter equation can be transformed
into the three-dimensional Eq. (3.29). This equation is
identical to the one obtained from the weak-potential
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constraint equations (3.20). However, if we regard the
field-theoretic connection not as a rigid one to the weak-
potential Sazdjian form (3.20) but instead to the strong-
potential constraint form (2.25) [related to the "external
potential" or minimal interaction" constraint form by
way of (2.24)], those equations [Eqs. (2.25)] clothe the
(perturbative) field-theoretic interactions in their own
peculiar quantum-mechanical structures. These "strong-
potential" structures appear in the dynamics of our wave
equations (2.25) through two-body potentials that treat
each particle as though it were minimally coupled to an
external potential (or potentials) generated by the other
particle and in the hyperbolic structure of our equation
through the occurrence of simple forms for the corre-
sponding quantum-mechanical norm [36] of the wave
function. These strong-potential structures (2.25) induce
two different sorts of terms beyond those that appear in
Sazdjian s (3.20). First, the nonlinear b. terms in cosh'
and sinhh produce additional spin dependences. Second,
the quantity 6, through its dependence on the invariant
potentials L, J, and 9, differs from b," calculated in
first-order perturbation theory using (3.31). The invari-
ants that appear in 6"' are perturbative approximations
of those that appear in A. When one attempts to extrapo-
late the perturbative invariants above the order of ap-
proximation justified through comparison with the per-
turbative Bethe-Salpeter equation, those extrapolations
are merely provisional —subject to change when higher-
order field-theoretic corrections in b are included [see
(A23) in Appendix A]. However, nonperturbative princi-
ples like gauge invariance and our related demands of
both constituent and collective forms of minimal interac-
tion will constrain the forms of 6 that can appear in
(2.25). We shall show this for QED below.

C. The case of quantum electrodynamics

Comparison of (3.34) with the definition of b, T in (2.22)
shows (1) L'"(xi)=0 as expected, since a vector field

theory cannot generate scalar potentials in lowest order;
(2) J' "= —9' ", which just tells us how the spacelike and
timelike vector portions are related for electromagnetic
interactions; and finally (3)

g(1)(&
eie2

4irw ix, i

(3.35)

Equations (2.1 lc) and (2.16e) of Sec. II imply that
A'"=wQ'" so that

e, e2

4irfx,
/

(3.36)

The nonperturbative extension of 9, or equivalently of
the invariant function

A =—[1—exp( —29)]
2

(3.37)

1 g=(ir 9 +m, 0~, )/=0,
4 f=(m 9 +m~6~i)/=0 .

(3.38a)

(3.38b)

previously derived by two of us [5,16] and solved analyti-
cally for the equal-mass singlet case —positronium. In
these equations the constituent vector potentials appear
through the minimal substitutions

[see (2.11c) and (2.16e)] is not determined by this compar-
ison at orders beyond Eq. (3.35) or (3.36). However, 9 is
restricted through gauge invariance as realized through
the introduction of interactions through minimal substi-
tution as done in the two-body Dirac equations (2.1) of
Sec. II. When restricted to electromagneticlike interac-
tions ( V =S=0), these equations become the electromag-
netic two-body Dirac equations

For the electromagnetic interaction, the T matrix in
momentum space in the Feynman gauge is

pi ~i=—pi

=G[p"+(e,—A )P "+iHz r)ggi2], . (3.39a)

(p —q)' —ie
(3.32) pi ~i=pa ~z

where p and q are relative momenta. The simple form of
the resulting constraint equations eliminates the practical
necessity in other approaches (for example the formalism
of Caswell and Lepage [35]) of working in the Coulomb
gauge. Because of the constraint (3.21), the coordinate
space form of (3.29) becomes

=G[ —p"+(ez —A )P" i8, dQO",—] (3.39b)

~i 0—= —
—,
' [+i &i ]++0

[see Eqs. (2.3) and (2.11)] so that the squared forms of the
constraints take the simple one-body electromagneticlike
forms

riX2
p, —b —2~,o~~o0„0,~

47Tw Ix j
(3.33)

=(ir 'o "I'F,„+m )$—=—0

~A':——
—,'Ã2 &2]++0

(3.40a)

Direct comparison of this form of the Bethe-Salpeter
equation with the Schrodinger-like constraint form given
in (3.23) and (3.24) yields

(i)
~51~52Y172p"4vrw ~x~

= (vrz ,'o 2'F2„+—m 2 )$=—0, (3.40b)

n~—=—a~a,1 (3.41)

where F,„„=(1/i)[ir„„ir,]. The difference of these two
equations is (&, Ai)$=2P pp=0,—just as in the spin-
less case. If we identify

eie2
4m-w /x, /

0, .0~ . (3.34)
and write out only the spinless part of n, , we find (see de-
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tails in Sec. IV) that the weighted sum

P'=e P+p", 3"=AP "+Q", (3.43)

then the first part can be completely written in the collec-
tive minimal (Todorov) interaction form (P' —A") for
the effective particle of relative motion.

What are the additional restrictions on 9 or A that
arise from this collective minimal interaction form? The
first restriction follows from the fact that the portion
2e A —A of the quasipotential must be quantum
mechanically well defined for a Schrodinger-like equa-
tion. This restricts A so that —A must not be singular
((—I!4r ) as r~O. For example, the simple choice
0=0"'= e, ez/mr [corresponding to A = ( w /2)(1
—exp( —2e, e /2mr)] would produce a —A term that
grows exponentially as r~0 for e, e2&0 yielding an
unacceptable singular behavior in the effective
Schrodinger equation. The second restriction is that

2e„A —A =2@ A"'—(A"') +O{(A"') ) . (3.44)

must be satisfied when A is expanded in powers of A"'.
Classically this restriction implies that when one carries
out an expansion through order 1/c by solving the
minimal Todorov equation p —(e —A'") +m„=O for
w, then one obtains an expansion that includes not only
the standard relativistic corrections to the non-relativistic
kinetic energy but also relativistic corrections [13,34] to
the nonrelativistic potential that are canonically
equivalent to the Darwin interaction. Thus this collec-
tive minimal interaction structure incorporates in a co-
variant way the Darwin interaction corrections to the
nonrelativistic potential a/r withou—t a complicated
momentum dependence. These simple structures occur
in Todorov's closely related quasipotential equation [14]
and in quantum constraint dynamics for spinless particles
under vector interactions [13]. Using a scale transforma-
tion developed by Schwinger [44], two of us have shown
that [5,13] this collective minimal structure yields an
O(1/c ) expansion that is canonically equivalent to the
standard O(1/c ) momentum-dependent Darwin interac-
tion. In fact, the Todorov equation can be derived from
the Darwin interaction [76].

One solution to these two perturbative conditions on
A is the naive identification

yields

[ (—e —A ) + (p —Q ) +m +spin-dependent

+Darwin terms]/=0 . (3.42)

The spin-independent terms at the first part of the equa-
tion display Todorov's interpretation of system potentials
as minimal extensions of the four-momentum of relative
motion (e,p). In fact, if we define [43]

of the calculation of the semirelativistic (order-a ) correc-
tions to the QED bound-state spectrum [13,14] for spin-
less particles over the standard Breit related approaches.
For this A, Todorov et al. [30] have also shown how the—A terms correspond to higher-order ladder, cross-
ladder, and iterated exchange contributions to 4 (corre-
sponding to segments of 0' ' in the notation of this pa-
per). These constituent and collective minimal interac-
tion requirements are nonperturbative ones beyond the
strictly perturbative field-theoretic restriction of (3.35) on
Q. With the naive choice Eq. (3.45), the nonperturbative
extension of 9 implied by Eq. (3.37) is

19= ——ln 1—
2

2e2e2
(3.46)

D. Phenomenological scalar and vector interactions

To carry out semiphenomenological applications of the
constraint equations such as to the quark models of
mesons, one does not perturbatively determine 6 fron:
field theory as we did in (3.32) and (3.34). Two of us in
Ref. [2] divided up the nonrelativistic static quark poten-
tial U(r) in terms of the three invariants A(r), V(r), and
S(r) of Eqs. (2.11) and (2.12) chosen so that

A(r)+ —,'[V(r)+S(r)]= U(r) . (3.47)

This division of U(r) was arbitrary, guided primarily by
phenomenological considerations. However, this choice
has consequences far beyond its nonrelativistic roots
since the matrix structure to which it is attached dictates
different relativistic Darwin and spin-dependent correc-
tions depending on the corresponding matrix Lorentz-
invariant structures that appear in b, . In Ref. [2] we used

hT=AJ+EL +kg
=

—,'[G~J( i)xS,L(xi)+639(xi)] . — (2.22')

in which, from (2.16),

[Note again that the simple choice 9=9"' gives the
correct lowest-order 9 but would lead through Eq. (3.37)
to an A that would produce a singular quasipotential. ]

In summary we have found three restrictions that A
must satisfy. First, it must generate the correct lowest-
order interaction O'". Second, it must generate the
minimal Todorov form, Eq. (3.44), in order to give the
correct O(1/c ) dynamics. Third, it must satisfy the
nonperturbative restriction that A must not be too
singular at r =0. As we anticipate (see Sec. V), the above
restrictions will guarantee that these nonperturbative po-
tential forms will yield the correct results if the equations
are treated perturbatively. A more crucial test of these
nonperturbative or strong potential structures will be to
determine if a nonperturbative (numerical) treatment of
these equations will yield the correct spectrum to the ap-
propriate order (see Sec. VI).

(3.45)

This particular A provides a considerable simplification

(M, +Mq)
L =L(A, S)=ln

m&+m2
(3.48a)
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(Ei +E2)J=J(A, V) =ln
E)+F2

9= Q(A ) =ln(G ) .

(3.48b)

(3.48c)

[We remind the reader that the "minimal interaction"
form (2.18) (depending on A, V, and S) of the two-body
Dirac equations is equivalent to the hyperbolic form
(2.25) (depending on L, J, and 0), related by (2.24).] Note
that for models with V=O, our vector interaction is that
used for the Abelian interactions of lowest-order QED.
In the quark-model applications, we used directly the
"external potential" form (2.18) with A, V, and 5
identified as in Eq. (3.47). In contrast, for QED the form
of A was dictated by the match between the 6 of the
weak potential form, Eq. (3.20), on the one hand and the
field-theoretically derived quasipotential equation on the
other.

/3;
—= —y, P=28„8,.P,

a"; =/3; y", j
=28",,8, P,

(4.1)

(4.2)

corresponding to Eqs. (2. 18) (with gamma matrices in the
Dirac representation) into four decoupled four-
component second-order equations. Subsequently,
Sazdjian pointed out [45] to us that our reduction in the
Dirac representation could only be carried out for singlet
and j= / triplet states, not for j=1+1 triplet states (we
review this development in Appendix D of Ref. [46]).
Since the validity of that reduction turned out to be state
dependent, we replace it in this paper by a generally valid
reduction of the coupled 16-component first-order equa-
tions (2.18) to two decoupled eight-component second-
order Schrodinger-like equations.

Since we shall work in a general frame, for convenience
we define the covariant versions of the standard Dirac a
and P and X matrices for the two particles:

IV. REDUCTION OF TWO-BODY DIRAC EQUATIONS
TO SECOND-ORDER RELATIVISTIC
SCHRODINGER-LIKE EQUATIONS

and

X;"=2&2i8s;8; P8~~; (4.3)

We wish to determine the total energy eigenvalues for
the stationary states of two interacting spin- —, particles
using the "external potential" or "minimal interaction"
form of the two coupled Dirac equations (2.18). For this
purpose, we have at our disposal the analogs of all of the
decoupling procedures and simplifications resulting from
special choices of Dirac matrix representations that one
uses to solve the one-body Dirac equation. For example,
two of us [16] used the fact that cr„„ is diagonal in the
chiral representation to obtain exact solutions for bound
electromagnetic equal-mass singlet states. In meson work

[2], two of us decomposed the second-order equations

8~, = —i Q —,'/3, X",

8, P=i+ ,'/3, ys, —

(4.4)

(4.5)

8„=i+ ,'y„. — (4.6)

The two-body Dirac equations (2.18) then take the form

in which the subscript i is the particle label. In the c.m.
system, a and X have no time components. In a general
frame their components parallel to the total four-
momentum P are zero. Using these, we obtain

l—G/3, X, P2+E, /3, ys, +M, y, +G X2 d(J/3, —L—/32)ysiys2
2

(4.7)

l
~20 G/2~2 Pl+ 2/2ys2™2ys2 G ~1 J/ 2 /1 ysll s22

(4.8)

in which

P, —=p ——X, BlnGX, .
l

2

Thus, $,/=0 becomes

(4.9)

(G&, .P )
—[G/3, X, P,E,P, +M ]y, E +M +G [~(J L)]

G/3, X, .P, G—X .B(J/3, L/3 ) ys)ysq
—iG(—E,BJ+/3, /3 M ~L)'~zysz '0

1 1 2s 2 2

Now we substitute the Dirac equations (4.7) and (4.8) in the forms

1 l
ysiP= G /3, r, P, ——a(JP, —L/3, ) r,E,/3, +M, 2

(4.11a)
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1 l'-~= E +M 'P"" 2"'P 'P""-'- ~22+ 2

(4.11b)

into the respective singly odd parts of (4.10) (those parts that contain only one ys, factor) and evaluate the commutator
appearing in one of the singly odd terms. This yields a single second-order Schrodinger-like equation [4,5]

. (GX, P2) —E]+M, +G [d—(J L)—] +iGX, Bin(E,p, +M, )(GX, P2)+iGX2 Bin(E2p2+M2)(GX2. P, )
4

+ — GX, P, G—X B(J—Lp, p2) +—G X, din(E, p, +M, )d(J —Lp&p2). X

1+—G X 8 ln(E2p2+M2)B( J—Lp&p2)'X& 'Ysi1'52 0 0 ~ (4.12)

The 16-component Dirac spinor in (4.12) we write as

1 1 0 1 1&=&~0 o +& I io +&50
(1) (2)X 42. )K

KA,

or simply

0 +~ 0 0121112
(4.13a)

2

3

4

(4.13b)

where f; are four-component spinors (see Ref. [4] or Appendix B in Ref. [46] for the convention we use in defining the
16X 16 gamma matrices for the product space). Note that since there are no terms in Eq. (4.12) that contain an odd
number of ys matrices, the upper-upper components couple only to the lower-lower components. Equation (4.12) also
couples the lower-upper to the upper-lower components but we will not need the resulting equations since Eqs. (4.11)
determine these components in terms of the upper-upper and lower-lower components.

Even though in principle the squaring procedure used to construct these Schrodinger-like equations could introduce
spurious solutions, it turns out that the equations we obtain by this procedure are identical to those Schrodinger-like
equations obtained by simply manipulating the Dirac equations without squaring them [47]. In Refs. [4,46] we first re-
view the analogous property for the one-body Dirac equation and then perform similar manipulations (in Appendix B
of Ref. [46]) on the two-body Dirac equations. There we obtain (without squaring) the upper-upper component of (4.12)
(the other components could be obtained by an analogous procedure), thus showing the equivalence of the two ap-
proaches (not demonstrated in Refs. [4,5)). Comparison of the two procedures leads to no further constraints beyond
the original two-body Dirac equations. One could construct the full 16-component solutions of Eqs. (4.7) and (4.8) by
solving the upper-upper and lower-lower portions of Eqs. (4.12) for f, and g4 and then using Eqs. (4.11) to obtain g2
and P3. Having constructed the full solutions to the coupled 16-component Dirac equations we could in principle use
them in conjunction with the inner product [36] derived from these Dirac equations for the 16-component wave func-
tions and apply them to the computation of decay and other current matrix elements.

In Appendix B of Ref. [46] we also perform simplifying Pauli matrix algebra on the coupled upper-upper and lower-
lower components of Eq. (4.12). We find that the upper-upper component of (4.12) becomes (r=y2/r)

p +2m S+S +2@ A —A +2m V—V +—(BJ—BL) +i ln'(y, y2p p ——8 9+—(9') +—ln'(y, y2)Q'

ln'y,
L -er-

r 1

r

ln'g2 1 2 1,2 1 1
2 3 2 3 1 2 1 2L o. + —8 9——(9') ——ln'(y y )9' o o +

I

+ 61 '(X,X2}Q' STr
r

+ +—In'(y y }(J L}'+ 9'(J L)'———d (J —L} cr .o— —1 1, , 1
1 2 2 6 1 2

ST .$4=b (w)g
1, , 1 (J L)'—+ +—ln'(y, y2)(J—L )' ——

(J L)"——
1 2 6 r

(4.14a)

in which', . =(E,+M,. )/G. This coupl. es to the lower-lower component of (4.12) which becomes
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p +2m S+S +2E A A—+2@ V V—+—(BJ d—L) +i In'(gig2)r. p ——i3 0+—(9') + —ln'(jij2)Q'

ln'y)
L o)—

ln'g2 1 2 1,2 1 1 „9" 1L o + —i3 0——(0') ——in'(g g )P o' .o + ——0"— +—»'(fig2)Q' Sr g43 2 3 6 p.

+ +—In'(g, g2)(J —L)'+ 0'(—J L)—' ——8 (J L)—]o, oz
1, , 1, , 1

+ +—ln'(g g )(J L)'———(J L)"——1, , 1 „(J L)'—
1 2 6 r Sr P, =b (w)P~ (4.14b)

in which f; =(E;—M; )/G. Equations (4.14) are the two coupled eight-component Schrodinger-like equations that we
shall use in Secs. V and VI for our bound-state calculations. The same two equations would have been obtained if we
had started with Sz instead of 4, since their difference is -P p /=0. Although not given here, the corresponding equa-
tions that couple the upper-lower and lower-upper components can be combined with Eqs. (4.14) into the general form

(p'+a „)q=(p'+C»+C, +@so+a»+C,+coo@»y»)g=b'(w)g (4.15)

jn which g is the full 16-component wave function. The forms of the parts of the quasipotential are given as in Eq.
(4 14a) but with y =E +p M . (psi is the spin-independent minimal (Todorov) portion of the quasipo«nti», @z
denotes the Darwin terms [the last five terms of the first lines of Eqs. (4.14a) and (4 14b)] C'so t e sp'n-«»t @ss the
spin-spin, and cp~ the tensor portions of the quasipotential. +oo is the doubly odd part which couples the upper-uPPer
and lower-lower, or the upper-lower and low-upper portions of the wave function [48]. As discussed in Appendix D of
Ref. [46] a further decoupling of these equations can occur for special angular momentum states.

V. PKRTURBATIVE TREATMENT OF THK
TWO-BODY DIRAC EQUATIONS

Here we examine the bound-state energies produced by
our constraint equations (4.14) in the weak-potential limit
in order to obtain the energy spectra of our relativistic
two-body system analytically through order a by means
of perturbation theory. For the case of the purely elec-
tromagnetic interaction (A = a/r, V=S—=0), we com-
pare the spectra with those obtained in perturbative QED
from the Fermi-Breit reduction of the Bethe-Salpeter
equation [31]. Since scalar and purely timelike interac-
tions were also important in the meson spectroscopy
work of Refs. [1,2], we will also compute the energy spec-
tra analytically by using perturbation theory for the sca-
lar and timelike four-vector interactions (S= a /r, —
V=A =0 for the scalar and V= —a!r, S=A =0 for
the timelike four-vector interaction) through order a . In
Sec. VI we compare the perturbative eigenvalues with
those obtained from a nonperturbative numerical solu-
tion of the unapproximated constraint equations (4.14).
The comparison with the standard spectral results from
the Bethe-Salpeter equation for the case of the purely
electromagneticlike interactions will provide a critical
test at both the perturbative and nonperturbative levels
of the capability of the two-body Dirac equations of con-
straint dynamics to generate accurate spin-dependent as
well as spin-independent relativistic recoil corrections for
QED, from a static input potential A(r). The compar-
isons between the perturbative and nonperturbative solu-
tions of the two-body Dirac equations for the scalar and

timelike vector interactions are also important since they
will reveal whether or not the unapproximated equations
yield the perturbative relativistic (primarily short-
distance) corrections of lowest order for those interac-
tions. For example, in the case of a purely scalar interac-
tion, there should be no hyperfine splitting through order
a . A glance at Eqs. (4.14) shows that these equations
contain terms (e.g., 8 Lcr, az) that could contribute to
such a splitting. If a numerical treatment of the unap-
proximated equations with these interactions showed a
larger hyperfine splitting than that predicted from a per-
turbative treatment of the equations, then these equations
would not be trustworthy relativistic equations for meson
spectroscopy calculations in which more general effective
scalar and timelike four-vector interactions are used.

A. General equations

In order to perturbatively evaluate the energy eigenval-
ues we first obtain the weak-potential form that we will
use from Eq. (4.14a) for the upper-upper component lij, of
the wave function, coupled to g4. In the weak-potential
limit we ignore the coupling to the lower-lower wave
function 1(4. Furthermore in the weak potential limit, in

terms of the total mass M=rn, +m2 we make the re-
placements [see Eqs. (2.11), (2.12), and (3.48)]

(5.1)

(5.2)
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A+V
M

A S—A —V
y& =2m

&
1 — +m2

and
(5.3)

(5.4)

A S—A —V
/2 =2m 2 1 — +m

&M
(5.5)

In this approximation Eq. (4.14a) simplifies to

2 2 1 2A .A'( —1 —M/2p)+(S' —V')( —I+M/2p)

A'
M

1 mz (S A —V) L.o
+

2m) M r M
1 mi (S—A —V)
2m2 M

L.+2

1 Bj~A 1 (A"—A'/r)+— o cr +. —— S g =b (w)P (5.6}
3 M 6 M

in which p, =m
&
m 2/M.

We now specialize to three cases.
(1) V=S =0 leads to the weak-potential form of the equation containing only an electromagnetic interaction generat-

ed by the invariant A:

2+2 A Aq 1 &qA .A'( —1 M/2P) — A' 1 mz

A' 1 mi L'o2 1 ~jA 1 A" A'lr-+ 1+— +— o o —— S g=b (w)g
M 2m2 r 3 M 6 M

(5.7}

For lowest-order electrodynamics we found in Sec. III that the quasipotential reduction of QED led to

e]e2 e]e2" '"'""4 (5.8)

This corresponds to 0"'=—J"'= alwr, a—nd L"'=0 where a= e&e2/4n —To the o.rder we are considering, we can
set w =M so that (3.48c) implies A = —a/r. In terms of the dimensionless Coulomb variable x=e ar, Eq. (5.7) be-
comes [49] (in c.m. )

1 d L 2 1

2
X+

2
+a2

2xdx x x
+-@ 1 1 d 3 p 4+m.5 (x) —2+ —cr, o2M 2 x2 dx M 3

1 P 1 1 m2 m) P+ 3L (cr~+o2) +—+ 3L (cr, —o2) + 3Sz.
x 2M 4 x 3 4M

(5.9)

in which A, = —b (w)/(e a) .
(2) A =V=0 leads to the weak-potential form of the equation, containing only a scalar interaction generated by the

invariant S:

S'( —I+M/2p) 1 m2 S' 'oi 1 mt S' o2

M 2 m, M r 2 m2 M r
(5.10)

For our model scalar interaction, the analog for scalar field theory of the quasipotential reduction of Sec. III leads to

(5.11)

T»s corresponds to 0'"=0, and L'"=—alwr, where a=g&g2/4~. To the order we are considering we can set w =M,
so that Eq. (3.48a) implies S= —a/r. In terms of the dimensionless variable x=m ar, Eq. (5.10) becomes (in c.m. )
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1 d L 2x+
Xdx x

+a 1

X

p 1 1 d 1 L.(cr, +cr~)—
M 2 x dx 4X

m2 —m)L.(o, c—r~) (5.12)

in which Az= b—(w) /(m a) .
(3) A =S=0 leads to the weak-potential form of the equation containing only timelike vector interactions generated

by the invariant Y:

2+2 V —Vz . V( —1+M/2P, ) + 1 2 V' '
i + 1 i V' '

2
~ b2( )~

r 2 m) M r 2 m2 M r
(5.13)

If we had separated the timelike and spacelike parts of the electromagnetic interaction Eq. (5.8) and retained only the
time-like part we would have obtained

4~w/x,
/

(5.14)

This choice for our model timelike vector interaction corresponds to 0"'=L'"=0 and J"'= a/—wr, where
a = —e

&
e2/4m. . Again we can set w =M so that Eq. (3.48b) implies V= —air. In terms of the dimensionless Coulomb

variable x =e ar, Eq. (5.13) becomes (in c.m. )

X+
xdx x

1 p 1 1
+ca — + + L (o, +rr2)+ L (o, —o'2)

4x3 X3 4M
(5.15)

in which A, = b(w—)/(e a) .
In all three cases we have, to the lowest order,

—
A, = —1/n with the unperturbed wave function given

by

Pnlsj m ~ nl +Isj m (5.16)

in which

R„I=
&nI

3 1/2
2 (n —1 —1)!
n 2n(n +1)!

I

2x r 2I+& 2x
Xe ~n —I —1

n n
(5.17)

and P&, is the total angular momentum eigenfunction.
The quantum numbers jism given here refer to those of
the upper-upper component of the wave function. In
general, j, m, and parity are the only good quantum num-
bers for the wave function as a whole. (For the equal
mass case, charge parity is also a valid quantum number. )

The a terms will be treated as first-order perturbations;
they eliminate some of the 2n -fold degeneracy of the un-

perturbed state. For the n =1 states, the twofold degen-
eracy between the 'So and S, states is removed only by
the electromagnetic interaction since the scalar and time-
like vector interactions do not have any spin-spin terms

to this order. We note also that the tensor term does not
produce any first-order shift between singlet and triplet
ground states, since 1=0.

For the n =2 level, every a term contributes to the re-
moval of the degeneracy between the I =0 and l = 1 states
( Sp S~ P& Pp P~ P2). Again, only the spin-spin
term in the electromagnetic interaction can remove the
spin degeneracy in the l =0 states to this order. For the
1 =1 states, the spin-orbit interaction [L (o, +o 2)] and
also the tensor term produce a fourfold splitting. Fur-
thermore, for unequal masses the spin degeneracy is re-
moved between the 'P, and P, states by a diagonaliza-
tion of the spin-orbit difference term [L (cr, —az)]. This
spin-mixing term is crucial in merging the four P states
into two P states in the limit that one of the particles be-
comes very heavy (see spectral results below). The tensor
term does not mix spin, but mixes the l =0 and the l =2
states. However, as in the case of the ground state, this
mixing will not produce any first-order perturbative shifts
in the spectrum, since the lowest l =2 state has n =3 and
is not degenerate with the n =2 (or 1), 1=0 state. The
same comment applies to the l = 1 and l =3 mixing.

For the levels with n ~ 3 one might expect that the ten-
sor force would provide an additional first-order splitting
beyond that appearing for the n =2 level. However,
there is no such additional splitting from the l mixing
since the radial matrix element (nl ~ 1/x ~nl') vanishes
for ~l

—1'~ =2 (see Appendix C of Ref. [46)).



46 NONPERTURBATIVE SOLUTION OF TWO-BODY DIRAC. . . 5133

B. General spectra

The results of the perturbative calculations are summa-
rized below. For details see Appendix C of Ref. [46].

(1) For the electromagnetic interactions, the binding

energy through order a is

a' a4 a4
e, —=w —M= —",+",g+", 3—"

2n 2n 8n M

in which

(5.18}

2 [j (j +1)—l(l+ 1) 2](P—/M+ ,' )+~-,,P /M 8p
2l+1

(5.19)

with

21 2(l + 1)
x(~

—= —
5~ I+,+25~1

—
51 I, , (5.20)

the spin mixing term produces the split spectrum

e =w —M= — +pa' p,a4

2n' 2n' *

for all states except j=l ~1. For the j=l &1 states, the
spin mixing term produces the split spectrum

e =w —M= — +pa' p,a4
2 2n3

in which

pa'
8n4

—1—,j=l ~ 1, (5.28)

in which

a4+"
8n 4 M 7 (5.21) g+ =a +c++(a —c ) +4b (5.29)

g+ =a +c++(a —c ) +4b

with

2
2I+1

(5.22}

(5.23)

2
2l +1

1

(21+1)&l(l+ 1)

m2 —m)

(5.30)

(5.31)

and

b= 1

(21+1)PI(l + I )

m2 —m,
(5.24)

2
2l +1

1

(2l + 1)l (l + 1)
(5.25)

2 1 2p
2l +1 (2l+1)l(l+1) M

(5.32)

These are the standard results [50] of Ref. [31].
(2) For the scalar interaction, the binding energy

through order a is

This is the spectrum that would come from the Breit
equation for spinless photon exchange [51].

(3) For the timelike vector interaction, the binding en-

ergy through order a is
a' a4 a4

e, =w —M= —"+" g+"
2n 2n 8n

in which

2 2p—
5IO 1—

+ [j(j+1)—1( l + 1)—2](p/M ——')
2

(2l + 1)l(l + 1)

p
M

(5.26}

a' a4 a4
g, =w —M= —"+" g+"

2n 2n 8n

in which

2 + 1
2P

2I +1 M

[ —l(l+ 1)—2](p/M —
—,
'

)
+

(21 + 1)l(l + 1)

X (1—5(0)(1—5,0),

(5.33)

(5.34)
X ( 1 —5io)( 1 —$,0), (5.27)

for all states except the j=I ~ 1. For the j=I + 1 states,
for all states except the j=l ~1. For the j=l~1 states,
the spin mixing term produces the split spectrum
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a2 a4
e =~ —M= —" + "

2n' 2n
'-

4

+ 3—,j=l ~1,
Sn

(5.35)

ma' ma4 1 3
EB =

2n2 n~ 21 8n
for I =j+1, (5.48)

and

The binding energies of the I =j+1~ 1 states become

in which

rl+=a+c++(a —c) +4b

2

21+1

(5.36)

(5.37)

EB=
ma' ma4

2n n

1

21 +2
3

8n
for I =j—1,

(5.49)

and

b= 1

(2l+1)&l(1+1)

m2 m)
(5.38)

respectively, and coincide with the spin-mixed I=j ~ 1

energies.
The exact one-body Dirac spectrum for hydrogen with

an infinitely heavy pointlike proton, when expanded out
through terms of order a, is

2

2l+1
1 2p

(21+1)l(l+ 1) M
(5.39) ma' ma4

EB=
2n' n'

3

Sn
(5.50)

These spectral results agree with those of QED to lowest
order if the effects of the transverse photon are omitted.

C. One-body limit

In the limit m2~ ~, all these results should reduce to
the corresponding one-body Dirac spectra. In that limit,
the electromagnetic and timelike vector results reduce to
the common form (where m =m, )

(5.40)
2n' 2n' Sn4

in which

in which

ma2 ma4 ma4

2n' 2n' Sn4
(5.51)

2 j(j+1)—l(1+1)—2

21+ 1 2(21+ 1)l(l + 1)

in which k=1+1 for j=l+ —,
' and k= —I for j=l —

—,',
with I the angular momentum of the large-component
wave function. In this case Eqs. (5.40) —(5.49), which are
the two-body constraint results in the limit m2~ ~, pro-
duce exactly this one-body result.

For scalar interactions in the static limit, our perturba-
tive treatment gives

2 j(j+1)—l(1+1)—2

2l+1 ' 2(21+1)l(l+1)
(5.41)

for j =0 and j=1+1 states. The binding energies of the

j=I ~ 1 states, which are split by the spin mixing term,
are

for j =0 and j=I+1 states. The binding energies of the

j= l ~ 1 states, split by the spin mixing term, reduce as
m2~~ tO

ma' ma4 ma4+ g+ — f«j=l &1,
2n 2n Sn

in which

(5.53)

2 4 4ma +ma +3ma f r j 1~1
2n 2n 8n

in which

g~=a+c++(a —c) +4b

2

21+1

b= 1

(21+1)&l(l+1)

(5.42)

(5.43)

(5.44)

(5.45)

and

g+=a+c++(a —c) +4b

2

2l +1
1

(21+ 1)&l(1+1)

2 1

2l +1 (2l +1)l (l +1)

(5.54)

(5.55)

(5.56)

{5.57)

and

2

21+1
1

(2l + 1)l(I + 1)
(5.46)

In this case, the binding energies for the singlet and trip-
let 1=0 states become

For the singlet and triplet 1=0 states, the binding ener-
gies go into a single expression given by

ma
B

2n

ma4

n

1 1+
2 8n

for l=0, (5.58)

ma ma 1 3
B

2n n 2 8n
for l=0 . (5.47) while the binding energies for the I =j+1~ 1 states be-

come
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ma' ma4

2n n

1 1——+, for l=j+1,
2l 8n

(5.59)

ma' ma4
2n' n'

1 1

2l +2 8n

for I=j—1~1 . (5.60)

ma' ma4

2n n

1 1
(5.61)

in which k=i+1 for j=l+ —,
' and k= —l for j=l —

—,'.
In the case of scalar interaction, in the limit m2~ 00, the
two-body constraint results (5.52)—(5.60) produce exactly
this one-body result.

These expressions coincide with those for the spin-mixed
l=j ~ 1 states. The exact one-body Dirac spectrum for
"hydrogen" with an infinitely heavy point "proton"
bound by only a scalar interaction, when expanded out
through terms of order a", is

electromagnetic result was first derived with the use of
the Breit equation. We have seen in this section that our
perturbative treatment of the weak potential form of our
Eq. (4.14a) yields results for QED at this order that agree
with the standard results given in Ref. [31]. In the next
section we show that a nonperturbative treatment of the
general (unapproximated) equations leads to the same
perturbative spectral results within an error on the order
of p10 a, p10 a or, roughly, of order pa . Thus, the
results of Sec. V in combination with those of VI will
show the agreement of our nonperturbative treatment of
Eq. (4.14) with the standard field theoretic results
through this order.

VI. NONPERTURBATIVE NUMERICAL SOLUTION
OF THE TWO-BODY DIRAC EQUATIONS

We obtain the radial forms of the coupled constraint
equations (4.14) needed for our numerical solution for the
general fermion-antifermion system by using standard
matrix elements of spin-dependent operators (see Appen-
dix D of Ref. [46]). We take the general wave function to
be of the form

D. Summary

In this section we have used a perturbative treatment
of the Schrodinger form of the two-body Dirac equations
to derive the energy spectra through order a for relativ-
istic two-body fermion-antifermion bound states in which
the two masses are not necessarily the same, for elec-
tromagnetic, scalar, or timelike interactions arising from
the corresponding Born amplitudes. Historically, the

0ijm P ils ilsj +isjm s

I, s

(6.1)

in which 8;i,j =u;i,j /r is the associated radial wave func-
tion and Pi, is the total angular momentum eigenfunc-
tion. The resultant Schrodinger-like equation (4.14a) for
the singlet states (j= I, s =0) u

& z which couples this
uPPer-uPPer comPonent to u1 1j and u4 pj is given by

d2 + t2rrr Sts t2e„A —A t2e V—V
dT T

d 3 9, 3, , 1, , ln (X1X2)+ln'(X X ) ——8 Qt —(0') +—ln'(X X )9't (J' L') — — 'u—''dT 2 4 2 '' 4 T

ln (Xl /X2) . . 1, , 3, , 1&j(jt 1)u&
&

+ ——In'(X&X2)(J L)' — 9'(—J L)'+——8 (J— L) uz 0 =b (—to)u&.zoj . (6.2a)

The corresponding equation (4.14b) for the lower-lower component u4 o which couples it to u4 &
and u

& 0 takes the
form

d2 + t2m S+S t2E A A t26 v v— —
dT T

u 4jpj
tin'(X X ) ——i) 0t —(0') +—ln'(X X )0't (J' L') ———d 3 z 9, q 3, , 1 «2 XIX'

dT 2 4 2 4

(6.2b)
ln (Xl/X2) . . 1, , 3, , 1&j (j t 1)u4.

&
+ ——In'(XiX2)(J —L)' — 0'(J L)'+ s3 (J L) u—

&zo
=—b—( )u—usj4 .O.

For I =0 states or equal mass systems, these equations decouple from those for u, .1- and u 4-1. since1j1J 4J11&j(j+1)ln(X, /Xz) =&j (j+ 1)ln(X, /Xz) =0. However, for the general unequal-mass case, these equations are coupled
to those for the j=l, s =1 components u1.1. and u4-1 . For those triplet states the coupled Schrodinger-like equations
are



5136 CRATER, BECKER, WONG, AND VAN ALSTINE 46

d (+1) q p 2, d 1 2 1+ +2m S+S +2@ A —A +2E V —V +in'X, Xz
——8 g+ —(g')

dr r

+—ln'(X X )g'+ —(J' L—') +
2 ' ' 4 r

ln'(X, /X2 )
&j(j+1)u„o,-r

+ +—ln'(X&X2)(J L)—'+ —g'(J L)—' ——8 (J L)+— .
u4&&z

=b (w)u &z&J
(6.2c)

1, , 1, , 1 2 (J L)'—
r

and

d j(j+1) 2 2 d 1 2 1+ +2m S+S +2m A —A +2m V —V +in'X X ——8 g+ —(g')
W W W dr 2 4

g in'(x&/x~)+—ln'(Xg, )g'+ (J' —L)'+— 'u, ,»
— &j (j +1)~4,0,r

+ +—in'(X+2)(J —L)'+ g'(J L—)' ——8—(J L)+ — u, , =b (w)u~, » .(J L)'—
r

(6.2d)

Next we write out the four coupled equations for the two triplet states j=l+1. Equation (4.14a) for the triplet states
(s = 1, I =j—1) u, . „1,which couples this upper-upper component wave function to u»+»J, u4J. +», , and u4~ »~. , be-
comes (note that the subscripts on u are in the order i, l, s, j)

d j(j—1) 2 r d 1 2 1+ +2m S+S +2@„A—A +2@ V —V +ln'(X, X2) — 8 g+ —(g')

1 1, , 2 . ln(X1X2}+ ln'(X, X,)g'+ —(J' —L')' —j2(2j+ 1) ' 4 r
(j —1)g'
(2J +1)r

v'j( j+ 1)
2j+1

gl
+»'(x&xz}g' &ij+»J

1 g j—1 (J L)'—1 (J L)'—
2j+1 »'(xix2)+ g'

+ J J ln (X,X,}(J—L) — (J L)-—&( +1)
2j+1 r

2
ggj+()~ b (W)Q )~ —)]J. (6.3a)

The corresponding equation (4.14b) for the lower-lower component becomes

+J(J )+2 S+S +2 A —A. +2 V V+1 (XX ) . 8 g+ (g)
W dr 2(2j + 1) 4

+ ln'(X, X, ) g'+ —(J' —L '
} —j1

2(2j+1) 4
»'(x&Xz) (j—1)g'

(2
~ + 1 )

41 —1 lg

&j(j+1)
2j+1

I

g"— + ln'(X iX2)g' u 4, +„,r

(J—L)'
2j+1 »'(xix2)+ g' 2 j—1 (J L)'—

0 (J L)——
2(2& +1) 2j+1

+ J ln'(X, X )(J—L )'—&.( +1), „(JL)'—
2j+1 r

2
tl ) )~)+,

=b (w)u4j —] [J

Equations (6.3) are coupled to the corresponding two equations for the triplet s = 1, I =j+ 1 states given bY

(6.3b}



46 NONPERTURBATIVE SOLUTION OF TWO-BODY DIRAC. . . 5137

d2 + +2m S+S +2@ A —A +2@ V—V +ln'( ) + 8 9+—(0')
dr 2(2j + 1) 41, , 1, , 2 . ln (X1X2} (j+2)Q'

2(2j+1) ln'(X, X2)Q'+ (J'—L'—) +(j + 1) 1j+ 1 1j

&j(j+1)
2j+1

r

+In'(X, X2 }g' u,r

1 (J L)—' 1 2 j+2 (J L)'—+ — ln'(X1X2) + 9"
2j+1

+ . ln'(X, X2)(J—L )' — (J—L }"—&j (j + I ) (J L)'—
1 2 r

2
u4j ll, =b (w)ulj+llj (6.3c)

and

d 1 2 1+ +2m„S+S +2@ A —A +2@ V—V +In'(XX )" + .
' a2S+ —(S'}2

r

1, , ln (X1X2} (j +2)Q'
2(2j+1) ' 4

ln'(X1X2)S"+ (J' L—') +—(j +1} 4j+llj

&j(j+1)
2j+ 1

I

+in'(X1X2)S" u4j»jr

J L'—
+ I I+I

ln (X,X,)(J L) (J L) J L
2j+1 ' r

2u lj llj =b (W)u4j+llj

For the P0 states there are only two coupled equations:

1, , (J L)' —1 ~2 J L j+2 (J L)'—
(2j+1) ln'(X, X2)+P + . 8 (J—L)—

(6.3d)

+—+2m„S+S +2e A —A +2@ V—V +ln'(X1X2) +—8 0
dr r

1, 1, , 1, , » (X1X2}+—( 0') ——In'(X1X2) Q'+ (J' L') +— —
4 2 1 2 4 r

2Q'
~ 1110r

ln'(X1X2)(J L )'+ 0'(J L)'+ —8 (J—L)——2 —
u4110 =b (w)u 11 lo (6.4a)

(J—L)'

and

d + +2m S+S +2@ A —A +2e V—V +In'(X1X2) +—8 9

+—(0') ——In'(X X )0'+ (J' L') + — —— 'u1,, 1, , 1, »' X1X2 2Q'

4 2 1 2 4 4110

ln (X1X2)(J L ) + 9 (J L ) + 8 (J L ) 2 'u illa =b (w)u4110 . (6 4b)
1, , 1, , 1 (J L)'—

Note that in each of the equations (6.2)—(6.4), the quasi-
potential couples the upper-upper component to the
lower-lower component. In Ref. [46], we bring these cou-
pled equations to a compact form suitable for numerical
solution, emphasizing the importance of scale transfor-

mations in the dependent and independent variables.
In the tables below we give the numerical results

for electromagnetic interactions (QED) obtained
from (6.2)—(6.4) with A = a/r, and S=V=O so-
that 0= —J= —

—,'ln[1+2a/(wr )], L =0 where a is
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1/137.035 989 5. We present results for numerical calcu-
lations for muonium (e p+ ) and positronium (e e+ ).
We do not, however, include the effects of the annihila-
tion diagram for the e e+ system in the tests presented
below. A Fierz transformation of the annihilation dia-
gram to quasipotential form would include pseudoscalar
and pseudovector couplings in addition to scalar and vec-
tor couplings which would require a generalization of the
interactions contained in the two-body Dirac equations
considered in this paper [52].

In Table I we present the binding energies in electron
volts for the n =1,2, 3 levels for the e+e system [53].
The quantum numbers are those of the upper-upper com-
ponent of the system wave function g," . In the first four
columns are the values of the quantum numbers I, s, j, n.
In the fifth column is the number of coupled equations N,
that are included in the numerical test. When X, =1, we
use just one equation, the one for the upper-upper com-
ponent, with the couplings to the lower-lower component
and I mixing neglected. The case N, =2 corresponds to
the fully coupled system (upper-upper and lower-lower)
of equations for the singlet states, the Po states, and the
triplet j=l states. For the other triplet states in the
N, =2 case we neglect either the coupling due to angular
momentum mixing or that due to the coupling between

g& and P4. To distinguish between these X, =2 cases for
the nonperturbative (numerical) test, we let M stand for
the neglect of the l=j+1,j—1 coupling while C stands
for the neglect of the coupling between the upper-upper
and lower-lower components. The N, =4 case corre-
sponds to the fully coupled triplet states for l=j+1,
j —1, j&0 in which couplings between the upper-upper
and lower-lower component as well as the I mixing are
not neglected. In the next column are the energy levels in
units of eV obtained from the perturbative expansions
given in Sec. V by Eqs. (5. 18)—(5.25) [which involve
only a single, uncoupled equation (5.9)]. In the next-to-
last column are the nonperturbative numerical results
from Eqs. (6.2) —(6.4), the most important results of the
paper. The last column gives the differences between the
perturbative and numerical calculations divided by
per. /n . Since we are not including radiative corrections,
these differences should be on the order of pa (as op-
posed to radiative corrections on the order of pox or
pa lna) when all of the couplings in Eqs. (6.2) —(6.4) are
included. Thus the entries in this difference column for
the full coupled equations (two or four depending on the
quantum numbers) should be on the order of a or 10
10-'.

Table II gives the binding energies in electron volts for
n =1,2, 3 levels for muonium (e p+). The columns are
labeled as before except that M stands for the neglect of I
mixing (for l=j+1, j—1) or s mixing (l=j ~1) in the
triplet N, =2 cases. Note that for muonium the N, =2
case corresponds to the fully coupled system only for the
j=0 states (singlet or triplet). For all other states the ful-

ly coupled constraint equations correspond to X, =4 with
the combined coupling for upper-upper and lower-lower
components, and for 1 mixing (for 1=j+1,j—1) or s
mixing (I =j ).

For the cases of scalar and purely time-like interac-
tions, we present just the ground-state results for equal
masses. In Table III we give the numerical results for
scalar interactions obtained from (6.2)—(6.4) with
S= —n/r, and V=A =0 so that 0= —J=0 with L
given by (3.48a). The results in the perturbative column
are the energy levels obtained from the perturbative ex-
pansions given in Sec. V by Eqs. (5.26)—(5.32) [which
employ only a single, uncoupled equation (5.12)].

In Table IV we give the numerical results for timelike
interactions obtained from (6.2) —(6.4) with V= al—r,
and S=A =0 so that Q=L =0 with J given by (3.48b).
The results in the perturbative column are the energy lev-
els obtained from the perturbative expansions given in
Sec. V by Eqs. (5.33)—(5.39) [which employ only a single,
uncoupled equation (5.15)].

Let us examine these results more closely. Note that in
all cases for given values of I, s, j, and n, the agreement
between the nonperturbative numerical result for the ful-

ly coupled system of equations (highest value of N, ) and
the perturbative result is excellent. Typically, the
differences are on the order of pa . As we neglect cou-
plings in the strong potential form of Eqs. (6.2) —(6.4), this
agreement is spoiled to one degree or another, except in
cases when the agreement between the single uncoupled
equation and the perturbative result is already excellent.
Thus, when effects due to these couplings are significant,
they conspire in a complex fashion to produce agreement
with the perturbative result. In the case of the elec-
tromagnetic interaction for the So positronium states,
the coupling between the upper-upper and lower-lower
wave functions is crucial in order to obtain agreement
through order a with the perturbatively computed spec-
tral results (or for that matter with the exact solution ob-
tained by other methods [16]). Without them, the error is

on the order of 5% of pe, much larger than the order

pa error expected. The same phenomenon occurs for
the S, states in positronium except that in this case the
(off-diagonal) tensor coupling is needed in conjunction
with the coupling between the upper-upper and lower-
lower components. (Note that in the perturbative treat-
ment of the equation, the latter coupling to the lower-

lower component played no role whatsoever. ) Neither
coupling by itself is sufficient to produce a result accurate
enough so that the errors are on the order of cz . For the
equal mass l & 0 states however, it is not necessary to in-

clude the effects of either the (off diagonal) tensor cou-

pling or that between the upper-upper and lower-lower
components to obtain good agreement. The uncoupled
upper-upper equation by itself is sufficient.

For muonium, the coupling between the upper-upper
and lower-lower components is crucial for the I =0 states
just as it was in the equal-mass case. Again the agree-
ment improves by two or three orders of magnitude when

the coupling to the lower-lower component is included.
This improvement might at first not seem significant
since the relative error starts at an already respectable
10 —a so that further improvement to —10 may ap-

pear meaningless. However, a glance at the perturbative

spectrum reveals that the smallest corrections are the
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TABLE I. Comparison between perturbatively and numerically calculated energy levels for positronium. The first four columns
list the quantum numbers I, s, j, n. In the fifth column is the number of coupled equations N, that were used to perform the numeri-
cal test. In the next column are the energy levels (in units of eV) obtained from the perturbative expansions given in Sec. V. The last
column gives the difference between the perturbative and numerical calculations divided by pa /n'. We use the symbol M to indi-
cate that we are neglecting the I=j+1,j—1 coupling while we use C to indicate we are neglecting the coupling between the upper-
upper and lower-lower components for the triplet equations. These symbols have the same meaning in Tables II—IV.

Perturbative Numerical
4

Diff

M
C

M
C

M
C

—6.803 325 627 9
—6.803 325 627 9
—6.802 842 613 2
—6.802 842 613 2
—6.802 842 613 2
—6.802 842 613 2
—1.700 787 539 4
—1.700 787 5394
—1.700727 162 6
—1.700727 162 6
—1.700727 162 6
—1.700727 162 6
—1.700727 162 6
—1.700727 162 6
—1.700757 3510
—1.700757 351 0
—1.700 734 709 7
—1.700 734 709 7
—1.700 716596 6
—1.700 716 596 6
—1.700 716 596 6
—1.700 716596 6
—0.755 895 9994
—0.755 895 9994
—0.755 878 1100
—0.755 878 1100
—0.755 878 1100
—0.755 878 1100
—0.755 878 1100
—0.755 878 1100
—0.755 8870547
—0.755 8870547
—0.755 8803462
—0.755 880 346 2
—0.755 874979 3
—0.755 874979 3
—0.755 874979 3
—0.755 874979 3
—0.755 874 S32 1
—0.7S5 874532 1
—0.755 876 768 3
—0.755 876768 3
—0.755 876 768 3
—0.755 876 768 3
—0.755 874979 3
—0.755 874979 3
—0.755 873 2543
—0.755 873 254 3
—0.755 873 254 3
—0.755 873 2543

—6.803 286 157 9
—6.803 325 671 9
—6.802 807 499 0
—8.802 808 219 5
—6.802 823 949 9
—6.802 842 663 6
—1.700 782 606 8
—1.700 787 546 7
—1.700 722 774 1
—1.700 722 864 2
—1.700 724 830 6
—1.700727 1700
—1.700727 163 0
—1.700 727 1630
—1.700757 353 8
—1.700757 3563
—1.700 734 7102
—1.700 734 710 3
—1.700 716 596 9
—1.700 716 596 9
—1.700 716 596 9
—1.700716 596 9
—0.755 8945397
—0.755 896003 4
—0.755 876 811 6
—0.755 876838 3
—0.755 8774209
—0.755 878 1140
—0.755 878 1115
—0.755 878 1115
—0.755 887 056 9
—0.755 887057 7
—0.755 8803477
—0.755 880347 8
—0.755 874 980 8
—0.755 8749808
—0.755 874980 8
—0.755 874980 8
—0.7S5 874 S324
—0.755 874 532 4
—0.755 876768 6
—0.755 876768 6
—0.755 876768 6
—0.7SS 876768 6
—0.755 874979 7
—0.755 8749797
—0.755 873 2546
—0.755 873 254 6
—0.755 873 2546
—0.7SS 873 2546

5.45 x 10-'
—6.08 X 10

4.84 X 10
4.75 X 10
2.58 x 10-'

—6.97 x 10-'
5.45 X 10

—8.04 X 10
4.85 x 10-'
4.75 x 10
2.57 x 10-'

—8.09x 10-'
—5.20 X 10
—5.02 x 10-'
—3.08 x 10-'
—5.82 X 10
—5.26 x10-'
—6.83 x10-'
—3.00x10 '
—3.01x 10-'
—3.11 X 10
—3.27 x 10-'

5.44 X 10
—1.47 x 10

4.84 x10-'
4.74 x 10-'
2.57 X 10

—1.51x 10-'
—5.71 x 10
—5.71 X 10
—8.26 x 10
—1.12x 10-'
—5.71 X 10
—6.02 X 10
—5.47 X 10
—5.47 x 10-'
—5.48 x10-'
—5.50x 10
—1.16X 10
—1.16x 10
—1.29 x 10-'
—1.29 x 10-'
—1.29 x 10-'
—1.29 X 10
—1.17X 10
—1.17X 10
—1.13x10 '
—1.13x10 '
—1.13X 10
—1.14x10 '
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TABLE II. Comparison between perturbatively and numerically calculated energy levels for muonium. The first four columns list
the quantum numbers 1, s, j, n. In the fifth column is the number of coupled equations N, that were used to perform the numerical
test. In the next column are the energy levels (in units of eV) obtained from the perturbative expansions given in Sec. V. The last
column gives the difference between the perturbative and numerical calculations divided by pa /n '.

N, Perturbative Numerical
4

Diff
n 3

0
0
0
0
0
0
0
0
0
0
0
0
1

1

1

1

1

1

1

1

1

1

1

1

1

1

0
0
0
0
0
0
1

1

1

1

1

1

1

1

1

1

1

1

1

1

2
2
2

2
2
2

0
0
1

1

1

1

0
0
1

1

1

1

0
0
0
0
1

l

1

1

1

l

1

1

1

1

0
0
1

l

1

1

0
0
0
0
1

l

1

1

1

1

1

1

1

1

0
0
0

1

1

1

1

0
0
1

1

1

1

0
0
1

1

1

1

1

1

1

1

0
0
1

1

1

1

2
2
2
2
0
0
1

1

1

1

1

1

1

1

0
0
1

1

1

1

2

2
2
2

2
2

1

1

1

1

1

1

1

1

1

1

2
2
2
2
2
2
2
2
2
2
2
2
2
2
2

2
2
2
2
2

3

3

3

3
3

3
3

3

3

3

3
3
3

3

3
3
3
3

3
3
3
3
3
3
3

3

3
3

1

2
1

2
2
4
1

2
1

2
2
4
1

2
2
4
1

2
1

2
2
4
1

2
2
4
1

2
1

2
2

4
1

2
2
4
1

2
1

2

2
4
1

2
2
4
1

2
2
4
1

2
2

M
C

M
C

M
C

—13.540410 157 8
—13.540410 157 8
—13.540 391 738 1
—13.540 391 738 1
—13.540 391 738 1
—13.540 391 738 1
—3.385 1119169
—3.385 1119169
—3.385 109 6144
—3.385 109 6144
—3.385 109 6144
—3.385 109 6144
—3.385 065 318 1
—3.385 065 318 1
—3.385 065 318 1
—3.385065 318 1
—3.385 1107657
—3.385 110765 7
—3.385 109 997 3
—3.385 109 997 3
—3.385 109997 3
—3.385 1099973
—3.385 065 0102
—3.385 065 0102
—3.385 065 0102
—3.385 065 0102
—1.504488 908 9
—1.504488 908 9
—1.504488 226 7
—1.504488 226 7
—1.504488 226 7
—1.504 488 226 7
—1.504 475 101 9
—l. 504475 101 9
—1.504475 101 9
—1.504475 101 9
—1.504488 567 8
—l.504 488 567 8
—1.504488 340 2
—1.504488 3402
—1.504488 340 2
—1 ~ 504 488 340 2
—1.504 475 0107
—1.504 475 0107
—1.504475 0107
—l. 504 475 0107
—1.504 470 614 5
—1.504 470 614 5
—1.504470 614 5
—l. 504 470 614 5
—1.504475 078 9
—1.504475 078 9
—1.504 475 078 9
—l. 504475 078 9

—13.540 410 298
—13.540410 158 1
—13.540 391 556 8
—13.540 391 564 6
—13.540 391 641 7
—13.540391 737 3
—3.385 111903 7
—3.385 1119197
—3.385 109 594 5
—3.385 109 595 4
—3.385 109605 1
—3.385 109 617 0
—3.385 080 147 5
—3.385 080 147 5
—3.385 065 318 7
—3.385 065 318 7
—3.385 1107678
—3.385 1107678
—3.385 095 1694
—3.385 095 1694
—3.385 1099994
—3.385 1099994
—3.385 065 010 8
—3.385 065 010 8
—3.385 065 010 8
—3.385 065 010 8
—1.504488 908 8
—1.504488 913 5
—1.504488 224 6
—l. 504488 224 8
—1.504 488 227 7
—1.504488 231 2
—1.504479 498 6
—l. 504479 498 6
—1.504475 104 8
—1.504475 104 8
—1.504 488 571 3
—l. 504488 571 3
—1.504483 949 5
—1.504483 949 5
—1.504488 343 6
—1.504 488 343 6
—1.504 475 013 6
—1.504 475 013 6
—1.504475 013 6
—1.504475 013 6
—1.504472 374 9
—1.504472 374 9
—1.504470 615 1
—l. 504470615 1

—1.504475 079 5
—1.504475 079 5
—l.504475 079 5
—l. 504475 079 5

8.87 x 10-'
—2.44x 10-'

1.26 x 10-'
1.20 x 10
6.69 x 10-'
5.52 x 10-'
7.32 x 10-'

—1.59 x 10-'
1.11 x 10
1.05 x 10-'
5.18x 10-'

—1.45 x 10
—8.23 x 10
—8.23 x 10-'
—3.35 x 10-'
—3.35 x 10-'
—1.20 x 10-'
—1.22 X 10

8.23 x 10-'
8.23 x 10

—1.15 x 10-'
—1 ~

16x10-'
—3.32 x 10-'
—3.32 x 10-'
—3.32 X 10
—3.32 x 10-'

3.43 X 10
—8.57 x 10-'

4.08 X 10
3.54x 10 '

—1.80x 10-'
—8.43 X 10
—8.23 x 10
—8.23 x 10
—5.51 x 10
—5.47 X 10
—6.42 x 10--'
—6.44 x 10--'

8.22x10 '
8.22x10- '

—6.37 x 10-'
—6.37 x 10-'
—5.52 X 10
—5.52 X 10
—5.52 x 10-'
—5.52 x 10-'
—3.30 x 10-'
—3.30 x 10-'
—1.13x10 '
—1.13x 10- '
—1.22 X 10-'
—1.22 X 10
—1.22 x 10-'
—1.22x 10 '
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TABLE II. (Continued).

N, Perturbatrve Numerical
a4

Diff
n

M
C

—1.504 475 024 2
—1 ~ 504 475 024 2
—1.504 475 024 2
—1.504 475 024 2
—1.504470 579 3
—1.504 470 579 3
—1.504 470 579 3
—1.504470 579 3

—1.504473 265 1
—1.504473 265 1
—1 ~ 504 475 024 9
—1.504475 024 9
—1.504470 579 9
—I.504 470 579 9
—1.504470 579 9
—1.504 470 579 9

3.29X10 '
3.29 X 10

—1.21 X 10
—1.21X10-'

—1..14 X 10-'
—1.14X 10
—1.14 X 10-'
—1.14X10-'

recoil corrections —p a /M. Relative to these the
correction due to the coupling to the lower-lower com-
ponent becomes as significant as in the equal-mass case.
Note also that the spin-mixing coupling between the 'LI
and LI states is crucial to obtain agreement between the
nonperturbative and perturbative treatments of our equa-
tions. This coupling was also important to obtain agree-
ment between our perturbative results and standard treat-
ments. Further, in both the equal- and unequal-mass
cases, we have ignored the coupling to the lower-lower
component in the perturbative calculations. Its nonper-
turbative importance for S states thus comes as a
surprise. We find that couplings to different components
of the wave equation that are numerically important for
the nonperturbative calculation are not important for the
perturbative calculation [54].

The perturbative treatment of our equations for the
scalar and purely timelike interactions generates no
hyperfine splitting through order a . The nonperturba-
tive numerical results are consistent with this but again
only if all couplings are included. (The lack of hyperfine
splitting holds as well for the nonperturbative treatment
of the unequal-mass cases. )

Besides the coupling, what other relativistic strong-
potentia1 structures are crucial for the excellent agree-
ment we have obtained? We have referred earlier to
strong potential terms as those in Eqs. (4.14) beyond the
collective minimal (Todorov) part (e.g., +2@ A —A for
electromagnetic interaction). "Relativistic strong-
potential structures" refers collectively to these terms, in
particular to the potential energy dependences in denomi-
nators appearing in those terms of the form E, +M, , 6 .

ln'y, A 1+m, /(wG )

r r Ei —A+I i/6 (6.5)

For A= a/r an—d G defined in (2.11c), this becomes
I/r for small r instead of a/(2m|r ) as it does in the
weak-potential approximation in which the potential

In the weak-potential limit [Eqs. (5.1)—(5.6)], for
A = a!r, —these terms become singular potentials (ones
more attractive than —I /4r near the origin) but are
themselves nonsingular in the constraint equation Eq.
(4.14). Singular potentials appear in our formalism only
as a result of perturbative approximation, when the
strong-potential terms such as —ln'y, /r, ln'g, d /dr,—8 9 that appear in (4.14) are treated as weak. In such a
perturbative approximation, attractive potential energy
terms with a radial dependence of the form 1/r,
(I/r )d/dr, and 5(r) arise as typical relativistic weak-
potential limits of the relativistic strong-potential terms.
Those limits can only be treated perturbatively, using
well-behaved unperturbed wave functions. Otherwise a
nonperturbative treatment of these singular potentials
would lead to nonnormalizable singular wave functions.
However, the unapproxirnated strong-potential terms—ln'(y&)/r, ln'(g, )d/dr, —8 0, etc. in our equation,
from which the singular potentials originate, are well
behaved for small r, since the logarithmic derivatives gen-
erate denominators that moderate the small-distance be-
havior. Thus the unapproximated terms do not lead to
singular wave functions. For example, in the case of
QED, consider terms with a radial dependence of the
form

TABLE III. Comparison between perturbatively and numerically calculated energy levels for scalar interactions. The first four
columns list the quantum numbers I, s, j, n. In the fifth column is the number of coupled equations N, that were used to perform the
numerical test. In the next column are the energy levels (in units of eV) obtained from the perturbative expansions given in Sec. V.
The last column gives the difference between the perturbative and numerical calculations divided by pa /n .

N,

M
C

Perturbative

—6.802419 975 3
—6.802419975 3
—6.802419 975 3
—6.802 419975 3
—6.802 419 975 3
—6.802419 975 3

Numerical

—6.802 346 1124
—6.802419 788 6
—6.802 346 1124
—6.802 353 0264
—6.802 346 1124
—6.802419 7446

4

Diff
n3

0.10
2.58 x 10-'
0.11
9.24x10-'
0.11
3.18x 10-'
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TABLE IV. Comparison between perturbatively and numerically calculated energy levels for time-like interactions. The first four
columns list the quantum numbers I, s, j, n. In the fifth column is the number of coupled equations N, that were used to perform the
numerical test. In the next column are the energy levels (in units of eV) obtained from the perturbative expansions given in section V.
The last column gives the difference between the perturbative and numerical calculations divided by pa /n '.

M
C

Perturbative

—6.803 144497 3
—6.803 144497 3
—6.803 144497 3
—6.803 144497 3
—6.803 144497 3
—6.803 1144973

Numerical

—6.803 084988 4
—6.803 144 305 9
—6.803 084988 4
—6.803 090 700 8
—6.803 084 988 4
—6.803 144288 0

4

Diff ™
n

8.21X10 '
2.64 X 10-'
8.21 X 10-'
7.43 X 10-'
8.24 X 10-'
2.89 X 10

dependence in the denominator is left out. The 1/r be-
havior gives acceptable nonperturbative numerical solu-
tions when combined with the centrifugal barrier term,
whether the sign of this term is positive or negative. On
the other hand the 1/r dependence would not give any
convergent nonperturbative numerical solution when the
coefficient is negative, as can happen for QED interac-
tions in the Po case. So the nonsingular short-distance
behavior [55] is crucial for every term in the quasipoten-
tial that appears in Eqs. (4.1) since using the weak-
potential approximation in any one of the terms could
render the equation as a whole ill defined quantum
mechanically. Those terms, which include Darwin and
spin-dependent and relativistic recoil terms (ones that
vanish when one of the masses ~ ~ ), yield important
contributions to the calculated spectra.

Just what are the distance scales at which the poten-
tials in the various denominator terms become impor-
tant? For the equal-mass case the invariant A becomes
comparable to the electron mass and the energy terms in
the denominator at distance scales of the order of the
classical electron radius, well inside the Compton wave-
length. Such short-distance behavior of the quasipoten-
tial is important since without this radial dependence in
the denominator the correct spectral results could not be
reproduced in a nonperturbative treatment. For exam-
ple, if one artificially replaces A by a constant in the
non-Coulombic part of the quasipotential at a distance r
less than a Compton wavelength, then the 5-state nonper-
turbative spectral results will no longer agree with their
perturbative counterparts to the required accuracy, even
though the P-state results will. Thus the minimal interac-
tion constraint equations provide a natural cutoff mecha-
nism that is essential for a nonperturbative treatment of
the equation. An analogous effect occurs in the one-body
Dirac equation [54].

VII. THEORETICAL PREDICTIONS FOR THE
Po SCATTERING STATES

A few years ago, several groups [19—24] observed
anomalous positron peaks at positron kinetic energies of
250—400 keV in heavy-ion collisions with a united-atom
charge Z & 163 for collision energies near the Coulomb

barrier. The energies of the peaks seem to be nearly in-
dependent of the projectile and target combinations.
Electrons were found in coincidence with the positrons
with about the same energy as the positrons at the anom-
alous peak [19]. These observations were interpreted as
resulting from the formation of a neutral particle or com-
posite with subsequent decay into a positron and an elec-
tron [21,56—58]. Such an intermediate state could either
be the product of new (nonelectromagnetic) forces or hid-
den features of old (electromagnetic) forces. The authors
of Refs. [56—58] attributed the anomaly to the nonelec-
tromagnetic production and decay of a pseudoscalar ax-
ion. Other authors [59,60] proposed the participation of
new phases of QED with a larger coupling constant. Not
wishing to invoke new forces, Wong and Becker [18]
speculated that short-distance, strong-potential, relativis-
tic effects in QED might generate a resonant composite
state of the e+e system and investigated the possible
origin of such resonances using an assumed electromag-
netic mechanism.

Recently, measurements of Bhabha scattering [26]
have failed to show the presence of such resonances with
lifetimes in the range from 10 ' ——10 sec. That is,
the Bhabha scattering results so far are consistent with
the results of perturbative QED. To reconcile the elec-
tromagnetic part of these results theoretically what is
needed, then, is a relativistic calculation of the phase shift
at c.m. energies in the neighborhood of peaks seen in the
heavy-ion collisions. Recently, Spence and Vary [28]
have carried out just such a calculation using several
truncated versions of the Bethe-Salpeter equation. They
find a family of resonances "of zero width" in the region
between 1.4 and 2.2 MeV. On the other hand we shall
show that our relativistic two-body Dirac equations,
despite all of their short-distance, strong-potential, rela-
tivistic structures, predict no resonances in the Po state
in the relevant energy range —no deviation from ordi-
nary Bhabha scattering.

We must now decide on the form of the equations that
will best display the origins of the physics in the relativis-
tic quasipotential. In principle we could use Eqs. (6.4) (as
they stand) for the Po state in order to compute the
phase shift. However, further manipulation of these
equations using the first-order form of the two-body
Dirac equations (see Appendix D of Ref. [46]) leads to an
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equation for the j=1 states as well as the PD states in
which the upper-upper components are completely
decoupled from the lower-lower components. This al-
lows us to see graphically whether the effective potential

develops a pocket or other structure that could produce a
resonance. The equation for the Po upper-upper com-
ponent wave function which we derive in Appendix D of
Ref. [46] is

d2 2+——
r2 r2

2E~a
'2

a 8

r3w 1+2al(rw)

a
r w

8 5 (r) 1 2+ 16m. 'u &ip
=b (w)u i&p . (7.1)

(1+2alrw ) w 1+2al(rw )

d j(j+1)
dr2 r2

2E~a
2

=b ( w)ujpi . (7.2)

In both Eqs. (7.1) and (7.2), the effective potential is non-
singular near the origin.

In order to determine whether there are any purely
electromagnetic resonances or other nonperturbative
effects in the Pp states as described by our equation (7.1)
for the e+e system, we need to compute the phase
shifts as a function of energy and compare them with the

(Note that the 5-function term will not contribute be-
cause its coefficient vanishes at r =0.) This is the equa-
tion from which we will obtain our numerical results.
We remind the reader that this equation is dictated by
the combination of two-body relativistic quantum
mechanics of the constraint formalism with a 6eld
theoretic 6 of the Bethe-Salpeter equation. This equation
has the following special features. First, this covariant
Schrodinger-like form displays exact relativistic kinemat-
ics. Second, the local potential structure of Eq. (7.1) gen-
erated by A = air is—determined by perturbative QED
in concert with the minimal interaction form that follows
from quantum-mechanical gauge invariance. Third, we
have shown that the short-distance strong-potential
structure of these equations (albeit in an equivalent form)
was crucial for the accurate numerical determination of
the bound-state spectrum demonstrating the validity of
the equations down to distances of the order of aim.
Fourth, because the kinetic and Darwin terms in Eq. (7.1)
are local [unlike the three-dimensional Salpeter equation
or its O(1/c ) Fermi-Breit reduction], our approach pro-
vides a graphical as well as covariant way of examining
the short distance behavior directly. Fifth, the effective
potential (including the centrifugal potential barrier) in
Eq. (7.1) is attrttctive and nonsingular near the origin,
having the limiting behavior — a/r as r~0—, in con-
trast with the more singular terms appearing in the stan-
dard O(1/c ) Fermi-Breit reduction of the Salpeter equa-
tion.

The corresponding decoupled equation (see Ref. [16]
and Appendix D of Ref. [46]) for the upper-upper com-
ponent for the 'JJ states of the e+e system is

perturbatively computed phase shifts. In Secs. V and VI
we performed a successful test of our formalism which
found agreement between the Po bound-state spectral re-
sults computed perturbatively and numerically. Do we
obtain agreement here between the two types of computa-
tions of the phase shifts? The general form of our equa-
tion (7.1) is

d l(l+I) 2ewa
~ ) b2 ( )

dr r r
(7.3)

u(r~ ao )~const Xsin(br —r) ln2br+b, )

in which

(7.4)

5=5(+O.
I
—Im. /2, (7.5)

while o&=argl (l+I+ig) is the Coulomb phase shift
(with r)= —ae„/b). For the Pp state, the phase shift 5,
is due to h4 for the Po state:

a 2

2

8a +8
wr (1+2alwr) r w(1+2alwr)

2

(7.6)

Before computing this nonperturbatively, we evaluate 51
in perturbation theory for a few representative values of
the c.m. energy w. In analogy to the perturbative expres-
sion for the phase shift for short range (a=0) potentials,

51 = bJ ji (br )A4(r—)r dr, (7.7a)

when we treat 6@as a perturbation we find

F((rt, br)
51 = b f h@—(r)dr

g2 2 (7.7b)

when a&0. In this distorted Born approximation,
FI(ri,p) is the radial Coulomb wave function. For pertur-
bative purposes we use the unperturbed solution which
can be expanded as

where h4 consists of the short-range parts of the
efFective potential. Because of the long-range nature of
the effective potential in Eq. (7.3), the asymptotic form of
its wave function is
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F!(R,p) =(21+1)"PC!(n)g bkJk(p}
Jc =I

where

jk(p) is a spherical Bessel function, and

2'}/I (1+1+rl )e ""I(1+1+iq )

(21+1)! (7.11)

21+3
I+1

2k +1
k( k+ 1)—l(1+ 1)

r

&I+,=

(k —1)(k —2)—1(l+ 1)
X ~ 2gbk

2k —3
bu-2

(7.9)

A4p=——a 8a
Nr

(7.12)

In our case, we approximate A4 as the weak potential
form A4p given by

(7.10)
Substitution into Eq. (7.7b) followed by the indicated in-
tegration yields

5 [(21+1)!!][C ( )] g "g' k —k sin[(2k n+e—)~/2]

+ 8ab [(21+1)!!]p[C( )]p + + k —k sin[(2k n+—I+e)n /2] 2
N ! n(n+2) 2k n+—1+e n —2k+1+e (7.13)

in which e is a positive infinitesimal.
For our nonperturbative calculations (with unapproxi-

mated b4), we use the variable phase method [61] gen-
eralized here to include long-range interactions. Consid-
er the two differential equations

u(r) =a(r)[cosy(r )u &(r)+siny(r)uz(r)]

so that

(7.24)

(7.25)

u" +(b W —W)—u =0 (7.14)
Since we have written u (r} in terms of two arbitrary
functions we are free to impose a condition relating them:

and

u,"+(b W)u; =0, —i =1,2
u '(r) =a'(r)[cosy(r )u '! (r )+siny(r)u 2(r)] .

Combination of these two equations leads to(7.15)

(7.26)

in which u (0)=u! (0)=0. Choose

W(r)= 2e /r, —

W(r)=1(1+1)/r +64
(7.16)

(7.17)

y(r) = —arctan
u (r)u ', (r) —u '(r)u, (r }

u(r)u ~(r) —u'(r)u2(r)

in which y(0) =0. In our case

(7.27)

so that

u, (r~ oo )~const Xsin(br —g ln2br+5),

u2(r ~ oo ) ~const X cos(br —g ln2br+ b, )

in which

and

u(r~ oo )~constXsin(br —gln2br+6),

a=6, +~, —1~F2 .

(7.18)

(7.19)

(7.20)

(7.21)

(7.22)

u, (r) = F0(rl, br ),
u2(r)=GO(g, br) .

(7.28a)

(7.28b)

From Eqs. (7.27) —(7.28), and the Wronskian
FpG p FpGp =b we obtain by simple differentiation the
differential equation

y'(r) = —W(r)[cosy(r)Fo(q, br )+siny(r)Go(g, br )] /b .

(7.29)

Note that for W(r~0}~A(A, +1)/r [since

Fo( g, br ~0)~Co br and Go(rl, br ~0)~ 1/Co], we ob-

tain the relation

5!(oo )=II

and 5I(0)=0. This is done by rewriting u (r) as

(7.23)

In the vanable-phase method, one obtains a nonlinear
first-order differential equation for the phase-shift func-
tion 61 ( r ) such that

y'(0) = —Cobl. /(iI+1) . (7.30)

Note also that if we were to exclude the angular momen-
tum barrier term l(1+1)/r from W(r) and include it in

W(r) instead, A, would become complex in the case of
Eqs. (7.3) and (7.6). With our division however, we must
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integrate the wave function to very large distances be-
cause of the long tail of the barrier term. However, we
can overcome this diSculty by letting

FI(r)Fo(r) F—~'(r)Fo(r)
p(r) = —arctan

FI(r)GO(r) F&'—(r)GO(r)
(7.33}

y(r) =p(r)+c(r)

with p(r) defined so that

(7.31) with P(0) =0 and P'(0) = —Cobl /(1+1) and

P(ao )=o (
—ln. /2 —oo . (7.34)

P'(r) = —
z [cosP(r)F&(r)+ sinP(r) Go(r) ] Ibl(1+1} 2

T

(7.32}
This equation has the exact solution

Combining (7.20), (7.22), (7.25}, (7.31},(7.34) then leads to

(7.35)

Thus, if we solve

e'(r) = —[l(1+1)/r +64]{cos[P(r)+e(r)]F0(rl,br )+sin[P(r)+e(r)]GO(rl, br )] /b

+[1(1+1)/r ][cosP(r)FO(r)+sinP(r)G&(r)] /b (7.36)

CX

2
(7.37)

This provides a particularly strong test of our procedure
since 5 can be computed analytically by incorporating the
term —a Ir with l(1+1)/r into A, (A, +1)/r and using

cr
&

—ln. /2 =argI'(1+ 1+irl )
—ln. /2~ o z

—An. /2

=argI ( A+ 1+i rl ) An/2— (7.38)

where A, (A, +1)=l(1+1)—a . We are interested in the
phase shift 5I produced by b,4 beyond the Coulomb
phase shift 0.

1 which in this case is given by

5I ok oI (7.39)

subject to the boundary condition E(0)=0 and the condi-
tion Eq. (7.30), transcribed to the form

e'(0) = Cob A I(A—, +1)+Cobl /(1+ 1),
we obtain the additional phase shift (above the Coulomb
phase shift) by integration to e( 0D ).

As a first application of Eq. (7.36) we compute 5I for
the spin singlet equation in which

Hence, with g = —ae /b we find

w=1.4, 1.6, 1.8, 2.0 MeV (7.41)

we find that the nonperturbatively computed numerical
values are

I (1+1+i rl )
(7.40)

For l =0, 1 and w = 1.6 MeV we obtain 5I =8.391 X 10
2.794X 10 . Using the first term in the perturbative ex-
pression (7.13) for comparison we obtain
5I =8.431X10, 2.797X10 . The corresponding nu-
merical results are 5I=8.396X10,2.770X10 . Thus
we find agreement between the perturbative and numeri-
cally calculated values of the phase shifts for the singlet
states.

We are now ready to perform the same calculations
and comparisons for the P states in order to test our
Eq. (7.1) and to see whether it predicts any resonant
states. We compute the results for the Po states at
several energies. At

51=2.529 10, 2.847X10, 3.038X10, 3.175X10

These agree well with the perturbatively computed values using the full Eq. (7.13):

51=2.556 10, 2.876X10, 3.075X10, 3.210X10

(7.42)

(7.43)

Thus our two-body Dirac equations predict no reso-
nances in the Po states in the above energy range, and no
significant deviation from ordinary Bhabba scattering
[62]

Let us examine now how the various parts of the quasi-
potential in Eq. (7.1) conspire to produce the turnover of

the total effective potential (including the angular
momentum barrier) for the Po state while keeping the
potential narrow and shallow enough to forbid a reso-
nance (see Fig. 1). At very long distances the Coulomb
term dominates. As the interparticle separation goes to
zero, the angular momentum barrier l(1+1)/r ( =2/r )
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FIG. 1. (a) The effective potentials, including the angular
momentum barrier (2/r ), for the 'P& state (dashed curve) and
the 'Po state (solid curve) in units of MeV' as functions of r in

fermis. (b) The effective potential for the Po state in units of
MeV versus r in fermis in an expanded radial scale.

VIII. CONCLUSIONS AND RELATIONSHIPS
TO OTHER APPROACHES

In this paper, we have solved a system of coupled
Dirac equations previously formulated by two of us for
electrodynamic and related two-body systems [5,16].

becomes dominant at about an Angstrom. At this dis-
tance the spin-orbit and tensor terms (combining to give
the last term in the first line) have an attractive 1/r be-
havior, whereas the spin-spin and Darwin terms (combin-
ing to give the first term in the second line) yield a repul-
sive 1/r behavior. The attractive 1/r3 terms counteract
the angular momentum barrier reducing that barrier by
about a factor of —,

' for r -0.5 fm, eventually causing the
potential to turn over at around 0.06 fm. But by this dis-
tance, the 6 factor 1/(1+2a/wr ) approaches wr/2a so
that it moderates the attractive 1/r spin-orbit part, lead-
ing to 4/r . At about the —same distance, the spin-spin
and Darwin terms of the potential have their repulsive
1/r behavior modified by the factor G (~m r /4a ) to
the form 2/r . The net result is the —a /r behavior
given by (7.1) for the Po state. This behavior and the at-
tendant phase shift are a direct consequence of the matrix
6 we obtained from QED and the minimal interaction
structure for incorporating QED into our two-body
Dirac equations [63].

These equations, which are spin-dependent strong-
potential versions of an equation originally developed for
QED by Todorov [14], contain local but nonsingular po-
tentials and so may be solved nonperturbatively for
bonafide relativistic wave functions. Yet, they contain
effects in their wave functions that are traditionally ob-
tained from perturbation theory. Two of us had previ-
ously found 16-component exact analytic solutions for
singlet states of positronium with energies agreeing with
the field theoretic spectrum through order a . In this pa-
per, we have shown for a representative set of radial, or-
bital, and spin states that nonperturbative numerical
solution for the wave function yields the correct field-
theoretic spectrum through order a . As far as we know,
this sort of spectral agreement has never been obtained
before from numerical solution of a relativistic wave
equation. Even though we had originally applied these
equations (with appropriate potentials A, V, and S) to
calculations of the meson spectrum, their suitability for
electrodynamics is not a total surprise since two of us had
originally abstracted the form of the vector interactions
appearing in them from (the field-theoretic) Wheeler-
Feynman electrodynamics [13].

Comparison of the structures of our equations with
those of selected traditional approaches to QED and with
those of recent alternatives and applications will help to
clear up the origins and possible physical significance of
our results. All of the equations that we will consider
share the property that when treated perturbatively they
reproduce the correct QED spectral results through or-
der o." that arise from the field-theoretic Born diagram
alone.

Relativistic wave equations have been used in electro-
dynamics primarily in three ways. First, such equations
have been solved both numerically and analytically as
wave equations when the absence of singularities and
nonlocal terms permitted, leading to "nonperturbative"
spectra (Balmer formulas). (However, such solutions are
not guaranteed to agree with the results of quantum field
theory —witness the erroneous results for parapositroni-
um produced by nonperturbative treatment of the local
Breit equation [31,32].) Second, such equations, as they
stand, have been used as perturbative forms that are di-
vided into a nonrelativistic wave equation with well
behaved solutions and a singular remainder to be used
only in low-order perturbation theory. Third, such equa-
tions have been used purely as springboards for field-

theoretic perturbative treatments. Typically, one selects
a relativistic wave equation with simple wave functions
that generate the correct lowest-order (a and parts of
the order a~ and higher order) spectrum directly through
the wave function and then systematically treats the
remaining order a and higher effects dictated by the
Bethe-Salpeter equation as field-theoretic perturbations
built around the analytic solutions of the wave equation.

A. "Nonperturbative" features of wave equations
and solution where possible

Properly our numerical wave functions and spectra
ought to be compared directly with their counterparts
from numerical solution of the Bethe-Salpeter equation.
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However, as far as we know there have been no numeri-
cal tests (nonperturbative solutions) of any of the tradi-
tional three-dimensional rear rangements of the four-
dimensional Bethe-Salpeter equation of QED. (This situ-
ation has occurred because perturbative treatment of the
weak potential forms of those equations (see subsection B

below} are sufficient for QED and because treatments of
nonlocal bound-state equations has been technically
difficult. ) To see why this is so consider the most widely
used rearrangement: the Salpeter equation [17]. That
equation for single-photon exchange in the instantaneous
approximation is

(8.1)

where

Hi(p)=miPi+p ai,
H2(p) =m2p2 —p a2,

A=[A+(p)A+(p) —A' (p)A (p)],
Aq(p) = [E;(p)+H, (p) ]/2E, (p),

[(ri pi+mi)~i+(r2'p2+m2)A2 V]f 0—
(in our metric) in which

(8.2)

new covariant approach to the two-body problem. In-
stead of the two two-body Dirac equations of (2.1) or
(3.38) they employ a single 16-component "sum" Dirac
equation of the form

and

E, (p) =Qm; +p

3'I'BIZ+

Qm, '+p, ',
(8.3)

in which the three-dimensional Salpeter wave function iIi

is given in terms of the four-dimensional Bethe-Salpeter
wave function y by

Ni2(p}= J dp'X»(p' p}

and

oi2 (p}=412 (p}=0

where P",&=A„'Azgi2, for ~, A, =+. The particular (but ad
hoc} elimination of the relative time and the relative ener-

gy in the derivation of Eq. (8.1) forces on the user nonlo-
cal (in coordinate space) free-particle energies E;(p). In
contrast, the corresponding role is played in our equa-
tions by the local but c.m. energy-dependent e; of To-
dorov. Furthermore, the compatibility of our two 16-
component Dirac equations automatically restricts their
dependence on the relative time in such a way as to per-
mit an exact reduction (with no truncations) to two cou-
pled (and in some angular momentum cases, one),
Schrodinger-like equations with a total c.m. energy-
dependent (but not necessarily) momentum-dependent
effective potential, each involving two four-component
wave functions [see Eqs. (4.14)]. Not only are our local
minimal-interaction constraint equations much easier to
handle numerically, but also (for momentum-independent
interactions}, they perinit a direct covariant examination
of the short-distance behavior (see Fig. 1). Such an exam-
ination cannot be performed as directly on the momen-
tum space form or on the necessarily nonlocal coordinate
space form of the three-dimensional Salpeter equation
without an O(1/c ) expansion (which we shall examine
below).

Recently, Mandelzweig and Wallace [64] presented a

accompanied by a spin-independent constraint

(pi+m, )f=(pz+m22)lt, (8.4)

on the relative energy. [In our approach Eq. (8.4) is a
consequence of our two Dirac equations (see (3.21) and
also Refs. [4,5]).]

Like our equations, the Mandelzweig-Wallace equa-
tions yield the correct single-particle Dirac equation with
an external potential when one particle becomes infinitely
heavy. However, each set of equations achieves this re-
sult in a different way. Mandelzweig and Wallace noted
that in the Bethe-Salpeter formalism both the single-
particle Dirac limit and the high-energy eikonal limit de-
pend on cancellations between crossed and uncrossed
Feynman graphs when the kernel in the Bethe-Salpeter
equation is truncated. Consequently, in deriving their
equation, they included crossed graphs using a form of
the eikonal approximation in such a way that the high-
energy limit and the heavy-particle limits are preserved
despite truncation of the kernel. In contrast our spin-
dependent equations and the closely related spinless To-
dorov quasipotential equation [in the form (3.1)] achieve
the heavy-particle limits automatically through their
classical relativistic kinetic and potential structures
without further manipulation of the potential. (In fact
starting from only the Born term, the Todorov equation
sums up all cross ladder and ladder diagrams in the limit
of small exchanged mass and momentum transfer
[14,65,66].)

The two-body Dirac equations Eqs. (2.1) and the
Mandelzweig-Wallace equation differ substantially in
their spin-dependent structures through the full 16X16
matrix potentials. Just like the free-particle sub-energies
E, (p) of the Salpeter equation, the Mandelzweig-Wallace
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equation contains the free-particle Dirac projectors A, ,
[which contain the E;(p)] as coefficients in the "suin"
form Eq. (8.2). These render the Mandelzweig-Wallace
equation nonlocal in the Born approximation, for which
the coupled Dirac equations [Eqs. (2.1) or (4.14)] are lo-
cal. Nonetheless Wallace and Thayyullathil [33] have
been able to solve the Mandelzweig-Wallace equations
numerically for the ground-state hyperfine splittings in
QED. Thus, some results given by both sets of equations
are available for comparison. These results show that
one consequence of the difference in spin-dependent
structures in the two approaches is their different depen-
dences on and sensitivities to the four four-component
pieces of the 16-component wave function. For example,
for the hyperfine splitting of muonium, the
Mandelzweig-Wallace results with the lower-lower parts
of the wave function excluded are comparable to our re-
sults through order a when our equations are fully cou-
pled. However, inclusion of the lower-lower portion of
the wave function in the Mandelzweig-Wallace equation
produces large deviations from the field-theoretic values

through order a . This contrasts sharply with our results
of Sec. VI for which inclusion of the coupling to the
lower-lower portion of the wave function was crucial for
agreement with the field theoretic values through order
e . A complete comparison of the two approaches awaits
calculations in the Mandelzweig-Wallace approach of the
counterparts to the fine-structure splitting and radial ex-
citations given by our equations in Sec. VI ~

B. Weak-potential perturbative form

Traditionally relativistic wave equations which cannot
be or have not been solved numerically or analytically
have been rearranged as corrections to the nonrelativistic
Schrodinger equation with Coulomb potential. For ex-
ample the O(1/c ) Fermi-Breit expansion [67] of the Sal-
peter equation, yields

(8.5a)

in which m is the total c.m. energy and

H= mc+p p + mc+p p
2

( 2)2 2
( 2)2

2m
& 8m &c 2m 2 8m 2c

+e&ez,
1 1+ 5(r)

d„.d 2c' m1 m 2

1— p 1 1
p (1 Kr) p-

mimzc r 2m2m2c

L
4c r m)m2

1 2

m
1

1gi+ +
m2 m )m2

4m]m2c 2

8m
cr, o25(r)+

3 r' r' (8.5b)

This equation (to which our equation is canonically
equivalent in order of 0( 1/c ) for weak potentials [68])
contains terms after the Coulomb term that are too
singular at the origin to be treated nonperturbatively. On
the other hand, the unapproximated counterparts of
these terms in the covariant, Schrodinger-like form, Eqs.
(4.14), of the two-body Dirac equations are quantum
mechanically well defined for all tested angular momen-
tum states. This means that in contrast with the Fermi-
Breit equation [and Eq. (5.9)], the wave functions for all
angular momentum states are affected by all terms.
Despite this fact, our solution of the unapproximated co-
variant minimal interaction constraint form, (4.14),
reproduces the correct perturbative spectral results for
fine and hyperfine splittings. Because we are able to solve
our unapproximated equation numerically, we are able to
carry out a double cross-check of its nonperturbative
spectral results with its own perturbative spectral results
[from Eq. (5.9)] and with the corresponding results of
perturbative quantum field theory [from Eq. (8.5)]. The
fact that they all agree shows that (i) the weak potential

form Eq. (5.9) yields an accurate perturbative evaluation
of the exact equation (4.14) (mathematical property), (ii)
the unusual (though local) short-distance structure of the
exact equation (4.14) (and hence of the wave function)
does not disrupt the perturbative spectrum (mathematical
property), and (iii) the unapproximated coupled two-body
Dirac equations (2.1) and their Schrodinger-like rear-
rangement Eqs. (4. 14) yield a spectrum from single-

photon exchange in agreement with that of perturbative
QED for all angular momentum states through order a
(physical property). Although this agreement exists in

the one-body Dirac equation, as far as we know because
of difhculty of nonperturbative solution, such agreement
has never been demonstrated for any other two-body
equation with spin [69,70].

C. Relativistic wave equations as anchors
for 6eld-theoretic perturbation theory

In order to carry out any perturbative solution of the
Bethe-Salpeter equation of QED, one must first specify a
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lowest-order equation. As noted by Barbieri and Remid-
di [71], any such equation must contain a kinetic term
and a Coulomb-like interaction term, and must be able to
produce bound states and contain the largest part of the
full Bethe-Salpeter kernel. It must reproduce the correct
nonrelativistic dynamics with corrections of second order
in momenta so that the usual Balmer formula appears in
lowest order (a ) with no corrections of order a . In ad-
dition, it must yield the relativistic propagator of two free
fermions when the interaction vanishes (at high momen-
tum}. Finally, for purposes of perturbative calculation,
its wave functions must be known analytically or numeri-
cally. By carrying out the numerical solution of the two-
body Dirac equations (2.1) in this paper, we have comp-
leted the demonstration that they possess all these prop-
erties.

In the work of Barbieri and Remiddi [71] and in the
work of Caswell and Lepage [35] (for fermions of compa-
rable mass), the fact that "no equation for two fermions is
known that can be solved exactly and which gives the
correct a structure" forced those authors to confine the
dynamical contributions of their lowest-order equations
to the relativistic Coulomb potential alone. This restric-
tion does not destroy the perturbative procedure, howev-
er, as long as "the correct a terms, as well as all higher-
order corrections to the energy levels, are obtained in the
systematic perturbative expansion to be built starting
from the lowest-order equation in question. "

Why then would anyone propose to replace the basic
relativistic wave equation including Coulomb potential
with an equation with additional dynamical structures?
The advantages are twofold. First, in most mathematical
structures, increase in accuracy of the unperturbed piece
pays dividends in the form of increased rate of conver-
gence and the ability to dispense with the treatment of
terms whose only function is to build up some basic
structure of the unperturbed term. If one includes a basic
nonperturbative structure, one gets all of the higher-
order perturbative terms corresponding to it as a bonus.
For example, Barbieri and Remiddi, and Caswell and
Lepage pass from the nonrelativistic Schrodinger equa-
tion with nonrelativistic Coulomb potential to a relativis-
tic wave equation with relativistic potential to reap the
benefit of inclusion of some of the a terms in their
lowest-order equation and to ensure correct relativistic
kinematical contributions in higher order. In addition,
Caswell and Lepage, in their first work on systems with
one heavy particle and one light particle took as their
lowest-order equation the one-body Dirac equation with
the second particle on the mass shell in order to include
fine structure (i.e., Dirac spin structure) in their unper-
turbed solutions. Second, the lowest-order equation of
perturbative QED with its particular structures is
abstracted by many authors for use elsewhere in QED,
nuclear, and particle physics as a wave equation for the
bound-state calculation. In those applications structures
of little consequence in perturbative QED (e.g., short-
distance or strong-potential behaviors) may play a
significant role. Thus, accurate knowledge of QED struc-
tures of this sort serves as a check on the uses and abuses
of such equations.

[p +2E„A—A —e +m ]/=0 (8.6)

in which e and m are Todorov's reduced energy and
mass of a relativistic particle of relative motion intro-
duced so that the second-order two-body equation takes
the mass-shell form. On the other hand, Caswell and
Lepage write their second-order equation in the form of

As we have mentioned, as first shown by Yaes and
Gross [17], there are an infinite set of "equivalent" three-
dimensional reductions of the Bethe-Salpeter equation,
differing in form and therefore in ease of application and
interpretation. The electromagnetic constraint equation
employed in this paper, with its characteristic energy
dependences and potential structures, permits nonpertur-
bative solution to higher-order in a than has yet been
possible for others in the set. To illustrate this point, we
consider in some detail the work of Caswell and Lepage
[35]. Caswell and Lepage reformulated the Bethe-
Salpeter equation in two different ways: the first in terms
of a one-body Dirac equation with the second particle on
the mass shell, the second in terms of an effective
Schrodinger equation (in the c.m. frame}. In the first ap-
proach Caswell and Lepage were able to incorporate
"fine structure of levels with differing angular momenta"
in the unperturbed QED solutions. However, the unsym-
metric nature of this solution restricted its application to
cases in which the binding was weak or the mass ratio
large. To remedy this defect, Caswell and Lepage
developed an effective Schrodinger equation to treat the
case of comparable masses. The price they had to pay
was loss of unperturbed solutions containing fine struc-
ture of levels with differing angular momenta. They were
able only to retain their version of a relativistic Coulomb
potential in their unperturbed Schrodinger equation.
They attributed the different structures of their treat-
ments to the physical fact that "the fine structure of
atoms with constituents of equal mass is quite different in
character from that of atoms with a large mass ratio. "
They observed that "it is difficult to create a formalism
which naturally accommodates both cases and still ad-
mits analytic solutions comparable in simplicity to those
presented" (in their second paper).

However, the electromagnetic two-body Dirac equa-
tions (4.14) are a solution to the problem posed by Cas-
well and Lepage. Since these describe the system symme-
trically through two coupled Dirac equations whose po-
tential structures do not change discontinuously from
high mass ratio to comparable masses, they can be solved
nonperturbatively in both regimes using the same numer-
ical techniques. Furthermore, for comparable masses,
they can be solved numerically without truncation to the
simple Coulomb potential of Caswell and Lepage. Thus,
their solutions contain the fine structure lost by Caswell
and Lepage.

We may see this explicitly by making use of the fact
that in one case, the equal-mass singlet, our equations
possess an exact analytic solution (see Ref. [16] and Ap-
pendix D in Ref. [46]). In fact, in that case, the second-
order form of our equations reduces to the minimal To-
dorov equation [72] on a singlet wave function:
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an effective nonrelativistic Schrodinger equation:

2

+A
2m

(8.7)

w —(m, m—~)

2w

In fact, we see that Z is simply the difference

Z=e —m

(8.8)

(8.9)

while m is the average

m= —,'(e +m ). (8.10)

Using these facts, we may rewrite the Caswell-Lepage
equation in the Todorov form:

[p +(e„+m )A —e +m ]/=0 . (8.11)

We see that, for the singlet state, the unperturbed equa-
tion that we solve shares its relativistic kinetic structure
with that of Caswell and Lepage. On the other hand, the
two equations differ in their dependence on the relativis-
tic Coulomb potential and on the energy-dependent e
and m . Despite its more elaborate structure, the
minimal Todorov equation still permits exact solution
[16]. In each case, the unperturbed eigenvalue may be
found by mapping the relativistic equation to the nonre-
lativistic Schrodinger equation with Coulomb potential
(A= a/r). Rew—ritten in the Todorov variables, the
Caswell-Lepage "relativistic Balmer formula" takes the
form

2

E —m = — m2 2 a —2
t8 l8

n
(8.12)

whereas the minimal Todorov equation's "relativistic
Balmer formula" is

2 2— 2

mw &w
2

(n —5i)
(8.13)

in which 5I is the relativistic shift of the angular momen-
tum given by

61=1+1/2—[(1+1/2) —a ]' (8.14)

Solution of each of these for the total energy w followed
by expansion in a leads to

am 3 am
47(64 pg

for the Caswell-Lepage equation and

am am 11 am
w 2m

4n 2n (21+1) 64 n~

(8.15)

(8.16)

for the minimal Todorov equation, respectively. Note
that the singlet eigenvalue for our equation (the minimal

in which e and m are an effective binding energy and
mass given by

w —(m, +m, )

2N

Todorov equation) already contains the correct angular-
momentum-dependent fine structure as well as the
correct angular-momentum-independent fine-structure
correct through order a . On the other hand, Caswell
and Lepage's unperturbed fine structure must be pertur-
batively corrected by "relativistic corrections to single
Coulomb exchange" and "single transverse photon ex-
change" in the Coulomb gauge to yield the singlet spec-
trurn correct to order a .

Now that we have a new lowest-order equation, how
are we to go on to higher order perturbation theory? One
could use that equation for a new approach to perturba-
tive QED calculations for bound states. We have shown
in Ref. [2], Appendix A, and in Sec. III how one may use
the projection of Sazdjian to obtain Todorov s inhomo-
geneous quasipotential equation from the Bethe-Salpeter
equation. One could use that equation to correct the in-
teractions that appear in the two-body Dirac equations
perturbatively, and then one could solve the resulting
corrected wave equation nonperturbatively just as we
solved the lowest-order equation in this paper. (This
would avoid the necessity of using higher-order quantum
mechanical perturbation theory. )

D. Nonperturbative application of relativistic
wave equations to e+e and qq composites

In the past, many authors have transported the relativ-
istic wave equations and relativistic correction structures
of perturbative electrodynamics far from their origins in
perturbation theory. In the process, strong potential
structures of these equations which were of no conse-
quence (to a given order) in perturbation theory may
come to play an important role. This has several conse-
quences. First, equations whose agreement with quan-
tum field theory for bound states has been checked per-
turbatively but not when solved as wave equations may
be used in the (sometimes mistaken) belief that solution
works. The danger of this is illustrated by the local Breit
equation whose nonperturbative treatment produces er-
roneous results for parapositronium and which, as has
been pointed out by Childers, leads to singular potentials
for other e+e states [73]. The agreement must be
checked, as we have done for two-body Dirac equations
(4.14) in Sec. VI. Second, different wave equations that
gave equivalent results to a given order (either when
treated perturbatively or nonperturbatively) for bound or
scattering states in the semirelativistic region may yield
inequivalent results when solved nonperturbatively for
bound or scattering states in a highly relativistic region.

As we have shown, the two-body Dirac equations (2.1)
and (4.14) provide an alternative treatment of the two-
fermion bound-state problem. These equations use their
own characteristic local potential structures to produce
the same spectra for perturbative QED that are produced
by more complicated momentum structures in standard
equations. Thus, when such equations are extended to
other problems, we may find disagreements of the first or
second types. For their part, the two-body Dirac equa-
tions yield straightforward numerical solutions for (even-
tual) comparison with the other methods.
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Recently, motivated by the work [18] of two of us,
Spence and Vary [28] have nonperturbatively solved
three different three-dimensional truncations of the
Bethe-Salpeter equation with single-photon exchange and
in each instance obtained "zero-width e+e resonances"
(continuum bound states) at 1.351, 1.498, 1.659, 1.830,
2.009, and 2.195 MeV in direct contradiction to our re-
sults of Sec. VII. The reader should note that Spence and
Vary restrict themselves to the same field-theoretic dy-
namics (single-photon exchange) that we do. They use
the Tamm-Dancoff equation, the no-pair form of the
Breit equation (the Salpeter equation), and the
Blankenbecler-Sugar equation along with a nonperturba-
tive treatment of the corresponding Lippmann-Schwinger
equations. All of the equations that they employ are non-
local; they claim that this feature is crucial for generating
their continuum bound-state solutions. They point out
that one of these equations —the no pair form of the
Breit equation —is known to produce a good description
of the ordinary bound states of positronium. However,
the bound-state calculation that they refer to is actually a
perturbative calculation and thus lends no support to
their nonperturbative solution of that equation. Thus, if
one were to trust their results, one would first have to
rule out a disagreement of the first type by carrying out a
nonperturbative treatment of each of these truncations to
obtain the standard QED energy levels through order a
(just as we have done for Eqs. (4.14) in Sec. VI [74]). In-
terestingly, we were originally motivated to study the
nonperturbative treatment of the QED bound-state spec-
tra in our equation by the possibility that the potential
structures responsible for disagreements of the second
type could lead to highly relativistic resonant e+e
states.

Thus far there is no direct evidence for e+e reso-
nances in Bhabha scattering experiments. Recent
searches for both short-lived and long-lived low-mass
couplings in the e+e system [26] have found no evi-
dence for deviations from the nonresonant Bhab ha

scattering background within statistical uncertainties of
0.2%(0 ) in the invariant energy range from 1500 to 1850
keV. Of course if the authors of Ref. [28] calculate
corrections to their zero-width predictions, they may find
lifetimes outside the range looked for in the experiments.

On the other hand, if our treatment of this problem
resembles the full Bethe-Salpeter solution, such states do
not exist, so that one must look beyond the two-particle
sector of pure QED to explain the relativistic resonances
seen in heavy-ion collisions.

In yet another area of relativistic two-body physics,
various authors have borrowed (sometimes innocently
and sometimes with additional cutoffs [75]} interactions
from nonrelativistic and relativistic electrodynamics for
use in models of quark-antiquark bound systems. In pre-
vious papers [1,2], two of us have applied two-body Dirac
equations with potential structures motivated by QCD to
calculate the mass spectra of mesons composed of light
quarks along with those composed of heavy quarks. The
goodness of the resulting fit to the full meson spectrum
was due in no small part (especially for the "hyperfine"
and "fine-structure" splittings), to the peculiar short-
distance vector interaction structure of our equations in-
herited from both the constituent and collective (To-
dorov) minimal interaction structures contained within
them. As we have shown, this structure, when applied to
electrodynamics itself, reproduces the two-body spectrum
of QED. These results, taken together, argue that any
competing approach to QCD which solves wave equa-
tions in which short distance dynamics is dominated by
effective Abelian replacements for the Coulomb potential
inserted into elaborations of the Darwin interaction (or
equivalently the Breit interaction) or which are based on
truncations of the Bethe-Salpeter equation of QED
should be judged on their ability to reproduce the spectra
of QED when treated numerically or analytically before
being applied to QCD. Measures to avoid singularities in
the interactions borrowed from certain approaches to
QED, such as the use of cutoffs, may invalidate the equa-
tions for QED applications, introducing spurious dynam-
1cs.
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APPENDIX A: DERIVATION OF TODOROV'S INHOMOGENEOUS QUASIPOTENTIAL EQUATION
FOR SPINLESS PARTICLES FROM THE BETHE SALPETER EQUATION

Written in terms of the constituent c.m. energies E', E2 the inhomogeneous Bethe-Salpeter equation in an arbitrary
Lorentz frame takes the form

& (p;q)=K (p;q) — fd kK (p;k)G', +'(e,P+k)6',+'(e,P —k)T (k;q)
(2m)

or symbolically,

T =K +K 6'+' T 6'+' = i(2m) G'+'6—'+' .w w w 12w w& 12w ~ ~ 1 2

(Al)

(A2}

Equation (Al) relates the off mass-shell scattering amplitude T (p;q } to the two-particle-irreducible kernel K (p;q).
(6 +' is the Feynman propagator. ) For an incident-free (on-mass-shell} plane wave, given in relative momentum space
by
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X.",,&(p) =5(P p }5'(pi q—i »
we construct the Bethe-Salpeter "wave function" y'+ '~,

T (p;q~)= fd p'T (p;p'}y ' (p')—= f d p'K (p;p')y'+' (p'),

in which q = P(—P.q )+q~. Then (Al) is reproduced for P.q =0, if

,' (p')=5(P p'}5'(pI —q, )+G'» „'(p')T (p';q, )

'q (p')+G', 2
' (p') f d kK ( ', k)f(+' (k)

(A3)

(A4)

(A5)

In this equation K plays the role of the potential [the role played by V in (3.12)]. We now write the two-particle, off-

mass shell, Feynman propagator as a sum;

G(+) (p)
—g(+)(p)+R(+)(p)

of a "minimally off the mass shell" Green's function:

~ f(p&, w)5(P p)
0'+)(p)=,—, , :5(P p—)G„+&'( p, )

(2~) w p, —b (w) —ie

(A6)

(A7)

and a residual, R. Like the Todorov Green's function, G(+J) satisfies elastic unitarity provided that f(p ~, w ) = 1 on mass
shell. G(+&' reduces to the Todorov Green function when f=1. For equal masses we obtain the Logunov-Tavkhelidze

Green function when f=w(2+p(+m +w)/[8(p~+m )] and Blankenbecler and Sugar Green function when

f=w l2+p~+m . Following the work of Blankenbecler and Sugar [42] we write T in terms of the Green function
O'+I' and an effective interaction &defined by

W =K+KR W=K+8'R K

K=(1 K„R )W—=W (1—R K„) .

Then (A2), (A6), and (A7) imply that

(1—KR )T=K+K9' 'T,
which is satisfied, according to (A8b), when

(A8a)

(A8b)

(A9)

(A 10)

Equation (Aga) does not restrict elements of W to the mass shell. We wish to determine the quasipotential V ( =2w@)
in terms of O'. We begin by performing a general Sazdjian projection [40,2] of the Bethe-Salpeter wave function f '+ '.

P'+I'
~ (p)=g '~ (p)+5(P p)G') (p) )f d kK (p, ;k)y +' (k) . (Al 1)

This removes the c.m. relative energy dependence of y +~ (p), so that like the constraint wave function P satisfies

P pP'+)
q (p}=0. Then, we define the wave function (Ii such that

P'+)
q

(p)=5(P p)+'+g
q (p) ) . (A12)

We can eliminate the general factor f by multiplying Eq. (All) by f ' and using the fact that f ~f' ' (p)=f' ' (p).

This produces the Todorov wave function

P'+q (p) =f(p), w ) 'P'+&
~
—(p)—=5(P.p)%"+q' (p) ) . (A13)

Hence we see that all the Sazdjian wave functions (}}'+I) (p) (and associated Green functions) are related to the Todorov

choice P'+' (p) by a scale transformation. Todorov's choice, the simplest one (f=1), yields the Schrodinger-like equa-

tion of constraint dynamics; hence we use it in this paper. We use (A5) and (A6) to rewrite the transform as

(p) f d k[5(p k) R( )(p)K (p k)]y (k) (A14)

From (A8b} and (A14) we obtain, without employing formal inverses,

f d kK„(p;k)y +' (k)= f d k'W (;k')p'+' (k') = fd'k' W (p;k,')qi'+) (k', )

so that (A 1 1) can be written as

(A15)



NONPERTURBATIVE SOLUTION OF T%0-BODY DIRAC. . . 5153

ql'+' (p)=5 (pi —qt)+G'+'(p~) fd k~IV„(p~;ki)% {k) . (A16)

Equation {A16}has the same form as the quantum mechanical momentum space integral equation (3.12) for the con-
straint wave function. If we rewrite Eq. (ASa) in terms of

V (pi, kt)= —IV (pj, ki),
then

V (p„k, )+K„(p„ki)+f d k'K (pi;k')R (k')8' (k';k, )=0

(A17)

(A18)

so that (A10) implies the Todorov quasipotential equation

d k~ 1
T~(pt, kj)+V (pj, kj)+ f i V~(pj, kt) i 2

T (k~, k~)=0.
(2~) 2w( k I b(—w ) i e)— (A19)

The difference between this field-theoretic equation and the formally equivalent quantum mechanical Lippmann-
Schwinger equation (3.16) is that Eq. (A19) gives V in terms of T whereas (3.16) gives T in terms of V . Since the
homogeneous form of Eq. (A19) would be identical in form to the constraint equation Eq. (3.1) (with 4= Vl2w) we use
the field-theoretic V as the V in our quantum constraint equation.

As a simple example, consider a scalar Yukawa field theory with a momentum space Born amplitude

T~"{p' q') =&(pI +p'z q'i q2—)T.'"—(p' q') .

Hence, the corresponding momentum form of our constraint potential is

—(&) ()), g]g2
V~ (pt, qI. }=—T (pi,pt)= —

~ ~ 2 z
(PI qI ) +P t0

so that the coordinate space form of 4„,the quasipotential to be used in our constraint equation (3.1), would be

gtgz e ' e
—P/xq/ —P, /xq/

C'."(x,)= 2ppl ~ CX

2w srrw ixi[ ix i

(A20)

(A21)

(A22)

in which g,g2=16nm, m2a and m„=m, mzlw. In order to determine the constraint potential to a higher order (say
V' '} we would first have to evaluate the corresponding single-loop diagrams T„' ' (appropriately renormalized). In that
case (A19}leads to

V~ '(pi, kt)= —T' 'w(p~, kj )+f V (pt, kI ), V (ki, kt) .
(2n. ) 2w [knez

—b (w) —ie]
(A23)
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