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Dirac neutrinos in dense matter
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The evolution of a supernova core can be dramatically different if the neutrinos trapped in the
core mix and/or flip helicity and escape as "sterile, right-handed" neutrinos. Thus the observation
of neutrinos from supernova SN1987A constrains the mass and mixings of neutrinos. Here we
develop the general description of neutrino mixing and spin flip in a background of matter when the
nonforward scattering rate is important. The constraints are estimated,
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I. INTRODUCTION

Many astrophysical and cosmological quantities are
very sensitive to small neutrino masses. Two well-known
examples of this are the solar-neutrino flux and the ratio
of neutrino-to-baryon mass densities in the Universe. In
addition, the dynamics of stellar collapse is also sensitive
to neutrino properties [1—4]. The aim of this paper is to
develop the description of Dirac neutrinos in the core of
a supernova.

Current popular prejudice favors that, if neutrinos
have a small mass, the mass is of the Majorana type. This
is because small neutrino masses are natural in "seesaw"
models and the simplest such model yields Majorana neu-
trinos. However with a slight increase in complexity [5]
the "seesaw" mechanism can yield light Dirac neutrinos
without fine tuning. Here we shall usually (but not al-

ways) assume Dirac neutrinos with sterile right-handed
components.

In the Sun, the neutrinos propagate through a back-
ground of matter as they freely stream out from the core.
Forward scattering off of this matter background can
produce a large change in the neutrino's flavor. This
is known as the Mikheyev-Smirnov-Wolfenstein (MSW)
[6, 7] effect and it has been extensively discussed in the
literature (for a review, see [8)). However these discus-
sions have always assumed that the neutrino's spin is a
conserved quantity and can be neglected. Then the de-
scription for Majorana and Dirac neutrinos is identical.
However when nonforward scattering occurs the helicity
may change and then the descriptions of the two types are
different. Here we take standard-model neutrinos with
small Dirac masses and develop the relativistic quantum
theory including simultaneously the matter background
and the spin dependence.

Nonforward scattering of neutrinos occurs during the
early Universe and during stellar collapse. In particu-
lar, the dynamics of the hot neutron star produced by
stellar collapse have yielded useful limits on the mass of
Dirac neutrinos. Massless standard-model neutrinos are
trapped in a hot neutron star, however a massive Dirac
neutrino can escape by flipping its spin during scattering
to become a sterile, "right-handed" neutrino. Recent de-

tailed calculations have yielded a limit on the mass of a
Dirac muon or tau neutrino (i.e. , no mixing) of approxi-
mately [2, 1, 9]

m & 28 keV. (1)
If mixing of the massive neutrino with the electron neu-
trino occurs, the bound on the mass becomes more se-

vere [9]. This is because in the hot neutron star the
electron-neutrino density is far greater than the muon-
or tau-neutrino density, hence mixing increases the ernis-
sion rate. In this paper the changes in the bound, Eq.
(1), from neutrino mixing are estimated.

This limit has come under intense scrutiny of late since
several nuclear decay experiments [10) indicate that there
may be a neutrino with mass of 17 keV and 1% mixing
with the electron neutrino. Cosmology constrains such a
neutrino to decay much faster than the age of the Uni-

verse. More importantly, double-beta decay experiments
limit the component of the electron neutrino's Majorana-
type mass to be less than a few eV's (see, e.g. , [ll]), and
so the simplest interpretation of the nuclear-decay results
is that the 17-keV neutrino is of the Dirac type. Thus
there is a conflict between these experiments and the su-

pernova limit [12].
At the core of a hot neutron star, the background mat-

ter induces an effective electron-neutrino mass-squared
difference of

A, = (40 keV) , (V. 'l I' Z

P (2)
(5 x 10i4 gicm )

(N.B. the neutrino density is not included above, see Ap-

pendix). This is comparable to the mass limit found from

spin flip, Eq. (1), and thus it is to be expected (from expe-
rience with the solar-neutrino flux) that the background
matter will have a large effect on the neutrino mixing. In
order to accurately calculate the rate for spin flip under

these conditions we derive in Sec. II the fields for two

mixed Dirac neutrinos in a matter background.
In Sec. III our expressions for the neutrino fields are

applied to calculate scattering reactions relevant for neu-
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trino spin flip in a hot neutron star. The rate for spin
flip in neutrino-nucleus scattering is calculated for an
arbitrary initial neutrino distribution. In addition, the
rates for neutrino-electron and neutrino-neutrino scat-
tering are calculated and a new contribution is identified.
These results are then applied to calculate the general-
ization of the bound given in Eq. (1) to nonzero mixing
angles.

In a hot neutron star, and at times in the early Uni-
verse, neutrinos make up a significant fraction of the to-
tal number density. Under such conditions, neutrinos
forward scatter off of other neutrinos and the flavor evo-
lution is in principle nonlinear. This topic has been dis-
cussed many times in the literature, however previous
authors mistakenly neglected important terms in the in-

duced mass. In an Appendix we give these terms and
discuss their interpretation.

The emphasis here is on a Dirac neutrino with
standard-model interactions. However many of the re-
sults are also valid if the neutrino is of the Majorana type.
The difference between the two types is not discernable
when only the negative helicities of a relativistic neutrino
are involved. Accordingly, the expressions for the neu-
trino fields derived in Secs. II A and in the beginning of
II B, and also the spin-flip rates derived in Sec. III C, are
specific to Dirac neutrinos. All other discussions herein
apply equally to Dirac or Majorana neutrinos.

Bp f vR —mvr, = 0,

where vL, and vR are the left-handed and right-handed
chiral components of the Dirac neutrino field and m is
the vacuum mass. V is the potential term and acts only
on the left-handed field because of the chiral nature of
the weak interactions. For a background of only elec-
trons, and including only the charged-current interaction,
V = y 2G~N, with N, the number density of electrons
and the weak-interaction constant GF = 1.16637 x 10 5

GeV 2. For a discussion of all the difFerent contribu-
tions to the potential, see, e.g. , Ref. [8] (and also the
Appendix). Here we examine the exact solutions of Eq.
(3).

Motivated by the chiral potential, we choose to work
in the chiral representation of the p matrices [13] where

0 —1
—1 0

0
—cr 0

1 0
0 —1 (4)

In this representation the neutrino field can be written

for the evolution of a neutrino. For a Dirac neutrino in
an unpolarized constant-density matter background the
equations of motion are

(B„p"—Vpo)vr, —mvR ——0,

II. THE FIELDS FOR DIRAC NEUTRINOS
IN A BACKGROUND OF MATTER

0 x
0 )

W

This section addresses the basic issues of the form of
the neutrino field in a matter background. In Sec. II A
general kinematic issues are examined by calculating the
field exactly for one neutrino flavor. In Sec. IIB the
issue of spin versus flavor mixing is examined by studying
the more realistic case of two relativistic neutrinos in a
matter background. In Sec. II C the physical situation of
three neutrino flavors is discussed.

A. One neutrino flavor

In the standard model of weak interactions, neutri-
nos interact with other particles through exchange of W
and Z bosons. This interaction is coherent for neutrinos
forward scattering off of a background of normal mat-
ter. Assuming this background matter is unpolarized,
and working in its rest kame, the fermion field bilin-
ear of the background matter in the weak interactions
can be replaced by the number density. Then the weak-
interaction terms in the Lagrangian act like a potential

I

where C and y are two component fields. Because the
medium is assumed to be uniform and unpolarized, lin-

ear and angular momentum will be conserved quantities.
Thus to derive expressions for C and y we expand them
in terms of the helicity eigenstates for the positive- and
negative-energy states [14, 15]. The helicity operator is
o ~ k where o' is the spin and k the three-momentum.
In vacuum the helicity eigenstates are degenerate; how-

ever, this is not the case in a matter background since the
weak interactions are chiral. The positive- and negative-
helicity eigenstates for the particle and antiparticle must
each be considered explicitly. The equations of motion
yield relations among the coefficients of these states. The
overall normalization of the coefficients is determined by
constructing a bilinear of the fermion fields, for example,
the Hamiltonian, and requiring it to have the canonical
form. This procedure completely determines the expres-
sion for the fermion fields up to some overall phases.

The expressions for C and y are found to be, in the
usual particle-antiparticle formalism [16]

) ~t ( + ) (k) (—i'm)
( Qrn2+ (Z+ —k)2

( - + ) P(k) (-~K *)
gm'+(& +k)'

( + + ) dt P(k) (iK+ x)

rn~+ (E +k)z

( — ) dj (k) (,K .)~
m'+ (E —k)'

(6)
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dt P(k) {iK+ x)

m' + (E+ + k)'

a P(k)e{ '~-'*)—
gm2+ (E + k)' m'+ (E —k)'

where ay (a+~) and dy (d~+) are the usual annihilation
(creation) operators for the + helicity of the neutrino
and antineutrino, respectively. o,(k) and P(k) are two-
component helicity-eigenstate spinors defined such that

rr ~ ku(k) = kn(k), o.t (k)n(k) = 1,

o A:P(k) = -kP(k), Pt(k)P(k) = 1,

or, explicitly for k = k(sin8cosg, sin 8sing, cos8) (cau-
tion: do not confuse these spatial rotations with later
neutrino-mixing angles)

cos(8/2)
sin(8/2) e'~

(8)

kinematics of relativistic neutrinos. In particular, in the
dense matter of a supernova core, the neutrino spin-flip
cross section is independent of the potential, V, to lead-
ing order in the relativistic limit [16].

It is amusing to note that some unusual behavior oc-
curs for nonrelativistic neutrinos [17]. Equations (9)
show that the minimum energy corresponds to a nonzero
value for the momentum. This can be easily understood
qualitatively since a small momentum allows definition
of the helicity and hence then the energy can be lowered
considerably by the potential V. One implication of this
is that velocity and momentum are no longer strictly pro-
portional to each other. The flux density of a negative-
helicity neutrino, v = P p v, can be calculated using
Eqs. (6) to yield

sin(8/2)
—cos(8/2)e'~

(k+ V/2)

grn'+ (k+ V/2)'
(10)

Note that for neutrinos, S = o /2 and n(k) and P(k)
are the positive- and negative-helicity eigenstates, re-
spectively, however for antineutrinos the spin operator is
S = —cr /2 so that then o,(k) and P(k) are the negative-
and positive-helicity eigenstates, respectively. The neu-
trino and antineutrino four-momentum of the + helicity
are defined to be Ky = (Ey, k) and K~ = (E~, k), re-
spectively. The energy-momentum relations are found to
be

E+ ——V/2+ Q(k —V/2)z + m2

E = V/2+ g(k+ V/2)'+ m'

E+ ——V/2+ g(k —V/2)2+ m',

E = —V/2+ g(k + V/2)'+ rn',

where E~(E~) denote the energy of the + helicity neu-
trino (antineutrino) and k is the magnitude of the three-
momentum.

Equation (6) agrees with expectations for the relativis-
tic limit. Then the left-handed chiral field, C, is domi-
nated by the negative-helicity neutrino and the positive-
helicity antineutrino (and the reverse holds for the right-
handed chiral field, y). In fact, using Eqs. (9) in cal-
culating the relativistic limit, it turns out that Eq. (6)
becomes independent of the potential, V, to leading or-
der. In part, this is because it is the vacuum mass term
which connects the different degrees of freedom together
through Eq. (3). This observation has an important
physical implication —the potential is irrelevant for the

Thus for a neutrino in a medium with V ) 0, if the mo-
mentum is small compared to V/2 the neutrino will move
in the direction opposite to its spin with a velocity inde-
pendent of the momentum. Similarly, for a neutrino to be
at rest in a medium it must have a nonzero momentum.

B. Two neutrino flavors, relativistic approximation

In the previous section it was demonstrated that a mat-
ter background has only small effects on the kinematics
of a relativistic neutrino. However it is well known that
a matter background has a large influence on the mixing
(see, e.g. , [8]). Briefly summarizing the previous findings
on mixing, a relativistic, negative-helicity electron neu-
trino has a large "induced mass squared, " A, given in
Eq. (2). However the electron neutrino is a flavor eigen-
state and this is generally different than a mass eigenstate
when the neutrinos have vacuum masses. The mixing be-
tween the Bavor and mass eigenstates is sensitive to the
induced mass term. When the induced mass is compara-
ble to the difference between the vacuum masses squared,
a resonance occurs. At the resonance the mixing is max-
imal, while for much larger A the mixing is suppressed.
Previously, these results have always been derived by as-
suming that the neutrinos' spin is fixed and using an
effective Klein-Gordon equation of motion [6, 4, 18, 14].
Here we shall keep the spin dependence and study mix-
ing using the Dirac equations of motion.

To simplify the discussion of two Dirac neutrinos in
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a background of matter, we shall assume that only one
neutrino is massive. By neglecting the mass of the lighter
neutrino it is then described by only a single Weyl field
since the right-handed component of this neutrino de-

I

couples. This approximation is probably realistic since
known fermion masses exhibit a strong hierarchy. Then
the equations of motion, in the chiral representation of
the vacuum mass basis, are

(i80 —io V' —V„)Oq„—V cos 8[cos 8oq„+ sin 842„] = 0,

(i80 —iver V' —V„)4 2„—mg —V sin 8[cos84'q„+ sin 84z„] = 0,

(i80 + io V)y —mC'z„= 0,

where @q„and4z„are the left-handed two-component
neutrino spinors and y is the right-handed two-
component neutrino spinor (see Eq. (5) and also Ref.
[14]).m is the vacuum mass term which connects the 4 z„
and y degrees of freedom to form the massive Dirac neu-
trino. 4q„has no vacuum mass but is mixed with 4 2„by
the weak interaction with the background matter. The
potentials V„and V are the neutral-current and electron-
neutrino charged-current potentials, respectively. 8 is the
vacuum mixing angle

4'q„cos 8 —sin 8 4,
Cz„sin 8 cos8 4„ (12)

between the mass eigenstates and the flavor eigenstates,
where the latter are denoted by subscripts e and p, . These
equations of motion are the two-flavor generalization of
Eq. (3).

The procedure for calculating the fields is analogous
to that described in Sec. II A. Assuming the background
matter density is constant (so that the potentials are
constants), the solution to the equations of motion is
written as a sum over plane waves. The physical mass
eigenstates will be the helicity eigenstates. For one mas-
sive Dirac neutrino and one massless neutrino there are
two negative-helicity and one positive-helicity particle
degrees of freedom (in vacuum and in a matter back-
ground). The equations of motion yield relations among
the coefficients of these degrees of freedom. The normal-
ization of the coefficients is determined by constructing
the Hamiltonian. To further simplify the situation I as-
sume that the neutrinos are relativistic. This is a very
realistic assumption for applications to the supernova or
the early Universe. Then it turns out that the expression
for the fields in the flavor basis is

4, = ) ~ sin8 —[a+a(k)e ' + * —dto(k)e ' '*]+(sin8~d&+e(' '+'* +cos8~d~&+e( ' '+*))P(k)

+(sin8~az e( ' ' * —cos8~aq e( ' ' '*l)p(k)

4„=) ~
cos8—[a+a(k)e ' +'* —dto(k)e ' -'*l]+ (cos8~dz~+e ' '+'*l —sin8~d e ' '+'*l)P(k)

+(cos8~az e( ' '-' l +sin8~aq e( ' '-'*l)p(k)

sin (28~) = (rnz sin28)2

[(A —m cos28) + (m sin28) ]
(14)

The expression for the y field is not given since it is not
relevant for neutrino scattering. Here the notation is the
same as in the one-flavor case but with the subscripts 1
and 2 denoting the lower and upper mass eigenstates in
the rnatter background, respectively. 8~ is the mixing
angle in matter for neutrinos, which is well known from
earlier studies of neutrino propagation through matter

For A (( m2 vacuum parameters dominate and 88,„„;for A —rn a resonance occurs and 8 —x/4;
and for A )) rn flavor efFects dominate so 8~ vr/2
and mixing is suppressed. The 8 is the mixing angle in
matter for antineutrinos and is also given by Eq. (14),
but with A = 2VA, -+ —A. For antineutrinos, 8~ „„
8 oo.

The kinematics of the neutrino are independent of the
matter background, to leading order in the relativistic
limit, but the second-order terms are important. While
solving the equations of motion, the energy and momen-
tum relations are determined
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E+ ——k+ m'/2k+

E = k+ m'/2k+ ".,
E,,~

= k+ V„+M,', (A)/2k+

E+;i,~ = k —&n+ Mi g( —A)/2k+

where we keep the next-to-leading order terms in an ex-
pansion of V„/k, V/k, or (m/k)2. The quantity M2 is
the mass eigenvalue in matter of the ith state and it has
the same form found in previous analysis (see, e.g. , [8])
of matter-dependent mixing

M, ~(A)

= [m~ + A p g(A —m cos 28) + (m2 sin 28) ]/2,

(16)

where A—:2Vk. The minus and plus signs correspond
to the 1 and 2 states, respectively, so that M~~ ) Mi2 for
positive and negative A.

The next-to-leading-order terms given in Eq. (1S) are
typically not important when integrating over phase
space in calculating neutrino scattering rates. How-
ever they are important in determining the proper mix-
ing states for discussing scattering. The nonforward-
scattering length scale is the mean-free path, Ls«tt ——

1/(oN), where in a supernova core, N is the nucleon
number density and o is the cross section, of order
G2FE, . The length scale which determines when two
mixed states are separable is the oscillation wavelength,
Lcsc ——4+k/[Mz —Mi]. However this length scale is
ahvays far shorter than the neutrino scattering length

Botella, Lim, and Marciano [19], is

V —V„= (N„+N„) ln~ (N—+ 'N-)

(18)

In evaluating Eq. (18) for the conditions found in a su-

pernova core, we find that Eq. (17) still typically holds
because m is much larger than neutrino energies therein.
If there is a net muon density, it will typically generate
an even larger differenc between these mass eigenstates
in matter. Thus it is proper to take all three of the neu-
trino mass eigenstates in matter to be the incoherent,
asymptotic, physical states when calculating scattering
rates.

The main result of this section is Eq. (13). These equa-
tions are easy to justify, a posteriori. For the negative-
helicity neutrinos, the mixing between the flavor basis
and the mass-eigenstates basis is the same function of
the matter background, Eq. (14), as found in previous
analyses of the MSW efFect. For the relativistic, positive-
helicity neutrinos, the matter background does not di-

rectly affect these particles so the mixing between the
mass eigenstates and the flavor eigenstates remains the
vacuum mixing. Thus, for example, the probability of
an electron-neutrino interaction producing a positive he-

licity neutrino is just (sin 8 m/2k), independent of the
matter background.

The derived neutrino fields in matter, Eqs. (13), can
be directly applied to calculate scattering rates in mat-
ter. One interesting, general result emerges when they
are applied to neutrino scattering via the weak neutral
current. The form of this interaction is

Lose «& Lscstt (i7)

This is because typically L„c is less than or of order
the forward scattering length scale 4vrk/A and hence Eq.
(17) is equivalent to GF E2 « 1 which is well satisfied for
E's typical to supernovae (N.B. in early universe appli-
cations ~N, —N,

~

&& N, and this may not hold). Equa-
tion (17) has an important implication. The relative
phase between the mass eigenstates that is acquired dur-

ing propagation between nonforward scatterings is very,
very large. Hence with many neutrinos this large phase
averages out and the mass eigenstates in matter can be
taken to be incoherent when they scatter. Thus when
discussing scattering in a uniform matter background the
rates are calculated using the neutrino mass eigenstates
as the physical initial and/or final states.

For three neutrino flavors, the situation is only slightly
different. The separation of the mass eigenstates which
couple dominantly to v„and v can be much smaller
than A, the electron-neutrino induced mass-squared dif-
ference. If there is no net muon density, then the relative
forward scattering potential between these neutrinos is
generated by radiative corrections and, as calculated by

Ln OC Zy, ) VaL7 &aL

oc Z„) O, G"4,
a

where G" are two-by-two matrices and the sum above
is over the flavor or vacuum mass eigenstates. How-

ever when expressed in the background matter mass-
eigenstate basis, the physical basis for neutrinos in uni-

form matter, the interaction does riot generally have the
form of Eq. (19). This is because the mixing between
the flavor and mass eigenstates of the negative helicity
neutrinos is momentum dependent. If the two neutrino
fields in Eq. (19) have difFerent momentum, then each
must be rotated by a different amount to become mass
eigenstates in matter. The two rotations will in general
leave off diagonal neutral-current terms. Using Eq. (13),
the mixing amplitudes for scattering from one neutrino
mass eigenstate into another via the neutral current off
of some particle Q, v (k) +Q —+ v„(k')+Q, is

Ut(k')U(k) = eos[8~(k) —8 (k')] sin[8 (k) —8~(k')]
—sin[8 (k) —8 (k')] cos[8 (k) —8 (k')]

(20)
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This has been conjectured previously [20] and now with
the derivation of the fields herein it is proved.

C. Three neutrino flavors

It is known that there are three flavors of light neutri-
nos. In the absence of direct experimental evidence, it
will be assumed herein that there is a hierarchy of neu-
trino masses with small mixing angles, in analogy with
that observed for the charged fermions. Assuming that
only two neutrino flavors mix, as done in the previous
section, is an approximation that may not always be ac-
curate. The mixing of three negative-helicity neutrino
flavors in a background of normal matter has been dis-
cussed in the literature on solar neutrinos (for a list of
references see [8]). However in the core of a supernova,
new efFects not covered in previous discussions are rele-
vant.

For three flavors, the mixing between the flavor and
mass eigenstates in matter of the negative helicity neu-
trinos is determined by the effective Klein-Gordon mass
matrix. In its most general form,

m2
1

m22

m32 A
(21)

The notation used here is that of Refs. [21, 8). U is a
3x3 vacuum mixing matrix analogous to the Cabibbo-
Kobayashi-Maskawa matrix, rn; denotes the vacuum
masses, and the A = 2kV 's are mass-squared terms
induced by the matter background. A, = 2k+2GFN, is
as given in Eq. (2) and comes from charged-current for-
ward scattering of neutrinos off of electrons in the mat-
ter background. A„= 2k~2G~N~ denotes the similar
induced mass term from charged current forward scatter-
ing ofF of the muon excess in the matter background. A~
denotes the contribution from radiative corrections given
in Eq. (18). Diagonal contributions to the mass matrix,
as from neutral-current scattering, are irrelevant so only
differences in the A 's are important. For the general
case, Eq. (21) must be diagonalized to find the masses
and mixings in a background of matter.

In discussions of solar neutrinos, only A, is relevant
in Eq. (21). In the Sun, A„vanishes since there is no
muon excess there. A is present for solar neutrinos but
negligible since it corresponds to a length scale far larger
than the Sun's radius. However for neutrinos in dense
matter, A„and A may be relevant. A is smaller than
A, by roughly five orders of magnitude but, as discussed
in the two-flavor section, the oscillation wavelength from
this term is still small compared to the nonforward scat-
tering length. A„may become comparable to A, in a
supernova core since typical lepton chemical potentials
are larger than the muon mass (and a large muon excess
can be produced through neutrino mixing). In general,
all three of the contributions to the induced mass; the
electron background, the muon background, and the ra-
diative p,-~ corrections, can be relevant for discussions of
neutrino mixing in dense matter.

A general discussion of three-flavor effects for arbitrary

neutrino masses is quite involved and beyond the scope of
the present work. Herein we shall make the assumption
that mz —mi « A„—A and so it is a good approxi-
mation to take mzi ——mzz ——0. Then the general 3 x 3
mixing matrix may be written as

0 Cy Sy
U = —C@ Sy—Sy Spy

Sy —C@Sy C@Cy
(22)

where P and g are two mixing angles, and S, and C~
denote sina and cosa, respectively. From Eq. (21), U
is defined to rotate the mass eigenstates into the flavor
eigenstates, [v ) = U;[v, ), where a = e, y„~ denote
the flavor eigenstates and i =1, 2, 3 denote the mass
eigenstates. The ordering of mass eigenstates is cho-
sen such that ms & mz & mi for all A, & A„. With
mzi = mzz——0, one linear combination of these states may
be chosen orthogonal to the electron neutrino, hence the
zero element in Eq. (22).

In matter with A& « A„ it is possible to obtain sim-

ple, approximate expressions for P and Q . The prob-
lem is then formally equivalent to the case of two nonzero
vacuum masses with only one induced mass, which has
been solved in [21]. Using this previous solution it is easy
to see that there are two possible two-flavor resonances,
an "e-w" resonance when mzsA, and a "p-w" resonance
when mzs —A„. The expression for P~ is given by Eq.
(14) with 8 -+ P, A ~ A„and 6 ~ ms. The expression
for Q is given by Eq. (14) with 8 ~ Q, A ~ A„, and
4 -+ rnsC&~. Thus when there is only one relevant neu-
trino vacuum mass, there are two mixing angles which
are important, describing "e-~" and "p 7." mixings, -and
in matter they depend on the background electron and
muon densities, respectively.

III. SCATTERING IN A SUPERNOVA CORE

After stellar collapse, the core of supernova SN1987A
is thought to have formed a young, hot neutron star. The
properties of such objects are discussed in the astrophys-
ical literature (see, e.g. , [22, 23]). Briefly, the densities
therein are typical nuclear densities over most of the core,
of order 5 x 10i4 g/cms. However neutrinos are trapped
in matter for densities down to 3 x 10 i g/cm because
at lower densities the nucleons are still in large nuclei
which have large elastic-scattering cross sections. The
initial core temperature is expected to be somewhere in
the range from 10 to 40 MeV. The nucleons are semide-
generate with their chemical potentials minus the rest
mass comparable to the temperature. The ratio of lep-
tons to nucleons, Yi, is initially about 0.35 and (for Dirac
neutrinos) this only changes as neutrinos carry away lep-

Here the results of Sec. II, especially Eq. (13), are ap-
plied to neutrinos in the core of a supernova. The tech-
niques necessary to develop a quantitative description of
core dynamics with neutrino mixing are illustrated. The
constraint on Dirac neutrino masses from spin flip is es-
timated for various neutrino masses and mixings.

A. A supernova core without neutrino mixing
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ton number by leaving the core. In the standard picture,
neutrino emission is a very slow process —the neutrinos
disuse out of the hot neutron star over several seconds.
This is consistent with the observed neutrino pulse from
SN1987A [24]. Thus the electron chemical potential is

p, = 290 MeV
(0 35) q5 x 10i4 g/cm )

(23)

much larger than the temperature and so the electrons,
and other leptons which are in "chemical" equilibrium
with the electron, form degenerate Fermi-Dirac gases.

When there is no neutrino mixing, only the electron
and the electron neutrino share the core's lepton num-
ber. If the number densities were equal, the chemical
potentials of the two particles would be about 230 MeV.
However the electrons have electric charge and balance
the protons' charge while the neutral neutrinos cannot do
this. Thus whether complete transfer of lepton number is
achieved or not depends on details of nuclear statistical
equilibrium (see, e.g. , [22]). In numerical simulations of
the hot neutron star [23], the electron-neutrino chemical
potential in the core is somewhat less than this value.

In the calculations below it is assumed that the core
has constant and uniform density and temperature. Such
an approximation may be quite unrealistic "specially
for considerations of neutrino mixing in matter. Diffusion
(and convection) carries neutrinos through varying den-
sity and greatly enhances neutrino species mixing. How-
ever the estimates below using constant density should
give conservative values for when neutrino species share
the lepton number in a supernova core. It is intended
that this discussion clarifies how to handle neutrino mix-
ing in dense matter for subsequent numerical treatments
of a supernova core.

B. Distribution of lepton number
for mixed neutrinos

In general, for Dirac neutrinos, the total lepton num-
ber is the only conserved quantity. Thus it is in principle
(and often in practice) possible for the electron, all three
neutrinos, and the muon to share the lepton number in
the core of a neutron star. If and how this comes about
is determined by the reactions in the core which change
one lepton into another. A particular lepton must be
produced on a time scale faster than the neutrino difFu-

sion time for it to share the core's lepton number. In this
section some of the relevant reactions are examined.

When neutrinos mix, how we must describe the neu-
trinos changes. As discussed in Sec. II, the physical ba-
sis for describing neutrino scattering in dense matter is
the mass-eigenstate basis. For vanishing vacuum mix-
ing angles, the flavor eigenstates are equivalent to the
mass eigenstates. However this equivalence is a little
strange for massive neutrinos —a flavor eigenstate does
not always correspond to the same mass eigenstate. At
a resonance, the approximate identification between the
mass eigenstates in matter and the interaction eigen-
states Hips. Hence the reaction rates of the mass eigen-

states are strongly energy dependent —approaching step
functions in energy at a resonance. They are also quite
different between neutrinos and antineutrinos. Because
of this, it is no longer generally possible to make a dis
tinction between chemical and thermal equilibrium when
describing how mixed neutrinos approach equilibrium.
Typically, a particular mass eigenstate in matter comes
into equilibrium at many different rates, and the rates
for different mass eigenstates are analogous.

This means that it is incorrect to take different chemi-
cal potentials for different neutrino mass eigenstates and
then watch how they evolve in time. The phase-space
distribution will generally be quite far from Fermi-Dirac,
and in calculations where the relative lepton number of
difFerent neutrino species changes in time, the energy de-
pendence of the neutrino number densities must be kept
explicitly (at each matter density). Only after a long
enough time, such that all of the neutrino phase-space
densities are identical, will the common distribution be
Fermi-Dirac. There may be special limiting cases, when
the neutrino resonance energy is much larger or much
smaller than the chemical potential, where an approxi-
mate intermediate situation exists and a particular par-
tial mass eigenstate can be described by a single chemical
potential. However one must be careful since the reso-
nance energy depends on the electron density and so this
approximation may not hold over the whole supernova
core. In general, the energy dependence of the neutrino
number densities should be kept explicitly (at each mat-
ter density).

e+p —+ v; +n

The fastest initial reaction that creates new lepton
flavors is typically [9, 22] the neutronization process,
e+ p ~ ij, + n. This is a purely charged-current reaction
involving only the electron-neutrino Geld so the mixing
factor for producing a neutrino is just ~U„~2 where the
subscript i denotes the ith mass eigenstate in matter. For
free nucleons and unblocked neutrinos, the rate equation
ls

dzY: g4= (10 /sec) s' ~U„~ (E,).
dE, dt ps 5

(24)

sin P&2x10 (25)

However since A, given by Eq. (2) is generally larger
than the mass given in Eq. (1), the more relevant hmit

The neutrino's energy dependence is shown explicitly and
p,, is as given in Eq. (23).

From the three-flavor mixing matrix given in Eq. (22),
we see that only the neutrino mass eigenstates 2 and 3
can be produced in this reaction. This is because we took
the lightest two vacuum masses to vanish so one linear
combination of these states can be chosen orthogonal to
the electron neutrino. For m~s && A„ the P reduces to
the vacuum angle, P. The mass-eigenstate-2 neutrino is
dominantly the electron neutrino and is produced quickly
while the mass-eigenstate-3 neutrinos will share the core's
lepton number for
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102

101

CONSTRAINTS ON DIRAC NEUTRINOS U» the mixing matrix element between the muon neu-
trino flavor state and the ith neutrino mass eigenstate in
matter, as given in Eq. (22). p,„represents the chem-
ical potential of the initial neutrino and is taken to be
the same as p, given in Eq. (23). We shall assume that
the neutronization reactions have been fast enough, Eqs.
(25) and (26), to bring the 2 and 3 neutrino mass eigen-
states in matter into equilibrium so that they have equal,
large lepton numbers. Then v; +n —+ p+ p, will increase
the net lepton numbers of muons when

1OO out of equ.
sin @&2x10 (28)

10 10-12
I, , I

1O-9 1O-8

sin 2$

I

10 1OO

FIG. 1. Plot of vacuum mass versus vacuum "e-7." mix-
ing for a Dirac neutrino in a supernova core. The dashed
contour is an estimate of when all leptons share the core's
lepton number. The solid lines indicate bounds on the mass
from neutrino energy loss for various assumptions about equi-
librium. The cross denotes a 17-keV neutrino with 1%mixing.
The shaded region is estimated to be excluded.

for finding the lower bounds on Dirac masses from the
spin-flip process is A, &) m . In this limit, the i=1
mass eigenstate is the dominantly nonelectron neutrino,
and using that coss P~ - [(ms2sin2$) j(2A, )js from Eq.
(14), the equilibrium condition is

sin 2$&3x10
40 keV)

(26)

The conditions assume a neutrino diffusion time scale
of 1 sec. These equations determine the vacuum mass
and mixing-angle parameters for which the electron and
two neutrinos will be in equilibrium and share the core's
lepton number. These constraints are plotted in Fig. 1
as a dashed line.

8. v; +n-+@+p

d~Y E3 E2 —m

dE„dt
= (5 x 10 /sec) ~U»~ (E„),2.1p~

(27)

where Y„ is the muon fraction, m„ the muon mass, and

The neutronization reaction transfers lepton number
from the electrons to the 2 and 3 neutrino mass eigen-
states. The reaction discussed here will subsequently
transfer lepton number to the muon. The typical chem-
ical potential, Eq. (23), is larger than the muon mass
and when the electron and muon chemical potentials are
equal the muon number density will be about ~ the elec-
tron number density.

For free nucleons and unblocked muons, the rate equa-
tion is

for A„« mss. When the muon density becomes large
such that A~ )& rn2s then this mixing factor is sup-
pressed. Assuming that the muon chemical potential
becomes comparable to the electron chemical potential,
ignoring muon blocking of the final state, but including
the mixing matrix element suppression, the equilibrium
condition becomes

sin 2Q & 1 x 10 (29)

V2 Y
1

FIG. 2. Diagram describing how lepton number is trans-
ferred from electrons to the other leptons from charged-
current interactions with nucleons. The neutrino-number as-
signment assumes that A, )) m . The dashed rate is a pos-
sible reaction that is extra suppressed.

Initially there is no muon background so the rate is un-
suppressed and Eq. (28) is applicable. However as the
muon number density becomes large and comparable to
the electron number density the rate is eventually sup-
pressed and then Eq. (29) is comparable to that for neu-
tronization, Eq. (26).

As the muon lepton number grows, the lepton number
of the 1 neutrino mass eigenstate in matter grows with it.
This state is dominantly muon neutrino with no electron-
neutrino component. Thus there is no small mixing angle
suppression at all for converting muons into this neutrino
via the neutronization reaction y, + p ~ v, + n

The large electron number density suppresses the rate
for producing nonelectron neutrinos, Eq. (26). However
once these neutrinos are produced, they can in turn pro-
duce muons without this suppression and the muons in
turn quickly produce the missing neutrino state. Thus
the first step is the bottleneck in the process of transfer-
ring lepton number from the electron to the other lep-
tons. It will typically be the case that either only two
leptons share the lepton number, the electron and the
dominantly electron neutrino, or all five leptons share
the lepton number, the electron, the muon, and all three
neutrinos. The situation is summarized in Fig. 2.
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8. u; +8 —+Pz +e

Neutrino-electron scattering also contributes to bring-
ing neutrinos into equilibrium. The nominal rate for this
process is about 2—3 orders of magnitude smaller than the
nominal neutrino-nucleon charged-current reaction rate.
In part, this is because only a small amount of phase
space is available to the final-state electron. However
the neutronization rate may eventually be blocked by the
scarcity of free protons and by the neutron shell blocking
of electron capture on heavy mass nuclei [22]. Thus this
reaction must be included in a detailed treatment of how

I

neutrinos are brought into equilibrium.
The mixing matrix elements, and the neutrino energy

dependence, of this reaction are different from those used
in the neutronization process. Both of these effects may
make neutrino-electron scattering important for neutrino
equilibrization. When calculating the rates it is vital to
notice that because the neutrino energy changes substan-
tially in this reaction, the neutral-current amplitude can
change the neutrino's species [see Sec. II, Eq. (20)] in ad-
dition to the species changing from the charged current.
To illustrate the nondiagonal neutral current, we assume
only two neutrino fiavors and find the matrix element for
vz + e —+ vi + e scattering to be proportional to

((sin 8~(k) cos8~(k') + (—z + z) sin[8~(k) —8~(k')]) (k q) + z sin [8~(k) —8~(k')](k q') ), (30)

where z —= sin 8~,~i, = 0.22, k and k' are the initial and final neutrino momenta, and q and q' are the initial and final
electron momenta. For A, = 2V, k » mz, 8~(k) —ir j2 —[(rnid sin 28)/(2A, )], and assuming both A, and A', && m2,
then this matrix element can be approximated as

1+ ——+z 1 —— (k q) +z 1 —— (k q')
2A', ) ~

2
~ ~ k) ( k)

The terms which vanish when k = k' come from the neutral current and the remaining term comes from the charged
current. In general both currents contribute to bringing neutrinos into full equilibrium.

The species-changing nature of the neutral-current scattering is only relevant when the fiavor of the final neutrino
is to be measured after the scattering. If one sums the cross section over all possible final-state neutrino species, the
cross section becomes independent of the final neutrino basis.

vi-+vi ~ vj +vg

The large densities of negative helicity neutrinos means that neutrinos will also scatter off of other neutrinos. This
scattering is mediated by the neutral-current weak interaction however [see Sec. II, Eq. (20)] the mass eigenstate can
change because the scattering is in a background of matter. The matrix element squared for vz + vz ~ vi + vi
is given by

lM2, z-i, il' = G'F32(p ')«k) &»n[8-(» —8-(~)]»n[8-(~) —8-(»]+»n[8-(p) —8-(k)]»n[8-(~) —8-(~)])'
(32)

where q and k (p and r) are the initial (final) neutrino
four-momentum.

In vacuum, 8 = 8 and this process vanishes as ex-
pected since then the neutral current is diagonal. The
matrix element is a function of differences of mixing an-

gles because of the symmetries of the neutral current.
The neutral current is covariant under a constant rota-
tion by angle ( and hence the matrix element is invariant
under 8 ~ 8 +(.

The matrix element squared for v2 +v2 ~ vp +v~
with the Anal v2 having four-momentum p can be ob-
tained from Eq. (32) by replacing the first two sin factors
with cos's in the two terms in the curly brackets. The
matrix element squared for v2 +vp ~ v2 +v2 can be
obtained from Eq. (32) by replacing all sin's with cos's.

interaction. Because the nucleus is much more massive
than the temperature, the scattering conserves neutrino
energy. Thus this reaction will also typically conserve a
neutrino's species, even in a background of matter.

However there may be certain exceptions to this gen-
eral behavior. For example, neutrino-nucleus neutral cur-
rent scattering which leaves the nucleus in an excited
state will be nonconservative and hence can change neu-
trino species [see Sec. II, Eq. (20)]. Also, in the densest
part of the core, collective effects can reduce the effective
mass of a nucleon such that neutrino-nucleon scattering
may be nonconservative. Thus this reaction may be rel-
evant for transferring lepton number between neutrino
species.

$. v; +1V~v~ +N C. Energy loss by "right-handed" neutrino emission

Neutrino-nucleus scattering is the principle reaction re-
sponsible for trapping neutrinos in the hot neutron star.
This scattering is purely via the neutral current weak

Negative helicity neutrinos are trapped in the hot neu-

tron star. However positive helicity neutrinos can be
produced during scattering and, since they are mostly
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sterile, freely leave the high-density core. The cross sec-
tion is proportional to mass squared so a too massive
Dirac neutrino would cause the core to lose energy faster
than observed by neutrino detectors here on Earth [24].
The bound on the Dirac neutrino mass, Eq. (1), follows
approximately from a bound on the rate of energy loss

1. v; +1V~v++N'

This reaction is usually taken to be the dominant pro-
cess for emitting positive helicity neutrinos. Assuming
two mixed, neutrino species, the rate of energy loss is

given by

de dsk dsp dsk' dsp'

(2 )s2ko(2 )s2;(2 )s2ko(2 )s2, 0

with

F —= (cos'[8 (k) —8]f2+»n'[8 (k) —8]fi

+ cos [8~(k) —8]fg + sin [8~(k) —8]fi)
and

(C'v + 3&~)

(34)

(35)

I

and Eq. (34) simply reduces to just F = f, The. n the
large chemical potential for neutrinos in equilibrium with
the electron enhances [9] the rate of energy loss by a
factor of 4.4 x 10~(y/200 MeV)4(20 MeV/T)4 over the
@=0 case used to derive Eq. (1). The bound on the
Dirac neutrino mass in Eq. (1) is improved to

rn) 1 keV.

where k and k' (p and p') are the initial and final neutrino
(nucleon) momentum, respectively, [M]2 is the squared
scattering matrix element [2, 9, 16], and F is the initial
neutrino phase-space density factor including the rele-
vant mixing matrix element. f denotes the phase-space
density for particle a and the f's denote antineutrino
phase-space densities. The neutrino and nucleon masses
are m and MN, respectively, and |v and t g are the ap-
propriate weak-interaction vertex factors. The angular
dependence has been dropped from the scattering ma-
trix element.

The mixing matrix elements are taken from Eq. (13),
however a heuristic justification of them is possible. The
positive helicity states couple through the Dirac mass
to the linear combination of the negative helicity states
which form the vacuum mass eigenstates. The unitarity
matrix which connects the negative helicity vacuum mass
eigenstates to the negative helicity mass eigenstates in
matter can be written as

UUt (k) = cos (8 (k) —8) sin (8~(k) —8)
—sin (8~ (k) —8) cos (8~(k) —8)

First the vacuum mixing matrix rotates from the vacuum
mass basis to the flavor basis and then we rotate from the
flavor basis to the mass-eigenstate-in-matter basis. This
agrees with the results of Eq. (13). From this heuristic
argument, it is easy to use Eq. (22) to generalize to the
appropriate transformation matrix for three flavors.

As explained previously in Sec. III B, the f's for neu-
trino mass eigenstates in matter are only described by
Fermi-Dirac distributions when all three of the neutrinos
are in full ("chemical" ) equilibrium, or in special limit-
ing situations. In order to evaluate Eq. (34) here, we
shall make some assumptions about whether or not the
neutrinos are in equilibrium.

First let us assume that all possible leptons are in full
equilibrium and equally share the core's lepton number
with the electron, f, —fi = fz, fi = fq = 0. In this case
all dependence on neutrino mixing cancels, by unitarity,

This is plotted in Fig. 1 and is the lower solid contour
there. It is apparent that this sometimes lies below the
region where the neutrino comes into full equilibrium.
Thus the excluded region for the Dirac mass follows the
conditions for equilibrium, as shown in Fig. 1.

Let us now assume that only the "electron neutrino" is
degenerate. The appropriate limit is A, )) m since A,
in Eq. (2) is larger than mz in Eq. (1). Then the electron-
neutrino and the electron-antineutrino are dominantly
the mass-eigenstates-2 and -1 in matter, respectively.
Thus the phase-space densities are f, = fz, fi = 0,
and fi = fq = a Fermi-Dirac distribution with vanishing
chemical potential. Enhanced neutrino emission will also
occur for this case because the neutrino mass eigenstates
in matter are different from the mass eigenstates in vac-
uum. Using that 8 = vr/2 and 8 = 0 for A, )) rnid,

Eq. (34) becomes

F = (cos 8 2fi + sin 8 fz). (38)

The first and second phase-space densities lead to the
bounds in Eqs. (1) and (37), respectively. Thus the
bound on the Dirac mass for out-of-equilibrium neutrinos
1s

m2[cos2 8 + 4.4 x 10 sin 8] ( (28 keV) . (39)

This constraint interpolates between Eq. (1) and Eq.
(37). It is plotted in Fig. 1, and is the upper solid line
there.

8. e+p —+u++n

This reaction is very similar to neutrino-nucleus
neutral-current scattering as discussed in the previous
section. Equation (33) is also applicable here with some
small modifications. The squared matrix element, ~M[,
is a factor of 2 smaller than as given in Eq. (35) since the
electron is unpolarized. The factor F is now
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Ii:—f, sin 8, (40) is larger than the negative helicity neutrino density in
numerical calculations.

where f, is the electron phase-space density. The mixing
matrix element follows from Eq. (13), it describes the
rotation from the interaction basis to the vacuum mass
eigenstate basis for negative helicity neutrinos. Hence
this mixing is independent of the matter background.

The rate does not depend on neutrino phase space fac-
tors, so it can be evaluated analytically. Neglecting the
nucleon blocking in the final state,

d~ G~(Cv+3C~) z 4

dt '32
where N„ is the proton number density. The rate of en-

ergy loss by this process, Eq. (41), vanishes for zero
neutrino mixing (8 = 0) but when neutrinos do mix then
it may dominate over Eq. (33) since the electron density

If the core contains a large pion density, than this is the
dominant process for producing "wrong-helicity" neutri-
nos [9]. However the equation of state of high-density
nuclear matter is not well known so the density of pi-
ons is uncertain. In addition, "line broadening" of the
virtual nuclear state will suppress this process somewhat
[25] and must be included in calculations.

In the two-fiavor approximation, there are four possible
final states: v2 + p, v] + v, v+ + Pg+, v+ + v]+.
Defining k to be the magnitude of the momentum of the
v 's or v+'s, then the expression for the rate of energy
loss by this reaction has a factor of

(1 —F)—:(cos [8 (k) —8](1 —fz) + sin [8 (A:) —8](1 —fi) + cos [8 (k) —8](1 —fz) + sin [8 (k) —8](1 —fi)).
(42)

This expression is very similar to that of Eq. (34) ex-

cept that here the phase space densities are changed to
blocking factors for the final-state trapped neutrino.

If the phase-space distributions of all the trapped neu-
trinos are identical, fi ——fz, fi ——fz, then all mixing
dependence vanishes, by unitarity. In particular, if the
neutrinos are nondegenerate so that the blocking factors
approach unity, then (1—F) = 2 as expected since there
are only two possible final states in vacuum. Assuming
that A, )) rn2 is a good approximation for all k, then

(1 —F) = ( sin 8(1 —fz) + cos 8(1 —fi)
+cos 8(1 —fz) +sin 8(1 —fi)). (43)

Note the different mixing behavior between the neutrino
and antineutrino states.

The discussion given here also applies to the reaction
X+X —+ N+N+ vv.

IV. SUMMARY

In this paper we have examined particle-physics issues
relevant to describing massive, mixed, Dirac neutrinos in

the core of a supernova.
In dense matter, neutrinos comprise a sizable fraction

of the total number density. Then neutrinos forward
scatter off of other neutrinos and this may contribute to
neutrino mixing effects. New, important contributions
to this scattering have been described in the Appendix.
This nonlinear effect may be important, but has not been
included in the present analysis.

In the first section, the full Dirac neutrino field in a
constant matter background is derived. The interaction
with the matter background is helicity dependent so the
vacuum pairing between positive and negative helicity
states is broken. However the field for a relativistic Dirac
neutrino in a background of matter has a relatively sim-

ple form when expressed in the interaction basis. Then

I

the negative helicity mass eigenstates exhibit the matter-
dependent mixing of the MSW effect while the positive
helicity neutrino mixing is unaffected by a matter back-
ground. The expression for the neutrino field is necessary
for calculations of neutrino decay or scattering in a mat-
ter background.

For the scattering of relativistic neutrinos, the matter
background has little effect on the kinematics —but the
effect on the fiavor content of the neutrino states is pro-
found. The matter background ensures that the mass
eigenstates in matter always become incoherent between
nonforward scatterings and hence are the physical basis
for describing neutrinos in a supernova core. However
since the weak-interaction content of a negative helicity
neutrino mass eigenstate in matter varies strongly with
energy (and density), this complicates discussions of how

neutrinos scatter. For one thing, the neutral current is
not diagonal in the mass-eigenstate-in-matter basis if the
initial and final neutrinos have difFerent energies. In ad-
dition, the phase-space distributions of the negative he-

licity neutrinos are typically far from Fermi-Dirae and so
energy and density dependence must be accounted for ex-

plicitly when describing how neutrinos approach an equi-
librium distribution of lepton number.

Mixing of all three neutrino species must be taken into
account when in the core of a supernova. All leptons-
the electron, the muon, and the three neutrinos —quickly
come into equilibrium and share the core's lepton num-

ber, unless att vacuum neutrino masses are small. Typi-
cally, the bottleneck in the chain of reactions which dis-

tribute the lepton number is the step which brings the
first "nonelectron neutrino" into full equilibrium. An es-

timate of when neutronization does this, valid for Majo-
rana or Dirac neutrinos, is plotted as the dashed line in

Fig. 1.
A supernova core can easily lose energy by emission of

sterile, positive helicity Dirac neutrinos. An estimate of
the mass and mixing-angle range excluded by SN1987A
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neutrino observations is shown as the shaded region in
Fig. 1. This region is particularly interesting because a
17-keV neutrino with 1% mixing with the electron neu-
trino lies well inside the region excluded for Dirac neu-
trinos. Thus if the recent beta-decay results are indeed
indications of a neutrino mass, that mass is probably not
Dirac.

This conclusion may be weakened by effects not in-
cluded in existing calculations. Sharing the lepton num-
ber between all the five possible leptons increases en-
tropy and tends to strengthen the emission of all neutrino
types. Also, the back reaction of lepton-number loss on
the core must be included. In addition, neutrino diffu-
sion and/or convection should be accounted for, given
the strong density dependence of neutrino mixing. Thus
detailed modeling of neutrino emission from a supernova
core is necessary to establish the precise bounds. The
emphasis here has been on developing the framework for
describing mixed neutrinos in dense matter in order to
enable such calculations.
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APPENDIX A: NEUTRINO-NEUTRINO
FORWARD SCATTERING

M2=2~2G E) 2~v'~'+
~
l['

F
W

e p,

p2 ~3+
e p,

Iv' I'+ 2lv,'I'

(A3)

The sum is over all neutrinos other than that one whose
propagation equation we are considering and v~ is the
a flavor component of the jth neutrino wave function.
It has been assumed that the angular-dependent terms
cancel out in the sum. References [27, 28] correctly calcu-
lated the diagonal terms in the induced mass, including
the additional factor of 2 for identical final-state particles,
however the off-diagonal terms were mistakenly omitted
therein.

The off-diagonal terms are crucial for preserving the
symmetries of the Lagrangian. Using the unitarity re-
lation ~v,

~
+ ~v&~ = 1/V, Eq. (A3) can be rewritten

Hint = ) viL'7 vir ) vj I &pvj I, (A2)
)& J

where the sum is over all neutrino species, the subscript
L denotes the left-handed chirality, and the U(2) flavor
symmetry is manifest. However before one can write
down these induced mass terms, information on the rel-
ative coherence of the neutrinos is necessary.

To begin, let us assume we have a system of massless
neutrinos described by infinite plane waves. Then the
efFective mass squared term for one of these equations
describing a neutrino of energy E is, in the "charged
lepton" basis,

Ped-
dt

M2

2E &p
(A1)

Here M~ is the effective mass squared and it is assumed
that there are only two neutrino generations. The mass
squared consists of a vacuum term plus background in-
duced terms. In the standard model, a background
of neutrinos induces a contribution to M~ from the
neutrino-neutrino interaction mediated by Zo exchange.
For neutrino energies much less than the mass of the Z,
the efFective interaction is

In the dense media of a supernova core, and in the early
Universe, neutrinos comprise a sizable fraction of the to-
tal number density. Under such conditions there will be
a contribution to the induced mass of a neutrino from its
forward scattering ofF of other neutrinos. Physically, the
flavor evolution must be solved when it is necessary to de-
scribe how these neutrinos approach or depart from equi-
librium. This evolution has been discussed many times
in the literature (see, e.g. , [26] and references therein),
unfortunately the starting point [27, 28] used for these
discussions is incomplete. Here we point out some ex-
tra terms, valid for Majorana or Dirac neutrinos, which
earlier analyses omitted.

The equation describing the flavor evolution of one
neutrino of energy E can be written as (see, e.g. , [8],
Eq. (2.29))

g/2
M = 2v 2G~E N„+) s

[v~' v~']
P.

(A4)

where N„ is the neutrino number density. In this formu-
lation, it is apparent that basis rotations of the "propa-
gating" neutrino cancel with those of the "background"
neutrinos. Thus the U(2) flavor symmetry is maintained.
To neglect the og diagonal terms-in every basis is obvi
ously incorrect since it breaks this symmetry and then the
result of the flavor evolution of a given state tuould be dif
ferent in each basis. The U(2) symmetry maintains the
net flavor content.

Off-diagonal induced mass terms can be interpreted as
an exchange of flavor between the "background" neutrino
and the "propagating" neutrino, Fig. 3. Total flavor is
conserved, but the flavor associated with a given single
neutrino is not conserved. The fact that there are off-
diagonal induced mass terms is nothing new, the induced
mass for forward scattering off of a charged lepton has
off-diagonal terms when expressed in any basis other than
that which diagonalizes the charged current interaction.
What is unusual is that because the flavor is exchanged
between neutrinos with difFerent momenta, a one-particle
propagation formalism may no longer be appropriate for
describing the situation.

To illustrate the efFects of the off-diagonal terms in the
flavor basis, let us consider the simple example of a box
containing massive, relativistic, nondegenerate, negative
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k, Vp

, Vp

k, Ve

, Ye

are small. This is very di6'erent than the more familiar
case of a neutrino in a charged-lepton background where
a density change causes a resonant transition, the MSW
efFect. In fact, Eq. (A7) also applies when G~ ~ 0 and
the Havor oscillations are purely due to vacuum masses.
Here, neutrino-neutrino forward scattering may acct the
phase between the mass eigenstates but not the Havor
mixing. In this example, neutrino-neutrino forward scat-
tering does not contribute to an MSW type resonance!

The microphysical description of the case of large vac-
uum neutrino masses is straightforward. Energy and mo-
mentum conservation can prevent relativistic neutrinos
from exchanging their mass identity in forward scatter-
ing. We estimate that this is the case if the two-neutrino
energy change

q. Vp k, V

, /1
EI —E, = —,'(m', —m', )'- ' (E-E)

FIG. 3. Feynman diagrams associated with neutrino-
neutrino forward scattering, (a) diagonal and (b) off-diagonal
terms.

is large compared to the potential from neutrino-neutrino
scattering, O(G~N~). Here E and E' are the energies of
the two scattering neutrinos. When the above condition
is satisfied we expect that the ofF-diagonal terms should
average out in the vacuum mass eigenstates basis and
then the effective mass squared for the neutrino is

L' = ).l~,'(t)I' (A5)

v, denotes the neutrino wave function for the ith vacuum,
mass eigenstate and the sum is over all neutrinos in the
box. I„is the amount of vacuum mass eigenstate i in the
box. However, the amount of electron-neutrino number
in the box is in general time dependent

L.(t) = ).I&'(t)l'

but it can be expressed in terms of the conserved quan-
tities. Assuming only two flavors and using Eq. (12) for
the mixing matrix,

L, (t) = cos 8Lq+sin HI +2si n82/LqL 2sc[oP( )]t,

(A7)

where L, and P are the only time-dependent quantities.
Equation (A7) shows that the maximum change in L,
is restricted by the vacuum mixing angle 8 and by the
relative amounts of vacuum mass eigenstate. A change
in the volume of the box as a function of time could not
substantially change L, if either of these latter quantities

helicity neutrinos, and no charged leptons. We make no
assumptions at all as to coherence between the neutri-
nos. There are constraints on the dynamics of such a
system since the total effective neutrino Lagrangian is
invariant under separate, global U(1) rotations of each
vacuum mass eigenstate (at tree level). Thus it is clear
that there are conserved quantities, L, , one for each neu-
trino species, where

+2+2GP E Ng + N2+ 0 N, (AQ)
r 0 &

where L3, = m22—m~~ and N; are the number densities of
the ith vacuum mass eigenstate for the neutrino. Now
the multineutrino system can be described in terms of
one-particle equations. The propagation equation man-
ifests the U(1)xU(l) flavor symmetry which is as ex-
pected from the massive-neutrino Lagrangian. Explic-
itly, since there are no ofF-diagonal terms anywhere in
this matrix, it is clear that there is no contribution to
the relative mixing of the neutrinos —only the relative
phase of the oscillations is affected by neutrino-neutrino
forward scattering. This is consistent with Eq. (A7). An
MSW-type resonance does not occur.

Now let us consider the situation of massless neutrinos
in a background of charged fermions. The Lagrangian has
a U(1) xU(1) flavor symmetry and no flavor mixing. At
the microphysical level, energy and momentum conser-
vation are always satisfied because Ef —E, = 0 since the
constant potentials from the charged lepton background
just cancel out. Thus Eqs. (A3) and (A4) are still valid.

When there is a charged-fermion background and also
the vacuum neutrino masses are relevant, then the La-
grangian no longer has any global Bavor symmetries.
Neutrino mixing can and does depend on the charged
lepton background, of course. This complicates the dis-
cussion of neutrino-neutrino forward scattering. At the
microphysical level, the different energy dependences of
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the vacuum mass term and the charged lepton induced
mass term means that there is not a common mass eigeD-

state basis where energy and momentum conservation

imply that the off-diagonal terms from neutrino-neutrino

forward scattering can be neglected. It is clear that the
off-diagonal neutrino-neutrino terms will play an impor-
tant role, but a full, general analysis of this case is beyond
the scope of this paper.
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