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The approach to the heavy-quark Isgur-Wise limit is examined in (1+ 1)-dimensional QCD where ex-
act calculations are possible. To facilitate the discussion, an explicit scaling equation for the mesonic
Bethe-Salpeter amplitude is derived. We find that the leading finite heavy-quark mass corrections to the
decay constant and the elastic form factor are comparable in strength. Nonrelativistic estimates of both
of the quantities work reasonably well and generalize to 3+ 1 dimensions. We find that the corrections
to the (3+ 1)-dimensional form factor at large v-v’ are comparable to those estimated for the decay con-
stant by lattice gauge theory and QCD sum rules. Furthermore, the structure function f_(v-v’) is found
to be quite large at v-v'=1 and we argue that this will remain true in 3+ 1 dimensions. This implies that
one must exercise caution when attempting to extract Cabibbo-Kobayashi-Maskawa matrix elements
from semileptonic decays. Finally, it is shown that the Isgur-Wise symmetry never breaks down in two-
dimensional QCD for heavy-quark to heavy-quark transitions.

PACS number(s): 11.30.Hv, 12.38.Lg, 13.20.—v, 14.40.Jz

I. INTRODUCTION

The analysis of hadronic form factors simplifies consid-
erably when one of the relevant quarks is heavy
(mg >>Aqcp) because the spin and flavor degrees of free-
dom of the heavy quark decouple from the system. This
notion has been formalized as an approximate
“SU(2N,)® Lorentz” symmetry of QCD by Isgur and
Wise [1]. (N, is the number of heavy-quark flavors.) In
particular, Isgur and Wise have used this symmetry to re-
late heavy-quark transition matrix elements. For exam-
ple, in the limit in,mQj—-> 0,

(P;(v"Q;v,0:IP;(v))

N 1
= T OF v’ + ! + -
‘/.uuu'_/ Ing(U v )(U# U.“) 0 in
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(P}(0",€)|0;7,0;|P,(v))
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In these expressions, P;(v)[P*(v,€)] represents a pseudo-
scalar [vector] meson of mass m; [m*] and velocity v,
(and polarization €,) containing a heavy quark of mass
mg. The states are normalized as

(P;(v")|Pi(v))=2E;5,,8*(p—p"') .
The C;; are renormalization-group factors which map the
effective heavy-quark theory at the scale u; to the scale

#;. The explicit form of C;; does not concern us here.
The final factor £z is the universal renormalized Isgur-

46

Wise function (once again the specifics of the renormal-
ization do not concern us). The Isgur-Wise function con-
tains all of the physics carried by the light degrees of free-
dom in the decay and may not be calculated in perturba-
tion theory. However, it is known that the Isgur-Wise
function is normalized at zero recoil because the vector
current is conserved: £z(v-v'=1)=1.

The relationships between the heavy-quark transition
matrix elements and the normalization condition greatly
facilitate the extraction of Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements from measurements of the semi-
leptonic decays of heavy mesons. Thus it is important to
assess the size of the 1/ mo, corrections to the Isgur-Wise

limit to determine the region of applicability of the
heavy-quark methodology. At present, the only feasible
ways to test the symmetry limit are with QCD sum-rule
techniques [2] or numerically on the lattice [3]. In this
paper we adopt the more modest program of examining
the heavy-quark limit of two-dimensional SU(N,) gauge
theory in the large-N, limit (the ’t Hooft model). The
goal is to examine the approach to the heavy-quark limit
in a theory which may be solved exactly. The hope is
that this will serve to illustrate the nature of the heavy-
quark symmetry in 3+ 1 dimensions.

The ’t Hooft model and its heavy-quark and nonrela-
tivistic limits are described in Sec. II. We discuss the
Isgur-Wise limit and its corrections in Sec. III. We also
speculate on generalizations to 3+ 1 dimensions and dis-
cuss the possible breakdown of Isgur-Wise symmetry in
1+1 dimensions. Conclusions are presented in Sec. IV.

II. ISGUR-WISE SYMMETRY IN THE ’t HOOFT MODEL

A. ’t Hooft model

Two-dimensional Yang-Mills theory was introduced by
’t Hooft in 1974 [4] as a relativistic field theory which ex-
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hibits confinement. The theory simplifies considerably in
light-cone coordinates v, =(1/V2)(vytv,), where v, is
any vector (x,,¥,,4,,...). The light-cone gauge
A _= A1 =0is particularly useful because ghosts decou-
ple and there are no gluon self-interactions in this gauge.
Furthermore, the gluons may be eliminated from the
theory, leaving in their stead a linearly rising ‘“Coulomb”
potential [5]:

- . A
L=, tﬂ-eTAa v —mg |4
f

d J X X X J X

Because the theory is two dimensional, rotations are im-
possible and hence there is no notion of spin. Further-
more, the ¥ matrices are 2X2 and hence only four in-
dependent components may be formed out of fermionic
bilinears:

S=vy, (2.2a)
P=yysy, (2.2b)
V,=dv.¥, (2.2¢)
A, =Py, ysv=—€, V", (2.2d)
T, =00 0= —i€, P . (2.2¢)

’ t Hooft has shown that only planar graphs contrib-
ute to matrix elements in the large-N, limit. This, com-
bined with the absence of gluon self-interactions, means
that the ladder approximation becomes exact so that the
Bethe-Salpeter amplitude for a meson satisfies the simple
equation (the “’t Hooft equation™)

2

= | MR IAfo ¢,,(x)—g72f;-(;—¢"_%))5dy :
(2.3)
with the boundary condition
$,(0)=¢,(1)=0 . (2.4)

The momenta of the meson (mass y, ), the constituent an-
tiquark (mass my ), and the constituent quark (mass Mpy)
are taken to be p,, q,, and p,—gq,, respectively. The
momentum fraction carried by the antiquark is then
x=q_/p_ (and 1—x for the quark). The coupling is
defined in terms of the large-N, limit:

N2 —1
1. 2 c
Jim ey

c

2:

g (2.5)

There are no sea quarks present in the large-N, limit.
Fortunately, this is not a problem since the amplitude for
the production of a virtual QQ pair scales as 1/ mé Thus
sea quarks do not affect the Isgur-Wise limit or the 1/M,,
corrections to it. The ‘“renormalized” quark mass is
defined as

2

m2=m2—&_ (2.6)

T
where m is the parameter appearing in the Lagrangian
and the last term represents the exact quark self-energy.
The slash notation in the integral signifies that the in-
frared divergences in the integrand have been regulated
with the principal-value prescription [6]
1 1 1

1 imd + ‘ 2.7)
(p—ie)?

Since the model is two dimensional, it is super-
renormalizable and the coupling carries units of energy.
We have fixed the scale by solving ’t Hooft’s equation
(2.3) and equating the slope of u2 with respect to n to the
leading Regge trajectory value of 0.18 GeV>. The result
is g =608 MeV. Henceforth, we set g?/m=1, so that the
bare quark masses are roughly m,=0.02, m;=0.03,
m;=0.5, m.=4.3, and m, =14.5.

Callan, Coote, and Gross [7] have derived the indepen-
dent current matrix elements as follows:!

12
NC
OV _|n(p))=p_ fo'¢,,<x)dx , (2.8)
olV, |n(p))
172
mM | N, 1 &,(x)
=— — —dx , 2.9
P+ u’ T fo x(1—x) @9)
(0|S|n(p))
172
N,
-2 %—li’x b, (x)dx , (2.10)
(O|P|n(p))
172
1[N 1lm, M
=— —+ dx . 2.11
2 |7 fo x 1—x dn(x)dx ( )
Vector-current decay constants are defined by
oV, In(p))
£ Py> €ven-parity meson ,
(2.12)

B \/ﬂn €.,P", odd-parity meson .
Meson form factors are defined in terms of the matrix ele-
ments given below:
(m@")|V,In W)=V o, [ (00" )0, F0,,)
+ /M wn ), —v,)],
(2.13)

IWe have restored factors of % in the matrix elements of the
scalar and pseudoscalar currents which were missed in Ref. [7].
The factor VN, /7 will be suppressed in the following discus-
sion.
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(2.14)
(2.15)

(m")|S|n () =V it fE™(0-0")
(m)IPIn )=V ppt fE7 (00" )€, 0P .

Each current is understood to annihilate a heavy quark of
mass M and create one of mass M’, and we have chosen
to label the mesons in terms of four-velocities for later
convenience. These definitions hold for like parity
mesons; similar ones hold for opposite-parity mesons.
The explicit expressions for these matrix elements are
rather long and hence are given in the Appendix.

B. Heavy-quark limit

One may apply the effective-field theory trace formal-
ism of Falk et al. [8] to obtain the Isgur-Wise limits of
the meson form factors:

fw)—Eg"wv'), (2.16)
f(w')—0, (2.17)
M )—=E" v N(1+v'), (2.18)
P )>E"v') . (2.19)

Once again, the theory is superrenormalizable and so
there are no renormalization factors in these relation-
ships.

The expressions for the decay constant and form fac-
tors must be evaluated by numerically solving ’t Hooft’s
equation and then performing the appropriate integra-
tions. To do this we employ the method outlined in Ref.
[9]. Unfortunately, the numerics become increasingly
difficult for large M; thus, it is useful to derive an equa-
tion which describes the heavy-quark limit directly. To
do this we set u2 =M3 +2Mgdu, +0 (M), expand the
right-hand side of 't Hooft’s equation (2.3) to order My,
and equate to get

Xn(2)

2
280, X, (2)= [ﬂz—-i-z

o Xn(2) =X (»)
+ & f X2 X (2.20)
(z—y)?

where the scaling wave function is defined by

)(,,(z)— lim (2.21)

R— ‘/ Mg
Note that the scaling equation is just as complicated as

the full ’t Hooft equation. The end-point behavior of the
scaling wave function is given by

= %x

R

Xn(2)—c,z? for z—0 (2.22)
and

Xn(2)—>d,z7? forz— o . (2.23)
The power in Eq. (2.22) is defined by the solution to

mj +g%BcotBr=0, (2.24)

for BE(0,1). To illustrate the approach of the ground-
state wave function to the scaling wave function, we have

plotted

= } , (2.25)
1—x

for various M in Fig. 1. The scaling functions are related
by

M= ] 1
do(x)= Vﬁ‘ﬁo[M

Xa(2)= lim § 1

(2.26)

1+z

The Isgur-Wise limit of the heavy-quark decay con-
stant is given in terms of the scaling wave function by

fE=lim f,=vV2[ "x,(2)dz . (2.27)
Mp— 0

Note that the scaling equation (2.20) and the boundary
condition (2.23) imply that

fE=v2-"d, (2.28)
g
The Isgur-Wise function is given by
gmwv') =722 [ X (w2 (2)dz (2.29)
where
oy =-v)E[(v-v')2—1]2. (2.30)

Note that either root may be used in Eq. (2.29) (see the
discussion in Sec. III C). At zero recoil, v-v'=1, so that
=1 and hence £""(1)=38"", as expected.

It is also instructive to consider the nonrelativistic lim-
it of the ’t Hooft model. The 't Hooft equation becomes

_

2u
where p=mp Mg /(mg +Mp), $*(p) is the nonrelativis-
tic wave function in configuration space, and E, is the

binding energy of the meson. The solutions to Eq. (2.31)
are Airy functions

4 2¢NR y)+ lquﬁNR(y)_ E,¢"R(y), 230D
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FIG. 1. Approach of the wave function to the scaling limit.
From top to bottom, the curves represent wave functions with
M =1, 2, 4, 8, and «, respectively. The light-quark mass has
been fixed at 0.1.



5086 MATTHIAS BURKARDT AND ERIC S. SWANSON 46

N,Ai[(ug)' Pyl —1,]1,
oNR(y)= VA 21/3(,| NR
€YIN, Ai[(ug®)' Iyl —p,1, ¢,% odd,
(2.32)

o R even ,

where

+1, y>0

~1 y<o0, (2.33)

ely)=

N, and N, are renormalization constants, A, satisfies
Ai'(—A,)=0, and p, satisfies  Ai(—p,)=0
(A;=1.01879; p,=2.33820). The eigenenergies are
given by

4

_ &
E_.__
8u

n

(2.34)

173 (X,, oN® even,
Pn» % 0dd .

III. APPROACH TO THE SCALING LIMIT

A. Decay constant

We now use the exact expressions for the current ma-
trix elements of Sec. II to examine the approach to the
Isgur-Wise scaling limit. Consider first the large-M be-
havior of the decay constant defined by

c,(m) d,(m)

Sulm; M)=f7 11+ — M?

(3.1

The approach to the scaling limit is displayed in Fig. 2.
Figure 3 shows f 5 and the nonrelativistic approximation
to this as a function of light-quark mass. The nonrela-
tivistic approximation is very accurate for m < 300 MeV,
with roughly 100% error at m =m,. Note that f7 is
practically constant for m <400 MeV; this is a reflection
of flavor symmetry for quark species with m <<g.

Values for ¢,(m) were calculated by extrapolating the
finite differences 2M /f,7°[f,(M)—f,(2M)] to infinite
heavy-quark mass. Typical values of M used were
M =16, 32, 64, and 128. The results were verified by
means of a perturbative expansion of Eq. (2.3) in 1/M.
Statistical and systematic errors are roughly at the 1%
level.
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FIG. 2. Scaling limit of the decay constant. The light-quark
mass has been fixed at 0.1.
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FIG. 3. Scaling decay constant vs light-quark mass. The
solid line is the exact result, while the dashed line is the nonrela-
tivistic expression £ =V 27 /A (mg?)"%.

We plot ¢, versus the light-quark mass in Fig. 4. Once
again, cy(m) is roughly independent of the light-quark
mass for m $300 MeV. The sign and magnitude of the
1/M correction may be understood in the nonrelativistic
limit of the ’t Hooft model (g <<m,M). In this regime
the 1/M correction reflects the dependence of the wave
function at the origin on the reduced mass
mM /(m +M). This yields cyg = —m /6, which is shown
as a dashed line in Fig. 4. The convergence of c to cypg is
rather slow. Perhaps this is not surprising since an an-
nihilation process is intrinsically relativistic.> In 3+1 di-
mensions a similar argument yields Vm +Mf
~[mM /(m +M)]*”?, which gives c3k' =9%cik!. (Neu-
bert [10] has argued that this reduced mass effect does
indeed comprise most of the 1/M coefficient in 3+1 di-
mensions.)

The subleading correction to f is also constant for
m <300 MeV and grows rapidly in m for m X 400 MeV.
Numerically d, is roughly (0.5)> for m <1 and
dy~(0.3m )? for large m. Thus ¢, and d,, are comparable
for all light-quark masses. The decay constant and its
corrections have also been calculated by Grinstein and
Mende [11]. Their result for £ (m =0.55) agrees with
ours; however, their value for ¢, disagrees with ours by a
factor of 2.

Lattice gauge theory [3] and QCD sum-rule calcula-
tions [2] in four dimensions yield ¢3*'~—800 MeV,
roughly 4 times larger than the value in two dimensions.

B. Elastic form factor

We now turn our attention to the elastic form factor.
The expressions for the form factors given in the Appen-
dix are written in terms of the light-cone momentum
fraction

x =4 . (3.2)
p-

ZNote that introducing an effective light-quark mass such that
m s> m would improve the correspondence between ¢ and cng-
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FIG. 4. 1/M correction to the decay constant vs light-quark
mass. The solid line is the exact result, while the dashed line is
the nonrelativistic expression.

When g2 is spacelike, there exists an x €[0,1] such that
conservation of momentum may be expressed in the co-
variant form

g M
x 1—x

pi= (3.3)
The reader is referred to Fig. 5 for the definitions of the
various momenta. In this figure the heavy (light) lines
signify heavy- (light-) quark propagators, while mesons
are represented by double lines. In the case of the elastic
form factor, x may be expressed in terms for v-v’ as

x=1—v-v'x[(v-v')2—1]"2. (3.4)

The ground-state Isgur-Wise function is shown in Fig.
6 for several light-quark masses. Note that the Isgur-
Wise functions have a power-law dependence on v-v’ for
v-v>>1. This may be understood as follows. The limit
v-v'— o corresponds to g2— — o, which implies that
x —1, and hence the momentum fraction of the initial
heavy quark is also driven to unity [y =x +(1—x)z (see
Fig. 5)]. Now, as y —1, d),,(y)——»c(l'—y)ﬂ'", where B,, is
defined in terms of the light-quark mass via the equation

2
mz—g?-i-gzﬁmcothw:O ,

(3.5)

X+(1-X>2Z

1-X

FIG. 5. Meson form-factor kinematics.

5087

in analogy with Eq. (2.24). This yields the large v-v’ be-
havior of the form factor [6)]

(n(p"HV_ |n(p))—>2eMc[2(v-v’~1)]‘1‘ﬁ"‘

X fo’¢,,(z)(1—z)BMdz+0(M—2)

(3.6

Thus we expect

1-B,

EM(mivv')—>G(m)vv') , (3.7)

where G is a function of the light-quark mass only. This
is indeed the behavior seen in Fig. 6.

Note that the form factor gets harder for decreasing
light mass. For small v-v’ the reason is purely kinemati-
cal; indeed,

e )~14+1(rk),q?, (3.8)

where r, is the heavy-quark radius. Nonrelativistically,
rg=[m/(m +M)]r, where r is the relative coordinate
and

-2/3
m
(r?),=«, g2m+M) : (3.9
with
8 .., 1
— 1
Kn 15)‘"+5M ] (3.10)
for even wave functions [12]. Thus
473
EMvv')~1—k, |[— (vv'—1) (3.11)

and the Isgur-Wise function does get larger for smaller
light-quark mass. Equation (3.11) also agrees very well
with the numerical results of Fig. 6. The situation is
different in four dimensions:® (r2)~m % and
&E~1—k(v-v'—1), where k is a dimensionless constant.
Thus the Isgur-Wise function is insensitive to the light-
quark mass when it is heavy. However, as the light-
quark mass decreases, the QCD scale will make its pres-
ence felt and this argument no longer applies.

Figure 7 shows the 1/M correction to the ground-state
Isgur-Wise function, which is defined by

S (m,M;vv')~E™ (m;v-v')
nn’
X 1+%—(m;v-v')+'-' .

(3.12)

For v-v'>>1, 8% is independent of v-v’. This follows
simply from Eq. (3.7)—for large v-v’, the velocity and
quark mass dependence factor in the current matrix ele-
ment and hence 8£"™ is independent of v-v’ for

3This is because the kinetic energy scales as m ~'/> in 1+1 di-
mensions and m in 3+ 1.
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FIG. 6. £° vs v-v’. From top to bottom, the curves corre-
spond to m =1, 1,2, and 5, respectively.

sufficiently large v-v’'.

The 1/M correction for the “‘p-wave” mesons is
displayed in Fig. 8. Note that 8&'! diverges near zero
recoil. This is due to the zero in £'!, which must appear.
Thus one should not expect Isgur-Wise symmetry to give
accurate relative predictions near zero recoil for excited
mesons. Even though £'! is negative for large v-v’, it is
approached from below (in M) for v-v'<2.4 and from
above for v-v’'2 2.4, and hence 8&!! becomes a negative
constant for sufficiently large v-v’.

The general behavior of 8" may be elucidated by con-
sidering the nonrelativistic limit of the heavy-quark form
factor. In this limit the heavy-quark form factor is sim-
ply the Fourier transform of the heavy-quark density.
This may be related to the quark-antiquark density
through the relation ry=[m /(m + M)]r:

KI"R(QZ)Zfd’HeiQ’HPf("H)

=fdrei[Qm/(m +M)]rpn(r) (3.13)

[we have absorbed a factor of m/(m +M) in the
definition of p,(r)]. Now p,(r)=|¢NR(r)|%, where ¢)®
are the wave functions given in Eq. (2.32). Thus, in the
nonrelativistic limit, the only heavy-quark mass depen-
dence in f"" arises from the reduced mass in the

5 10 15 20

v-v'

FIG. 7. 8£% vs v-v’. From top to bottom, the curves corre-
spond to m =5, 2, 1, and 1, respectively.

6E11

v-v'

FIG. 8. 8&'' vsv-v' form =1.

Schrodinger equation (2.31). Dimensional analysis shows
that

AR =(pg)' /8, [(ueg?)'r]

where the function $n has no implicit scale dependence
(u is the reduced mass here). Thus we have the relation

v )=F,[mAug?) v —1], (3.14)

where f,, does not depend on m, u, or g2. Expanding this
in powers of 1/M yields the result

nn — 2 ’ d
dénr=3mvv' =D

Note that Luke’s theorem [13] (there are no 1/M correc-
tions at zero recoil to order a; /M) is incorporated in this
result since 8 vanishes for v-v’=1.*

We may use Egs. (3.10), (3.11), and (3.15) to estimate
the slope of 8£"" at zero recoil:

In£"™(v-v') . (3.15)

4/3

d8&™ m 2
~ — — -—m . 3.16
vo'—1d(v-v') "lg 3" ( )

Comparison with Fig. 7 shows that this expression works
very well for m =5, but becomes much too small for
m <1.
For large v-v’, 8£® may be approximated with the aid
of Eq. (3.7) with the result
8P —2m (1+8,,) .

3

(3.17)

To be consistent with the nonrelativistic limit, we should
use f8,, ~1 for m >>g and hence 8%~ —%m. Compar-
ison with Fig. 7 shows that this result works quite well
over the range of light-quark masses which we tested. (It
is somewhat peculiar that 8= —2Im works extremely
well.)

The same sort of analysis may be carried out for 8&'".
In this case, §” ~k(v-v'—1)"3% and hence

4This is true unless £ diverges at v-v'=1. However, the condi-
tion £(1)=1 then implies that £’ is discontinuous—a physically
unreasonable situation.
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8! =~ —2m . (3.18)

The actual value for m =1 is roughly —2.6 (see Fig. 8) so
that the nonrelativistic approximation seems to serve as a
reasonable estimate of the 1/M corrections to. the Isgur-
Wise limit even though m =1 is still far from the nonrel-
ativistic regime.

It is interesting to carry out the same analysis in 3+ 1
dimensions. For m,M >>Aqcp, the only scale is the re-

duced mass so that ¢}, ~u>/?$(ur) and

8§§"’+1~2m(v-v’—l)—d——q——]ngg‘il(v-v’) .

o (3.19)

Once again, this expression incorporates Luke’s theorem.
For large v-v’ power counting [14] implies that
£ | ~x(v-v'—1)"% and hence

8EY, | ~—4m .

In this case one should interpret m as being the mass of
the light constituents of the meson. If the 1+1 calcula-
tions serve as a guide to the importance of relativistic
effects on these predictions, we may reasonably say that
the 1/M corrections in 3+ 1 dimensions roughly follow
the prediction of Eq. (3.20). Thus we estimate the correc-
tions to the decay constant to be

(3.20)

—30% for B mesons ,
6854, _ —80% for D mesons,
M —130% for D; mesons ,

—200%

(3.21)

for K mesons .

Of course, smaller corrections are expected near zero
recoil.

We have already seen that the 1/M corrections to the
decay constant and form factor are comparable in 1+1
dimensions. Thus it is interesting to compare the predic-
tions of Eq. (3.21) to nonperturbative estimates of the
correction to the decay constant in 3+ 1 dimensions. Re-
sults from lattice gauge theory [3] indicate corrections of
15-30 % for f and 40—-100 % for f. The agreement is
satisfactory. This suggests that Eq. (3.19) may serve as a
useful guide in 3+ 1 dimensions and that the rough equal-
ity of the decay-constant and form-factor corrections
seen in 1+1 dimensions may also hold in 3+1 dimen-
sions. (The reader may recall that the nonrelativistic esti-
mate of the 1/M correction to the decay constant in 3+1
dimensions is 9 times larger than in 1+1 dimensions.
However, 6£;,, is only 3 times larger than 8£,,,. This
seems to contradict the conclusion which has just been
reached. The resolution is that we have been discussing
the case of small light-quark mass where the nonrelativis-
tic estimates of the correction to the decay constant are
not accurate.)

C. Inelastic form factor

The structure function f_(v-v’) is not constrained to
be zero for inelastic transitions. This represents a slight
technical difficulty as two independent quantities are re-
quired to evaluate f,(v-v’') and f_(v-v’). Of course,
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one could use the expression for F, given in the Appen-
dix; however, this is the “bad” component of F u and
hence is numerically difficult to evaluate [15]. Instead,
we make use of the fact that /| and f_ are functions of
v-v’ only. Now Eq. (2.30) implies that 2v-v'=w+1/w.
[Equation (2.30) is for elastic scattering; however, it still
holds for the inelastic case if we define
o=(M/M')(1—x).] This, along with the relationship
o, o_=1, implies that f, and f_ are independent of
the root chosen for the variable ®. However,
F_=F_(x4;M,M’), where x_ are the roots of Eq. (3.3).
This allows one to extract f, and f_ solely from F_ in
the timelike region. [Physically, the amplitudes
F_(x4;M,M’) represent left- or right-moving final
meson states.] Thus one has

o F"(x_;M,M')+F"(x  ;M,M’)
204+ )p_VM' /M

[ )=

(3.22)
and
F'™(x ;MM')—w F"(x _;M,M')

m(pept)= —
S o 2l—w, p VM /M

(3.23)

In the infinite heavy-quark mass limit, /"™ is zero.
Furthermore,
172

p-o [ “Xn(0z)x,(2)dz

’

F™(x;M,M' 2| —
(x )— M

(3.24)
(see the Appendix). Thus one has the relationship
had — m+n ©
S X0z 2z =(=)" 4" [ "y, (23 (@02)dz
(3.25)

which is valid for all @ > 0. This is one of the remarkable
identities of 1+1 QCD which must hold in order that
physical observables be invariant under discrete Lorentz
symmetries.

Note that Eq. (3.24) implies that £™” is a function of @
only [see Eq. (2.29)] and hence does not depend on the
heavy-quark masses M or M’ or their ratio. This has the
interesting consequence that the Isgur-Wise symmetry
never breaks down for heavy-quark to heavy-quark tran-
sitions regardless of the value of v-v’. One may not have
expected this since the heavy quark may experience large
recoil in decays with M /M'>>1, thereby ruining the
static color source picture of Isgur-Wise symmetry. (In
other works, £"" could depend parametrically on
M/M'.) In 3+1 dimensions, the mass- and spin-
dependent hyperfine structure of one gluon exchange
would also be probed, once again running the flavor and
spin decoupling one expects for heavy quarks. In our
case the effect of the heavy-quark recoil is included in the
mesonic wave function and this does not cause a break-
down of the Isgur-Wise symmetry in 1+ 1 dimensions. In
a similar vein, Isgur [16] has argued that parametric
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FIG.9. f®vsv-v’' for M/M’'=4 and m =1. The curves cor-
respond to M'=1, 2, 4, 8, 16, 32, and 64 from bottom to top.

dependence of the transverse momentum distribution on
the heavy-quark mass will not upset the heavy-quark
symmetry in 3+ 1 dimensions. Of course, our results do
not have anything to say about the damaging effects of
the hyperfine interaction in 3+ 1 dimensions.

Figure 9 is a plot of f® for M /M’'=4 (roughly ap-
propriate for B— DIV) over the kmematlc range of v-v’
appropriate to decays (timelike g 2).° In general, f® be-
comes larger as the ratio M /M’ becomes larger or as m
becomes larger. For m <300 MeV, f% loses its depen-
dence on the light-quark mass just as we have seen for the
decay constant and as is demanded by flavor symmetry
for light quarks.

One sees that f% is quite large at zero recoil. This
may be attributed to the proximity of the pole in the form
factor at v-v'=0 which exists when M /M’ >>1. This
pole does not affect /', because it is protected by the nor-
malization condition and Luke’s theorem [13].

The preceding discussion applies equally well in 3+1
dimensions so that one expects f _ to be quite large near
zero recoil. This means that one must be careful in using
the normalization condition £(1)=1 to extract CKM ma-
trix elements from semileptonic decays. In particular, a
decay such as B—DI¥, will have a large contribution
from f_ at zero recoil. This is not true, however, for a
decay like B—D*I¥,, which kinematically suppresses
the contribution from f _ at zero recoil [17].

IV. CONCLUSIONS

We have calculated decay constants and elastic and in-
elastic form factors in the ’t Hooft model (which is a fully
relativistic field theory in the large-N, limit). The calcu-
lation and elucidation of the results were facilitated by
the introduction of the explicit scaling limit of the
>t Hooft model introduced in Sec. II. It was found that
the 1/M corrections to the heavy-quark limit of the
ground-state decay constant and elastic form factor are

5We have not shown f% since its behavior is similar to that of

the elastic form factor.
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comparable in size, obey flavor symmetry, and are
reasonably well approximated by simple nonrelativistic
scaling relations. Furthermore, the explicit form of the
Isgur-Wise functions shows that Isgur-Wise symmetry
never breaks down in 1+ 1 dimensions for heavy-quark to
heavy- quark transitions. Finally, it was demonstrated
that f_( =1) can be quite large—with immediate
consequences for attempts at extracting V,, from B—D
decays in 3+ 1 dimensions.

We have argued that it is possible to abstract several of
the features found in 1+1 QCD to 3+1 dimensions.
Thus, for example, we expect that the corrections to the
decay constant and Isgur-Wise function will be of compa-
rable strength and that these may be roughly estimated
with a nonrelativistic scaling argument. Thus we esti-
mate —30% corrections for B mesons, —80% for D
mesons, and —200% corrections for K mesons. These
numbers are in accord with lattice calculations. Finally,
it was argued that parametric dependence of the mesonic
wave functions on the large quark mass will not upset
Isgur-Wise symmetry in 3+1 dimensions for large v-v’
(however, we have nothing to say about hyperfine effects).

Note added in proof. In the “note added” of Ref. [11] it
is stated that the contribution of f_ to B—DeV, is
suppressed by m2/m}. As we emphasize in Sec. III C
and as is made clear by Eq. (7) of Ref. [17] this is not
true. The point is that f_ does contribute to B — De¥V,
while it does not contribute to B— D *e¥V, at zero recoil.
Furthermore, the authors of Ref. [11] draw conclusions
based on the quantity fV'M rather than fVu. The use
of the former expression to extract 1/M corrections is
misleading because it is not experimentally accessible and
because spurious 1/M terms are generated by the factor
VM /u.
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APPENDIX

The expressions for meson transition matrix elements
have been derived in Refs. [6] and [11] and are repro-
duced below for convenience. The relevant kinematic
varlables are deﬁned in Fig. 5, from which we have
p*=u}, p*=pp, g=p—p’, and r=9- P Momen-
tum conservation implies that p2=g%/x+pu2 /(1—x).

Setting F;’"E(n(p’){Vulm(pH and FIm
=(n(p’)|S|m(p)) gives

F™=2p (1—x)(f1"+f3"+f5"), (A1)
with

= [ galx H 12128, ( (A2)
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_ .8 1¢,(x +(1 x)z)¢,,,(z)G(u;q2)
nm__ d d , (A3)
/i f J, x(1—w)+(1—x)z waz
_ zg 1¢n xu)¢m z2)G(u »q )
nm — d d , (A4)

73 f f [x(1—u)+(1—x)z]? “ae

and
(u)g,(v)
Gu;gh=[! 3 $nlw)nv) 6, ®) (A5)

n=09 —,u,n-i-le

The term f, is the valence quark approximation to F_ where the current couples directly to the heavy quark; f, and
f3 represent the cases where the current couples to an intermediate meson, which then couples to the heavy quark.
These last two terms vanish as 1/M? in the heavy-quark limit, which therefore yields the simple expression for the
Isgur-Wise function given in Eq. (2.29). The “bad” component of F ;™ is given by

F';m:;l-(l—x)(g;"" Fgimgim) (A6)
with
MM 10, (x+(1—x)z),,(2)
nm — (A7)
&1 (1—x) fo [x +(1—x)z])z dz
gim— g2 [ [ Th AR oy dud (A8)
f fo [x(1—u)+(1—x)z]? (U347 )0m (2)du dz
+(1— )
gin=J f‘¢" xu) 7, (x + xiz 6, (2)du dz . (A9)
[x(1—u)+(1—x)z]
Finally,
with
1 M M’
nm — _ All
hi -fod)”(x_+—(1 x)2)$m (2) x+(1—x)z+(1—x)z Z (Alh
_ g’ 16, (xu)—¢,(x+(1—x)z) o
him=-=2 (2)Gg(u;q”)du dz | (A12)
T ff [x(1—u)+(1—x)z]? Om(2)Gsu 34 )du dz
and
ool M_ M $n ()4, (v) (A13)
Gs(u;q”) ZIO{U l—vlzoq—u,‘-kze
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