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The heavy-flavor-conserving nonleptonic weak decays of heavy baryons are studied in a formalism
that incorporates both heavy-quark symmetry and chiral symmetry. The phenomenological hS = 1 non-

leptonic weak chiral Lagrangian for these transitions contains two independent coupling constants that
describe the transitions between two flavor-SU(3) antitriplet heavy baryons, and the transitions between

two flavor-SU(3) sextet heavy baryons. In the MIT bag model and the diquark model, only transitions
between antitriplets are allowed. The coupling constants for these transitions are calculated in both
models. The result is applied to specific nonleptonic decays such as =,~A, ~, and the branching ratios
are found to be of the order of 10 . An example of a nonleptonic decay due to symmetry breaking is

provided by 0,~:-,'~, which is estimated to have a smaller branching ratio, of the order of 10

PACS number(s): 13.30.Eg, 11.30.Hv, 11.30.Rd, 14.20.Kp

I. INTRODUCTION

Theoretical progress on the nonleptonic weak decays
of heavy baryons has been very slow over the last ten
years or so; a rigorous and reliable approach suitable for
analyzing the heavy-baryon decays does not exist thus
far. The well-known factorization approach, which has
been applied successfully to heavy-meson decays, in gen-
eral does not work for the weak decays of baryons.
While the hyperon decay can be tackled with the help of
current algebra, such a technique is in principle no longer
applicable to the heavy-baryon case as the emitted meson
is not necessarily "soft" and a pseudoscalar.

In spite of the absence of a general framework for
describing the nonleptonic decays of heavy baryons, there
is a special class of weak decays that can be studied in a
reliable way, namely, heavy-flavor-conserving nonlepton-
ic decays. Some examples are =&~A&~ and Q&~=&w.
The idea is simple: In these decays only the light quarks
inside the heavy baryon will participate in weak interac-
tions; that is, while the two light quarks undergo weak
transitions, the heavy quark behaves as a "spectator. " As
the emitted light mesons are soft, the hS = 1 weak transi-
tions among light quarks can be handled by the well-

known technique, such as the short-distance eff'ective

Hamiltonian and the current algebra or, equivalently, the
nonlinear chiral Lagrangians. The recent development

*Permanent address.

[1—4] of combining heavy-quark symmetries [5] and
chiral symmetry provides a natural setting for investigat-
ing these reactions. More specifically, in the present pa-
per, we will apply the formalism of Ref. [l) to these pro-
cesses and study the heavy-flavor-conserving nonleptonic
decays among the charmed baryons. The framework set-

up in this study can be easily generalized to the heavy
baryons containing a b quark.

The heavy baryon of interest is that constructed from a
heavy quark and two light quarks, which we often refer
to as a "diquark. " The two light quarks form a sym-
metric sextet 6 or an antisymmetric antitriplet 3 in
flavor-SU(3) space. We will denote these baryons as 86
and B3, respectively. For the ground-state baryons in the

quark model, the symmetries in the flavor and spin of the
diquarks are correlated. Hence SU(3)-symmetric sextet
diquarks have spin l, whereas the SU(3)-antisymmetric
antitriplet diquarks have spin 0. In the heavy-quark lim-

it, there are two independent coupling constants describ-
ing the B3-B3 and B6-B6 transitions, respectively, while

any transition between a B6 and a B3 is forbidden.

Two methods will be used to evaluate these two cou-
pling constants. The first employs the MIT bag model

[6,7], and the second utilizes the recently developed
quark-quark correction mechanism, namely, the diquark
model [8]. Both models predict a vanishing coupling
constant for B6-B6 transitions. The results from both
models for the remaining coupling constant agree within
a factor of 2. It should be noted that since these decays
involve light quarks alone, the parameters needed have
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been determined from the analysis of light-hadron pro-
cesses. Furthermore, according to Ref. [8], the combina-
tion of parameters that enters the decay amplitudes here
is scale invariant. As a result, their values obtained from
the light-hadron sector can be directly used for charmed-
baryon decays without modifications.

When we apply the model calculations to singly
Cabibbo-suppressed charmed-baryon decays such as

A,+n. , =,+ A,+m, and Q, :-',~, we also include
a factorizable contribution which is responsible for the
last decay and affects the first two decays somewhat. The
branching ratios for these decays depend on the =,-=,'

mixing angle, but are found to be typically in the range of
10- -10-. '

II. GENERAL FORMALISM

For the processes we wish to study, the relevant QCD-
corrected hS =1 effective weak Hamiltonian is given by
(for a review, see Ref. [9])

&~(= ' = —sin 8ccos8c g c; (JM )0;(p ) +H. c. ,
2 2

with the four-quark operators

0, =(ds)(uu) —(us)(du},

02 = (ds )(uu )+(us )(du )+2(ds )(dd)+2(ds )(ss),

03 =(ds)(uu)+(us)(du)+2(ds)(dd) —3(ds )(ss),

04 =(ds )(uu)+(us)(du) —(ds)(dd),

Os =(d A, 's)r [(u A, 'u )„+(d A, 'd)ii+(sA, 's)z ],
06 = (ds )[(uu )'+ (dd )'+ (ss )'],

A,6~1 A,6L (4)

where L is a linear SU(3)i transformation. A general
~b,S

~

=1 effective weak chiral Lagrangian responsible for
heavy-Aavor-conserving nonleptonic weak decays of
heavy baryons is then given by [10]

' =h, tr(B 3
(ti 6JB3 ) +h 2 tr(B6( A+B6 )

+h3tr(86$ A6$B3)+H. c.

+h4tr(B6" g A6(B6„), (5)

and the spin- —,
' heavy-baryon fields B6„transform similar-

ly as B6 and B3. Explicitly, the symmetric sextets B6 and

the antisymmetric triplet B3 are given by the matrices [1]

$+ +
c

1
C

B6= yp 1,p
C

1
C

1,p
C

np,

w+
c

which are the leading terms in the double expansion of
light-meson momenta and inverse heavy-baryon masses.
Following the notation of Ref. [1], the spin- —,

' heavy-

baryon fields B6 and B& and the meson field g transform
under an SU(3) chiral transforination as

B6~B6= UB6U

B-~B3—UB3U

g~g'=L(U = UgR

(qlq2) 'qlr/l(1 }5)q2 (qlq2 } qlrp( 1+rs )q2

(q, A, 'q2)r it =q, y„(1+y,)A, 'q2, and 8c is the Cabibbo
angle. The operators 05 and 06 are induced from the
so-called "penguin" diagram. The Wilson coefficient
functions c;(p) that appear in Eq. (1) have the values [9]

~Q~c

and the meson field g is

~Q
c (8)

c& = —2. 11, c2 =0.12, c3 =0.09,
(3)

M/=exp (9)

c&=0.45, c5 = —0.045, c6 = —0.008,
with

at the renormalization scale p = 1 GeV. Since the
baryon-color wave function is totally antisymmetric, it is
evident that among the six four-quark operators 0, —06,
only 0& contributes to the baryon-baryon transition ma-
trix element since it is the only operator antisymmetric in
color indices.

We would like to transcribe the four-quark interactions
(2) in terms of the phenomenological fields for the heavy
baryons introduced in Ref. [1]. From the discussion
above, we only have to consider those terms in (2) which
transform as octets in SU(3}1 under chiral SU(3}l
X SU(3)z transformations. Construction of the phenom-
enological weak Lagrangian follows the standard pro-
cedure of using a spurion which has the desired proper-
ties. This is provided by the SU(3) generator A.6 which
connects AS=+1 states and transforms under SU(3)I
XSU(3)„:

p
7T + g
v'Z

p +"
v'2 v'6

K

scp (10)

and f =93 MeV is the pion's decay constant. The corre-
sponding terms of (5) with a y~ inserted do not exist to
leading order as a consequence of the heavy-quark sym-
metry [5]:

B3(v)y5B3( v) =B6(v )y~B6(v )

=B6"(v)y, B6„(v)=0 .

To leading order there are no couplings between B6 and
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B6 or between B6 and B3 because of the fact that
& 8,' f IX's ='I 8,*, ) =h, ugu, „. (14d)

u "86„(u)=y"86„(v)=0 . (12)

It should be stressed that, contrary to the case of hyperon
decays [11], there are no analogous D and F terms for
nonleptonic weak decays of heavy baryons because of the
definite symmetry of the matrices B6 and B3. For exam-

ple, one can show that

tr(86( A6$86) =tr(Bs86g As('), (13)

and so these two structures are not independent.
The coupling constants h&, . . . , h4 are constrained by

the heavy-quark symmetry. To see what these con-
straints are, let us set g=g =1 and pick an initial and
final state connected by the matrix A.6. Then, from (5), we
have

We now make use of the interpolating fields introduced in
Ref. [1]:

83(v, s) =u(u, s)P,h„,

86(v, s, ir) =B„(v,s, a.)$"„h, ,

(15a)

(15b)

8 (u, s, ir=l)= —u(v, s)ys(u„+y„),
1

p 7 (16a)

where P, and P", are the 0+ and 1+ diquarks, respective-
ly, which combine with the heavy quark h„of velocity v

to form the appropriate heavy baryon. The argument ~
indicates the spin of the baryon: ~=1 for spin- —,

' baryons

(86) and ~=2 for spin- —,
' baryons (Bs ). The wave func-

tion 8„is given by [12]

(8 f1& -'183, ) =h, ufu;,

(8, flX 'IB, , ) =h, ufu, ,

(B,fIX 'IB-, )=h, ufu, ,

(14a)

(14b)

(14c)

8„(u,s, a=2)=u„(u, s) . (16b)

We now evaluate the same matrix elements in (14) from
the four-quark interactions (1). Consider

(86(u, s', a')I& ff 'I83(v, s) ) =B„(u,s', a')(OIh„p", A, ff 'h, p, Io)u (u, s}

=8„(u,s', K')&olh, h, lo)u(u, s)(oly"„JV~ffs 'ytlo& . (17)

&o h, h„lo&=
+1
2

The heavy-quark "propagator*' has the simple form

(18)

(86 f igfeff IBQ ) bufuj

(8, f l&,ff 'IB, , ) = buf u, ,
—

&8,' lw"='IB, )
—=o .

(24a)

(24b)

(24c)

(OI~m" 'y', Io&==au~ . (19)

In principle, an axial-vector term can also appear in (19),
but none is available. Now the wave function B„satisfies

8~(u, s, K )v~=0 (20)

and the "vacuum expectation value" of the light-quark
operators is dictated by Lorentz covariance to be For the coupling constants appearing in Eq. (5), Eqs.

(24a) and (24b) yield the relation

h2= —h4 ——h', (25)

and Eq. (24c) simply confirms the nonexistence of cou-
plings between 86 and 86. Finally, the interaction (5) be-
comes

Consequently, we obtain

(86(u, s', x')l&, ff 'I83(v, s) ) =0 . (21)

'=h tr(83( A6(83)+h'tr(B6(th+86)

—h' tr(Bs"g As(86„), (26}

Equation (21) implies that

h3=0

in Eq. (5). A similar analysis gives

(86(v, s', Ir')l&, ff 'IB6(v, s, ~) )

(22)

where

=8„(v,s', ~')8„(u,s,~}M"",

M" =(OIQI;A s 'P'„tlo)

=bg" +cv "v (23)

Because of (20), only the first term will contribute. It fol-
lows that

where h =—h, . The heavy-quark symmetry predicts the
coupling constants h and h

' to be independent of heavy-
quark masses. Later, we will show that h' vanishes in the
MIT-bag-model [6) and diquark-model [8] calculations.

As an application, let us first discuss the weak-decay
mode =,~A, m, which is kinematically allowed as
m- —m + -—170 MeV [13]. (In the present paper, =,

C C

denotes an antitriplet charmed baryon. ) The general ex-
pression for the baron decay amplitude of B;~Bf+P
(P=pseudoscalar meson) reads

M (8 ~Bf+P)= iuf ( 3 —Bys )u;

where 2 and B are the s- and p-wave amplitudes, respec-
tively. It follows from Eq. (26} that the s-wave amplitude
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for =,~A,+m. is given by
O

7l
I

I

l

I

l
l

l

I

I

I

I

h
l 17A ll= (28)

So we identify

A (:-,+~A,+n. )=—

&A+l~~hs=l~ +1) (29)

I 7r
I

I

I

I

I

~+ Ht+
~c c

where the arrows denote spin eigenvalues. Isospin invari-
ance then gives the relation

A(:-,~A,+sr )=&23 (:-,+~A,+sr ) . (30)

Incidentally, Eq. (29) shows that the coupling constant h

is related to the matrix element

&
A+ I ~gas

= i
I

=+ 1 &
=

&
A+ l I&as = i

~

-+
1 &

(31)

corn (32)

where f~ is the decay constant of the pseudoscalar meson
P. For the charmed-baryon decay =,+~A,+m. , we have

which will be used later in our model calculation of the
coupling constant.

In the framework of current algebra, the s-wave ampli-
tude arises from the parity-violating commutator term

FIG. 1. Possible Feynman diagrams for the p-wave nonlep-
tonic decay =,~A, m..

tions. It thus appears that baryon poles do not cause any
effects on the p-wave amplitude of:",~A,+m. Neverthe-
less, a contribution to the parity-conserving transition
can arise from a possible =, —",' mixing. Let us denote
the mass eigenstates by =„and:-,2.

:"„=cosP:-, +sinP:-,',
:-,2 = —sing:-, +cosP:-,', (34)

with P being the mixing angle of:-, and:-,'. Then the de-

cay =„~A,+sr can proceed through the pole diagrams as
exhibited in Fig. 2. However, the pole diagram due to
the X, intermediate state does not contribute because of
vanishing weak transitions between two sextet heavy
baryons (see next section). Consequently, we are led to
the p-wave amplitude

m- +m,
8 (:-,+, A,

+
m ) =

2f l1l A Pl =

(33)

and

X &
A+ 1 ~gP~c~:-+ t )sing (35)

which is in agreement with Eq. (29) up to an inconse-
quential minus sign. This difference is due to the
different sign convention commonly used for f in the
chiral Lagrangian and current algebra. The s-wave am-
plitude is in general dominated by the low-lying
negative-parity baryon poles. In the soft-pion limit, the
sum of the —,

' pole terms reduces to a commutator term

[7]. This explains the subscript "corn" for the amplitudes
in (32) and (33).

We next turn to the p-wave amplitude of:-,~A,+n..
In the soft-pion limit, the dominant contributions to the
parity-conserving amplitude come from the ground-state
baryon poles as depicted in Fig. 1. The ground-state
—,'+:-,+ pole does not contribute since the strong-coupling
constant g- —„vanishes in the heavy-quark limit, as we

C C

have stressed in Ref. [1]. By the same token, gA z also
C C

vanishes, a fact reinforced by isospin conservation argu-
ments. Therefore the A,+ pole contribution can be disre-
garded. Furthermore, sextet X, and:-,' poles also make
no contributions because of vanishing B6-B- weak transi-

3

B(:-„~A,+~ )=&2B(:-,+, ~A,+n ), (36)

7r'
I

I

I

I

I

I

H
cl

1r'
I

I

I

I

I

H, H+
cl ' c2 c

1F

I

I

I
I

1T

I

I

I

I

FIG. 2. Possible Feynman diagrams for the p-wave nonlep-
tonic decay ",&~A, m when ",—=,' mixing is taken into ac-
count.
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where g2 is the coupling constant of the B6B3~ interac-
tion defined in Eq. (3.12) of Ref. [1]. Because of the mix-

ing effect, the s-wave amplitude (33) is modified to

wave function, respectively, defined by

iu (r)X

v (r)cr. rX
(44)

g,. (:-+,~A+~')= — (A+1'l~'„'l:-+1)cosy.2.
(37)

From Eqs. (35)—(37), it is clear that our next main task is
to evaluate the parity-conserving baryon matrix element
( A,+ lWtr l:-,+ ). This will be done in the next section.

III. MODEL CALCULATIONS

for the ground states. As mentioned before, in the anti-
triplet charmed-baryon wave functions

A+1& =
—,'[lu'd'c'& —lu'd'c'&

—ld'u 'c ' &+ ld 'u 'c ') ],
l:-+1 & =-,'[lu 's'c'

&
—lu 's "c'

&

—ls'u 'c' &+ ls 'u 'c' &],
In this section we will first evaluate the matrix element

(A,+ le l:-,+ ) by using the effective Hamiltonian (1) in
conjunction with the MIT bag model [6] and diquark
fields [8]. The two methods give similar answers. These
results are then applied to specific heavy-flavor-
conserving nonleptonic decays of charmed baryons.

As already mentioned, only 0, in (2} will contribute.
Consequently,

c + GF
( A,+ lWs l:-,+ &

= —sin8ccos0cc,
2

the two light quarks form spin singlets, so that

1 —o&.u =4

It follows from Eqs. (38), (42), and (46) that

GF
( A,+ 1 lWs l:-,+ 1 ) = (16m.)sin8ccos8cc, X .

v'2

A straightforward bag-model calculation gives

X =1.66X 10 GeV

(46)

(47)

X ( A,+ l
(ds )( uu ) l:-,+ ) . (38) which leads to

For the bag-model calculation, we will make use of a re-
sult that relates the matrix element of a local operator be-
tween two zero-momentum eigenstates to a matrix ele-
ment of an integrated operator between two localized bag
states. The relation is [14]

( A(p=O)lo(0)lB(p=O)) = A J d x 0(x) 8
bag

(39)

where the momentum eigenstates and bag states satisfy
the normalizations

(8(p, A, ) lB (p', k') ) =(2m-)' 5&& 5'(p —p') (baryons)3E

(40)

(A,+1l& l:-,+1)= —3.1X10 GeV . (49)

To obtain the numerical result (48), we have used the
values of the bag parameters [6]

m „=md =0, m, =0.279 GeV,

m, =1.551 GeV, R =5 GeV
(50)

—sin&ccos&c [b, (du )(us)+bi(uu )(ds)
2

+ penguin operators]

We next turn to the diquark model for the evaluation
of the baryon matrix element. To implement the diquark
idea, we note that the effective Hamiltonian given by Eq.
(1) can be recast in the form

and +H. c. , (51)
(41)

Following the method of Ref. [7], we obtain, from Eq.
(38),

(A+ l(ds )(uu)'cl:-+ &

=2(4~)X &
A+

I b t(„b).b 2tdb2, (1—~ ).~2) I:-+ &,

(42)

where the subscript i indicates that the operator acts on
the ith light quark in the baryon wave function, and the
four-quark overlap integral X is given by [7]

RX= r dr( uud„v+dv)(u, u„+, v)v. (43)
0

Here R is the radius of the MIT bag and u (r) as well as
v (r) are the large and small components of the quark

where the Wilson coefficients b; are related to c; by the
relations [9]

b, =
—,'( —c, +c2+c, +c~},

6Q 2 (C] +C2 +C3 +C4 )

By performing a Fierz transformation, one can reexpress
the effective Hamiltonian in an explicit local diquark-
current form [8]

—sin9ccos8c [ b (du )3(us)-, +b+ (du )6(us)6v'2

+penguin operators]

+H. c. ,
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where

(du )-,=e,,„d,'(1 —y, }u

(iiS)3 Ei k lii ( 1 7'g)s

b+ =6&+62 b = c]

(54)

(55)

for a 0+ scalar diquark, where ( —,
'}' is a color factor.

The diquark states are normalized according to

&(qq')i (k)~(qq') (k')&=(2m) 2E5 (k —k')5i

(56)

and i,j,k, I, m are color indices. In (53) and (54), we fol-
low the same notation used in Ref. [8]. Since the two
quarks in a baryon must be in a color-antisymmetric state
(i.e., color-antitriplet state), the color sextet currents in
(53) cannot contribute. The effective Hamiltonian (53)
thus bears a simple interpretation in the constituent
quark model: It annihilates a scalar or pseudoscalar anti-
triplet (us) diquark in the initial baryon and then creates
a scalar or pseudoscalar antitriplet (du) diquark in the
final baryon, leaving the spectator heavy quark un-
changed. The measure of the annihilation and creation of
diquarks through the diquark current in (53) is governed
by the "diquark decay constant" gqq defined by [8]

It has been shown in the literature [8] that the combina-
tion of the diquark decay constant and the corresponding
Wilson coefficient is practically scale independent. In
this paper we will adopt the value found in Ref. [8]:

b gd„g„,=0.075+0.015 GeV (57)

Before proceeding to compute baryon matrix elements,
it is worth mentioning that Eq. (22) is consistent with the
effective Hamiltonian expressed in the diquark form. It
comes from the fact that %,ir =' contains no products of
one sextet and one antitriplet diquark currents. In the
nonrelativistic quark model, the wave function of the B3
heavy-baryon state takes the form

1/2

iB3 &=(2m. ) f d kd K5(p —k —K)f (k, K)Q; (K)Dt(k)iO&,
Ply

(58)

where Q;~(K) is a creation operator for the heavy quark

Q with color i and three-momentum K, and D; (k)
creates a (qq') diquark with momentum k and obeys the
commutation relation

values of the coupling constant h to be

h =3.1X10 GeV (MIT bag model),

h =(5.8+1.2) X 10 GeV (diquark model) .

(63a)

(63b)

&0~[D;(k),DJ~(k')]~0& =5; 5(k —k') . (59)

in the SU(3) limit, where mD is the diquark mass and can
be taken as

The momentum-space wave function f (k, K) describes a
heavy baryon constructed from a heavy quark Q with
momentum K plus a (qq') diquark with momentum k.
As far as the ground-state baryon-pole contributions to
nonleptonic decays are concerned, we can neglect the 0
pseudoscalar diquark and keep only the 0+ scalar di-

quark contribution as the former is considerably heavier
than the latter. This amounts to neglecting the parity-
violating baryon matrix elements, which is known to be a
good approximation in the treatment of hyperon nonlep-
tonic weak decays. From Eqs. (53)—(59), it is easily
shown that

GF
& A,+ t ~gag:-+ t &

= — sin8ccos8c b gd„g„, ,
2 mD

(60)

Here is a good place to show that the other coupling
constant h' vanishes in the MIT bag model or diquark
model. In the MIT-bag-model calculation, the matrix
element & B6~%,ir '~B6 & will contain the operator
(1—iri cr2) as in (42). But (1 cr, o2) va—nishes when it
acts on a spin-1 diquark state such as in a B6. In the di-
quark picture, with the help of the interpolating fields, we
have

The independent particle calculation used in the diquark
model is equivalent to the vacuum saturation

&O~qg(du)3(us)3$„" ~0&=&Oly&(du)f310&&01(»)-, P:"IO&

=du"U (65)

&B6(u,s', ii')(%,s '~Bs(u, s, ~) &

=B„( s'u, a')B„(v,s, )&ir0~$ (diu) (us3) +3~0& .

(64)

mD =m + —m, =785 MeV .
C ~

This together with Eqs. (57) and (61}leads to

&A,'t~M;~=-,+t &= —(5.8+1.2) X 10 GeV .

(61)

(62)

The last step follows from the fact that each factor must
be proportional to v". Equation (20) implies that the ma-
trix element &B6~&,s '~B6& vanishes. Thus we find
both in the MIT bag and diquark models that

The diquark result (62) and bag result (49) predict the h'=0 . (66)
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There is an additional factorizable contribution to the
decay mode =,~A, ~, which is absent in the frame-
work of current algebra or chiral perturbation theory
since such a contribution vanishes in the soft-pion limit.
We will use the factorization scheme incorporating the
large-cV, expansion, which is known to be a better frame-
work to use for describing nonleptonic decays of heavy
mesons [15]. This amounts to dropping Fierz-
transformed terms. We note that the factorizable contri-
bution induced by the operator 0„for example, is

Performing a Fierz transformation on the penguin opera-
tors 0~, 06 gives

0& = —"g (dL qg )(qzsl ) —16 g(dl qg )(qzsL ),
q q

o6= —8 X (diq~ )(q~sL»

(69a)

(69b)

where a and P are color indices, q
=u, d, s, and use has

been made of

&~-A;lo, l:-', &

= —&~-(q)l(du)lo&&A, +l(us)l=-; &

iv 2f—uA [(m= —m~ )f, ' '

-A:-
+(m- +mA )f, ' 'r5]u-

C C

where f, and f, are the form factors defined by

&A,+I(us)l:-, &=u~ [f, ' 'rp+ f, '
'~'reap, q'

+f3' 'q„f&' 'r„r5—

(67)

g k'pA, 's= ——', 5 p5 s+25 s5pr .

Applying the equations of motion,

—i~"(hrp'sq2) (m 1+m2)qlr5q2
—i~"(q&r„q2) =(m

&

—m&)q&q2,

we obtain in the large-X, limit that

&~-A;lo, I:-', &

m
&~-A,+lo, I:-', &,

(m„+md )(m, —md )

&~-A,+lo, l:-', &=0.

(70)

(71a)

(71b)

(72)

f2' '~~„—.q "rs f3' 'q„r—5]u=-, . Since the form factor f, ' ' vanishes in the heavy-quark
limit [see Eq. (3.26) of Ref. [1]],it is evident that only the
s-wave amplitude receives a factorizable contribution

G m 2
-0 + — F AA~„(:-„~A,m. )= sin6ccos0ccospf (m- —m +)f, ' ' —c, +c2+c3+c4+4 c&

2 C m„+md) m, —md

(73)

Note that the penguin contribution is destructive. The form factor f, ' ' is evaluated in the bag model to be

=4~f "r'dr (u„u, + u„u, ) & A,' 1 I
t „'t,I:

0
R= —4m. r dr(u„u, +v„v, ) .

0

We find, numerically,

(74)

f, ' ' = —0.985 . (75)

Since the mass difFerence of Q, and:-, (:-,' ) is about 280 (180) MeV [13],the weak decays 0,~:-,'mand:", n are also.
kinematically allowed. Because of Eqs. (22) and (66), it is easily seen that charm-flavor-conserving decays of Q, cannot
proceed except for 0,~:",'+m, which receives a factorizable contribution given by

0 —.+ — . F :-,0,
Mf„(Q, ~:-', rr )=i sin8ccos0cf„[(mn —m, )f, ' ' +(mn +m, )f, ' ' rs]

C C

m
X —c, +c2+c3+c4+4 e~

m m„+md
(76)

with

0 Rf, ' ' =4' r dr ( u„u, +v„u, ) &:-,'+ 1 I b„b, I ~, 1 &

0

c c (7 =0.709 X
2&2

3
(77b)

and
~l

f, ' ' =4nfr dr(u„u. , —
—,'u„v, )&:"',+ 1'Ib„b,o, l&, 1 &

0
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A (:-,+, ~A,+n.o)= 3.4X10 cosP,
2

A (Qo~:-,+2m )= Ar„=5 X 10 cosP,

B(:-„~A,+n. ) =v'2B(:-,+(~A,+n )

=2.7 X 10 sin((),

(78)

B (Q, ~:-,+2m ) =Br„=—7.4 X 10 cosP,

where use of g2 = —( —', )' (0.75) [1]and Eqs. (3), (75), and
(77) has been made. To arrive at (78), we have used the
average value ——4. 5X10 GeV [cf. Eq. (63)] for the
matrix element (A,+~M/:",+) and the current quark
masses m„=5.6 MeV, md =9.9 MeV, and m, =199 MeV
[16]. Note that the factorizable amplitude is sensitive to
the choice of the quark masses. It is easily seen that its
magnitude in Eq. (78) will be reduced by a factor of 2 if
the Weinberg's estimate [17] rn„=4.2 MeV, md =7.5

MeV, and m, =150 MeV is used. The decay rate for
B,.~Bf+P is given by

(m;+mf ) —mzr=
Sm m;

+ (m; rn )
—m—p

m.
I

where p is the momentum of the meson in the rest frame
of B, Evidently, the p-wave effect is badly suppressed be-
cause (m; —mf ) «(m;+mf ) . We conclude that the
decay rate is dominated by the s-wave channel. Assum-
ing =,&==, and hence =,2=",', we obtain

(79)

I (:-,~A,+n)= 1.7 X.10 ' GeV,

I (:-,+~A,+m )=1.0X10 ' GeV,

1(Q, :-,'+n. )=4.3X10 ' GeV .

(80)

Using the theoretical values of the charmed-baryon life-
times [18,19],

7(:-,)=1.5X10 ' s, 7(:-,+)=3.3X10 ' s,
(81)

r(Q, }=1.3X10 ' s,
we finally get the branching ratios

B(:-,~A,+m )=3.8X10

B(:-,+ A,+n )=5.0X10

B(Q,~:-',+m ) =0.9 X 10

(82)

Recall that the branching ratio of Cabibbo-allowed

In (76) we have neglected the down-quark mass relative
to that of the strange quark, and so the terms dependent
on the Wilson coeScients become a common factor of
both the s- and p-wave amplitudes.

We are now ready to present numerical results. Col-
lecting the results obtained so far, we find the s- and p-
wave amplitudes

A (:"„~A,+m. ) = A „+A f„
= (3.4 X 10 —3.4 X 10 )cos4,

decays of charmed baryons, e.g., A,+~Am+, is typi-
cally of order 1%. Therefore the predicted branching
ratios for the charm-flavor-conserving decays
~A,+m, =,+~A,+~ are of the same order of magni-
tude as singly Cabibbo-suppressed decay modes, e.g.,

Xm.+, =, 2+m.

Up to now, we have been mostly concerned with the
evaluation of the parity-conserving weak matrix element
(A,+ 1'~Wtt ~:-,+1 ). As we have shown in Sec. II, the cor-
responding matrix element for the parity-violating part of
the weak Hamiltonian Mz vanishes in the heavy-quark
limit. It also vanishes in the bag model when the momen-
tum transfer q=0 between the initial and final states. A
method for extracting the p-wave amplitude from this
matrix element has been proposed [20]. We find that this
(nonleading) matrix element only connects a heavy
baryon in the symmetric sextet in flavor SU(3) to a heavy
baryon in the antisymmetric antitriplet. Furthermore,
whether or not the matrix element vanishes depends on
the quark contents of the states. For example,

(83a)

but

&=-;&I~;l~;1)=0. (83b}

This is a most unexpected result. It is not clear to us
whether the result holds beyond the MIT bag model. It
certainly deserves further study.

IV. CONCLUSIONS

The synthesis of the heavy-quark and chiral sym-
metries offers a new framework for studying strong and
weak interactions of heavy hadrons with Goldstone bo-
sons. A crucial requirement is that the Goldstone bosons
involved must be soft. Consequently, this formalism is
only applicable to certain classes of physical processes.
In addition to the strong decays and semileptonic decays
of the heavy hadrons studied in Ref. [1], heavy-flavor-
conserving nonleptonic decays of heavy baryons studied
in this paper also belong to the class.

The combined symmetries of heavy and light quarks
severely restrict the weak transitions allowed. In the
symmetry limit, we find that there cannot be B3-B6 and

B6-B6 nonleptonic weak transitions. Symmetries alone
permit three types of transitions: B3-B3, B6-B6, and

B6-B6 transitions. However, in both the MIT bag and
diquark models, only B3-B3 transitions have nonzero am-

plitudes. These transitions, such as ",~A,+m

:-,+~A,+~, have a branching ratio of order 10
The B6-B6 transition Q, ~:-,'+m, which vanishes in

the chiral limit, receives a finite factorizable contribution
as a result of symmetry-breaking effects. Its branching
ratio is estimated to be about 10

We urge the experimentalists to check carefully our
predictions: (1) the rates and branching ratios of the al-
lowed B3 B3 transitions obtai-ned in Sec. III, (2) the ab-
sence of B3-B6 and B6-B6 transitions in the limit of
heavy-quark symmetry, and (3) the weaker predictions by
the MIT bag and diquark models that in the symmetry
limit B6-B6 and B6-B6 nonleptonic weak transitions
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should not occur. These transitions are, therefore,
suppressed relative to the allowed B3-B3 transitions. We
already see that a transition of this kind, Q, ~:-,'+~
can proceed via factorizable processes, but with a branch-
ing ratio smaller by one order of magnitude.

Finally, we would like to stress that symmetry-
breaking effects be systematically investigated. In the
limit of heavy quarks and soft pions, the theory is a dou-
ble expansion in the pion momenta and inverse heavy-
quark masses. It is important to ascertain what the
corrections are to the results obtained in this paper. We
would also like to clarify the results on the matrix ele-
ments (B6~Wtt)83 ) in the MIT bag model which seem
to depend on the quark contents of the states.
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