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Mass corrections to "forbidden" charmoninm decays: q„y,o = pp
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Some exclusive decays of charmonium states are forbidden, in the framework of perturbative QCD

quark models, by the helicity-conservation rule, related to the vector coupling of gluons to (almost)

massless quarks. Among them, we consider here g, and y,o decays into pp; after discussing possible non-

perturbative corrections, we show that, assigning to the quarks a constituent rather than a current mass,

one obtains nonzero values for such processes. The values found for I (y,o~pp) are almost as large as

those obtained for similar, nonforbidden decays in the massless quark scheme, g, &,2~pp; I (g, ~pp),
however, turns out to be much smaller than the experimental data, enhancing, once more, the peculiarity

of many g, decays. Mass corrections to some other allowed decays, y,o~mw and g,o into longitudinally

polarized vector mesons, are computed and shown to be relevant.

PACS number(s): 13.25.+m, 12.38.Bx

I. INTRODUCTION

Exclusive heavy-meson decays into hadrons are sup-
posed to be a good testing ground for perturbative QCD:
The heavy quarks in the initial state can be safely treated
in the nonrelativistic, zero-binding approximation, and
the decays are mediated by the exchange of hard (large-

g ) gluons, which create qq pairs, which, in turn, hadron-
ize into the final observed hadrons. Factorization is sup-
posed to hold, in that the elementary constituent interac-
tion, the creation of qq pairs starting from a heavy-quark
pair, can be computed separately according to perturba-
tive QCD rules and then convoluted with the final hadron
wave functions. Such a scheme is expected to work in the
large-Q limit, as advocated by many authors [1—4].

In practice, however, experimental information is
available only for charmonium decays [5—10], that is, for
a Q region of few GeV, where it is not yet clear whether
perturbative QCD alone should account for a correct
description or other nonperturbative effects should still
be non-negligible. The comparison between the theoreti-
cal predictions and the experimental data shows some
failure as well as some successes of the perturbative QCD
scheme, suggesting that, indeed, at least in some cases,
higher-order or nonperturbative corrections should still
be carefully considered.

The computations of the decay rates of J/f and

y,0,2~pp are among the perturbative QCD successes
[11—14]. The numerical values depend very strongly on
the choice of the distribution amplitudes of the quark
momenta inside the proton: The choice suggested by
QCD sum rules [14—16] is the one which consistently
best reproduces the experimental data. Also, y,0,2~em

and pp have been computed [17]: again, the QCD sum-

rule wave functions allow a very good agreement with the
data on Pg, 0,2

—+em.). Similar values are found for
1 (g,o,&happ), but no data are yet available on such pro-
cesses.

In other charmonium decays, instead, the perturbative
QCD scheme for exclusive processes seems to fail. The
reason is due to the vector coupling of gluons and quarks,
which, in the limit of massless quarks, conserves the
quark helicity: This simple fact leads to the "helicity-
conservation rule" in exclusive processes [11],which for-
bids many two-body heavy-meson decays [17]. The qq
pairs emitted from a gluon with high virtuality must have
opposite helicities; the quark (antiquark) helicities sum

up to the final particle (antiparticle) helicity; then, also,
the particle-antiparticle pairs created, via hard gluon ex-
changes, in the decay of heavy mesons, must be in
opposite-helicity states. This immediately forbids, for ex-
arnple, the decays g„g,o

—+pp: A spin-0 particle cannot
decay into two fermions with opposite helicities. Similar-
ly forbidden decays are rI, ~ VV ( V= vector meson) and
J/f~rrp (in general, J//~any pseudoscalar —vector-
meson pair). However, most of these decays have been
observed [10].

The intermediate-Q region of charmonium decays
may offer many possible solutions to the above problems,
some of which have been investigated in the literature.
The contribution of higher-order Fock states (such as qqg
in a meson), depressed by powers of a, /Q, might still be
important in some decays such as J//~pm. [4] and

g„&,0,2~cog [18]. Also, the intrinsic transverse
momentum k& of quarks inside the final hadrons might
help, implying that the quark helicity does not coincide
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exactly with its spin projection onto the direction of the
hadron momentum, so that pairs of opposite-helicity
quarks do not necessarily hadronize into opposite-helicity
hadrons. This correction should be proportional to
k~/m„where m, is the charmed-quark mass; its full
evaluation, however, is not simple and has never been
performed. More radical solutions have also been pro-
posed, concerning the J//~per, K*J, and the g, de-
cays, by advocating strong gluonic components inside the
J/1/| [19] and the t), [20]; in such cases, the analogous de-
cays for the J' and g,

'
should be strongly suppressed, as

required by the helicity-conservation rule: This is actual-
ly observed for the J', while no data are yet available for
the g,'.

In another attempt to overcome the problems which
massless perturbative QCD has to face in the description
of charmonium decays into pp (and in many other spin
effects in exclusive reactions), a quark-diquark model of
the nucleon has been introduced and widely applied
[21—23]. Two quark correlations, induced by QCD color
forces, must exist inside baryons [24]: In the
intermediate-Q region of the charmonium decays, such
correlations behave as effective single particles, scalar or
(pseudo)vector diquarks. The coupling of vector di-

quarks to gluons allows helicity Hips, thus avoiding the
decay selection rules imposed by helicity conservation.
The quark-diquark model has been applied to the
description of g„y,o „,&happ [21,22] and J//~happ
[23] decays: It agrees, as well as perturbative QCD, with
the data on I (g, &,2~pp ), and it also gives a reasonable
account of the data on J/1(~ypp. Concerning the de-
cays forbidden in perturbative QCD, it yields a value for
I (y,o~pp) similar to, or greater than, those measured
for y„,z and in agreement with an existing large upper
bound; however, the value found for 1(q, ~pp), al-

though different from zero, turns out to be much smaller
than the experimental data.

In this paper we consider yet another class of nonper-
turbative corrections to the original perturbative QCD
scheme, namely, mass corrections. According to the
model of Refs. [1—4], the elementary interactions among
quarks and gluons are computed, following the perturba-
tive QCD Feynman rules, assigning the light quarks their
current mass of few MeV. In the small-Q region, how-

ever, one might think that the constituent quarks, that is,
the current quarks surrounded by their cloud of qq pairs
and gluons, still act as a single particle; moreover, as
shown by Weinberg [25], these constituent quarks can be
treated as bare Dirac particles, with the same couplings
as for current quarks in the standard SU(3)SU(2)U(1)
Lagrangian. It is then natural, in small-Q regions, to as-
sign the quark an effective mass xm&, like in the naive
parton model, where x is the fraction of the four-
momentum of the hadron H (with mass mH) carried by
the quark. The different values of x will be weighted by
the hadron wave function. Massive quarks will allow hel-
icity Aips in the elementary amplitudes, proportional to
m~/m, : We expect then to obtain nonzero values for the
charmonium decays forbidden in the perturbative QCD
scheme with massless quarks. In particular, we discuss in
this paper the decays g, ~pp and y,o~pp. Quark mass
effects were previously considered in J/P~BB [26] and

g, ~ VV [27] decays.
The plan of the work is as follows. In Sec. II we recall

the general formalism for the computation of the decay
rate of heavy mesons in the QCD model of Refs. [1—4]
and we first apply it, with massive quarks, to the compu-
tation of I'(y, o~~rr) and I (y,o~ VL VL ), where VL is a
longitudinally polarized vector meson (p, K*,Q); such de-
cays have already been computed in the massless case [4],
with results which we rederive in the limit m ~0. We
also show explicitly that mass corrections are relevant.
In Sec. III we compute I (g,o~pp ) and I (r/, ~pp ) with
different choices of the proton wave function and com-
pare the results with the experimental data. While the re-
sults for y, o are almost as large as those measured for
I (y, &,z~pP), the results for g, are still much smaller
than the data. In Sec. IV we give some further comments
on the peculiarities of the g, decays, together with the
conclusions.

II. GENERAL FORMALISM AND MASS
CORRECTIONS TO +&0~ww& Vg VL DECAYS

In the perturbative QCD scheme of Refs. [1—4], the
amplitudes for the decay of a heavy (cc ) meson at rest
with quantum numbers J,M, L,S into a pair of hadrons
with helicities XH, XH are given, in the constituent helici-

ty basis, by [21]

Cg g gC gg d kMg g .g p 0 k D g (x 0 k (2.1)

where

k = ( k sina cos/3, k sina sinP, k cosa),

A,, and A,, are, respectively, the c and c relative momentum and helicities; A, =A, , —
A, ; the matrix rotation D(P, a, 0) and

1t(k) originate from the charmonium wave function in momentum space, and the C are the usual Clebsch-Gordan
coefficients for the c and c quarks to combine into a state with spin S, which, in turn, combines with an orbital angular
momentum L to make up a charmonium state with total spin J. Finally, L9 is the angle between the final hadron H and
the spin quantization axis for the initial state, always chosen as the z axis, and the helicity amplitudes M for the process
cc ~HH are given by
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where by x,. and jA, , j we denote, respectively, the whole

set of momentum fractions and helicities carried by the
quarks inside the hadron I (I=H, H ). As usual,
[dx;]=dx, dxz dx„5(1—x, —xz — . . —x„), with

nt the number of valence quarks inside hadron I. The f
are the (flavor, color, spin, and momentum) final hadron
wave functions, and the T are the helicity amplitudes for
the elementary interaction which annihilates the initial cc
pair and creates new qq pairs. All final quarks are sup-
posed to be collinear, moving parallel to their parent had-
ron, and their helicities sum up to the hadron helicity. In
Eq. (2.2) we have not explicitly shown the Q dependence
of the hadronic wave function induced by QCD evolution
[2].

Equations (2.1) and (2.2) apply, in principle, to the
two-body decays of mesons with a very large mass, such
that the virtual gluons exchanged between qq pairs all
have a large value of Q and lowest-order perturbative
QCD gives the leading contribution. In such a case, all
masses, including the final hadron masses, can safely be
neglected. However, charmonium masses, typically be-
tween 3 and 4 GeV, might not yet be, as we said in the
Introduction, in the above asymptotic region; certainly,
in most cases, the final hadron masses cannot be neglect-
ed relatively to the c-quark mass. It is the purpose of this
paper, as we explained in the previous section, to leave
aside other possible corrections and to explore the conse-
quences of assigning the quarks, throughout the paper,
not their tiny current masses, but their constituent ones.

Our computation of charmonium decay rates will still
be performed in the theoretical scheme of Eqs. (2.1) and
(2.2); the only difFerence is that each quark is now carry-
ing a fraction x of the hadron four-momentum, so that its
mass, like in the naive quark model, is m =xm&,' we also
properly keep into account, in all the kinematics and
phase-space integrations, the hadron masses mH. The
elementary quark interactions are computed according to
the usual perturbative QCD rules, which amounts to con-

sidering the constituent quarks as effective Dirac parti-
cles with the usual pointlike couplings [25]. The only
ambiguity in such a scheme, as we shall see in Sec. III,
might be related to the value of the mass of the quark
which should appear in its propagator.

In this section we start by computing, with massive
quarks, the decay rates I (y,~~ere, VL VL ), where VL is a
longitudinally polarized (A, i, =0) vector meson. Such de-
cays have also been computed in the massless case [17],in
good agreement, although strongly dependent on the
choice of the meson wave functions, with the existing ex-
perimental data. %e can then check that our results
reproduce, in the m ~0 limit, the previous ones and
show that the mass corrections can be very sizable.

A (8)= — —J d k Pr (k) {M++(8,k)

+M (8,k)] .

The pion wave functions are given by

(2.3)

Q +(x)= —(u d+ —u+d )q)(x),
17 4 3

0 -(y)= —(d+u —d-u+)-9(y}
(2.4)

where f is the pion decay constant whose value (accord-
ing to the conventions here adopted} is f = 133 MeV. In
Eq. (2.4) we have oinitted, for simplicity of notation, the
color indices and the g are the distribution amplitudes of
the quarks inside the pions. By using Eqs. (2.4) in Eq.
(2.2), one obtains

A. Decay y,0~@++

Inserting the quantum numbers of the g,o charmonium
state (L =5= 1, J=O) into Eq. (2.1), we have (dropping
all helicity indices which are trivially zero)

(2.5)M...=
4, Jdxdy V(x)V(y)[T+ +,... +T ++;~-,~-T+ + -;~,~

—T —
+ +;.-..-]--

One has now to compute the elementary amplitudes T contributing to Eq. (2.5); the corresponding Feynman dia-
grams are shown in Fig. 1, where we also define the kinematics.

The two-body decay of the spinless g,o is isotropic: Thus it suSces to compute the elementary amplitudes T in the
simplest configuration of the n+ moving along the z axis (8=0}. We do not repeat here the details of the calculation
which can be found in Ref. [28]; one finds

2 27 & & & & .& &
= —i 8C&, km cos a5& & 5~ ~ +4, m k sino' cosa 5& ~ 5~

ql ql q2 q2 c c M q

E'[k sin'a+8k—, k, (x —y)p]5i i 5i iC ql' q2 c c

Q3
+4k [A. (x+y —1)sina+A, ,sina cosa]5& & 5i-M

i8Cf(x ——y)p m cosa5& i 5i i +4k,,m„sina 5i z 5&
ql q2 c c ql q2

c' c
X

+2E cosa 5& & 5& & + 8A,, sina 5& & 5&
2

g3
qz x ql' q2 ' c

(2.6)
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where

Cd

d —(x —y)k p cosa
2CCI=( —y)

d —(x —y) k p cosa
with

(2.7a)

(2.7b)

—
iCFgs

(2.7c)

g1=(x —y) m +4xyE

g2=(x —y) m„+4(1—x)(1—y)E

d = (x —y ) m „+2(2xy —x —y )E

f =k p=kp cosa .

(2.7d)

(2.7e)

(2.7f)

(2.7g)

In Eq. (2.7c), cF is the color factor, which, when convoluted with the final meson wave functions, yields a factor
2/( 3&3 ).

We proceed by using Eqs. (2.7) and (2.6) in Eqs. (2.5) and (2.3) and perform the d k integration by exploiting the ex-
plicit form of the y, 0 wave function t)2(k) in the nonrelativistic limit

q„(k)= i3&&~le'( 0)l „,&(k) .

It results in

(2.8)

4()96 f ~R '(0)
~

A(g, o~tr 4r )= i ——4r a, Iz (e),
9&3 M4

(2.9)

where e=m IM& and the integral I& (e) is given by~co

Ix (e)=—I 1 1 1
dx dy 1p(x)p(y)

32 0 xy+(x —y) e (1—x)(1—y)+(x —y) E 2xy —x —
y

—2(x —y) e

(2.10)X 1 —— (x —y) (I —4e ) 2 1 (x —y) (1 4e )—
+2@ 1+—

2 2xy —x —y+2(x —y) e2 2 2xy —x —y+2(x —y)6'
In the limit a~0, the integral I (e) reduces to the

~co

corresponding integral found, with massless quarks, by
Chernyak and Zhitnitsky [4]:

-(~ --)p

)A-, nl

lim I~ (e) =I
~g~o co &cO

Finally, from

(2.11)
c, Acti

-y eyWP+ot&

r(g„-~+~-)=, (I —4e')'" f ~

~ ~'dA, (2.12)
8(2w)

we derive

r(~„-~+~- )

—c, A;. , j
A„-, , 12 iL

QP2 ( & 'V)P2

=(—') 2&3rr2a4(1 4e2)1/2f I (E)4 ~Z (0)~-' 2

3 S 77 ~8 g ()

(2.13)

which, in the e~O limit, agrees with the result of Ref.
(41-

FIG. 1. Feynman diagrams contributing, to lowest order in

a, , to the elementary process QQ ~q, q, qzq„ for a quarkonium

state with charge conjugation C = + l. In the QQ center-of-

mass frame, c'=(E,k/2), c "=(E,—k/2), with

k =(k sina cos/3, k sina sing, k cosa); p'&' =(E,p), pt2 = (F. , —p),
with p=(p sinO, 0, p cosO). a, b,i,j,I, I, „n, , are color indices;
the X's label helicities.
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B. Numerical estimates of mass corrections
for the decays y, p~mw and g,p~ VL, VL,

p(x) =N(a, P)x (1—x )~, (2.15)

where N is the normalization factor such that

j,'dx
q =1.

In Table I we show the values of I& (e=mM/Mr) for
~cO

The above results can easily be modified to the case of
the decay g,o~ VL VL, where VL is a vector meson longi-
tudinally polarized, A, ~=O; such decay is the only one al-
lowed by the helicity-conservation rule induced by the
perturbative coupling of gluons to massless quarks and
has already been computed [1,4]. Again, by computing it
with massive quarks, we shall evaluate the relative impor-
tance of mass corrections, and as a consistency check, we
recover, in the limit m ~0, the existing results.

The main difference between a pion and a longitudinal-
ly polarized vector meson is obviously the spin wave
function, which now reads

(S=l ~=0)= ~-(l-+ }+l+-)) (2 14)
1

The sign difference with respect to the pion wave func-
tion (2.4) is refiected in a few changes of some signs; it is

easy to realize that Eqs. (2.9), (2.12},and (2.13}still hold
true, with the obvious replacements m ~m v, f„~f~,
and the only change in Eq. (2.10) is a different sign in

front of the square bracket (mass correction terms). The

y are the distribution amplitudes of the proper final
mesons.

We are now in the position of estimating the size of the
mass corrections to I (g,o

—+mesons) decays. The results
in the two cases, m~ =0 and m~+0, can be read from
Eqs. (2.13) and (2.10) (and the analogous ones for vector
mesons), setting, respectively, e=m~/M& (where IM is
the mass of the meson) and e=O Apart fr. om the factor
(1—4e )', the difference comes from the different
values, in the two cases, of the integral Ir (E). To give a

+cp

first estimate of the relative importance of the mass
corrections, we evaluate Ir (e) for different choices of

x'co

the momentum distribution amplitudes y, taken to be of
the kind

different final mesons (with helicity 0}and several choices
of a and p. For particles with uneven quark contents,
such as E and K*, we allow a to differ from P. We also
give the values of I (a=0), which only depend on a and

~cp

p and not on the final mesons, together with the relative
variation of the decay width

[I (m %0)—I (m =0)]/I (mq =0) .

In Table II we show the mass corrections to the results,
in agreement with the data (when the comparison is pos-
sible), obtained by Chernyak and Zhitnitsky; that is, we
compute the decay rates using the same distribution am-
plitudes as in Ref. [4], but with massive quarks.

Few comments are now in order.
The mass corrections to I (p p~n~), given the small-

ness of the ratio m /m„are indeed negligible; with in-

creasing masses, the corrections become larger, up to
40—60% for p, E", and P. The qualitative results of the
models, however, are not changed by the introduction of
massive quarks: Changing the meson wave functions still
induces variations in the results much bigger than those
induced by mass corrections.

The Chernyak-Zhitnitsky wave functions give, in most
cases, much larger results than the wave functions (2.15):
The same is true for the absolute value of the mass
corrections, whereas their relative values show little
dependence on the choice of the distribution amplitudes.

An analogous study of mass corrections has been per-
formed also for the g,2~m~, VL VL decays, with results
similar to those shown for the g,o. More details can be
found in Ref. [28].

The fact that massive quarks give sizable corrections,
almost as big as the zero-mass results, for decays into
particles with large masses ( —1 GeV), suggests that mass
terms alone might be able to account for the forbidden
decays g„y,o~pp. We then turn to the computation of
1(7/ g p-pp ) with massive quarks.

III, g p AND g, DECAYS INTO pp

Let us start from g,0~@A and repeat the same pro-
cedure followed for the decay y,o~mm in Sec. IIA.
From Eq. (2.1) we have that the only nonzero, indepen-
dent helicity amplitude is given by

TABLE I. Evaluations of mass corrections to the decays y,o~MM for different final mesons. For
each value of a and P [see Eq. (2.15)], the first line gives the value of 1» (e), and the second gives, in

cO

percentage, the relative variation of the decay width, [I ( m, %0)—I'(m, =0)] /I (m, =0).

mg m m

3.039

1.764

1.472

3.528

5.579

1.831

3.002
—3

1.764
0
1.475
0

2.853
—16

1.771
—4

1.501
0
3.370

—13
5.317

—13
1.849

—2

2.324
—48

1.497
—36

1.282
—32

2.163
—57

1.416
—45

1.220
—41

2.579
—54

4.046
—55

1.485
—44

1.992
—66

1.324
—55

1.148
—51
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1
(g, pp)= — —fd'k g (k)[M . (O, k}+M . (O, k}} . (3.1)

All other amplitudes are either forbidden by total angular momentum conservation ( A + = A + =0}or are related by
parity to A++ ..

(-Z,-o pP)=~++(X,o pp} . (3.2)

The most general proton wave function, proposed by Chernyak, Ogloblin, and Zhitnitsky [14,15], can be explicitly
written as [29]

Fx/pe�(x]px2&x3)2&~
—[y(123)uz(1)u&(2)dz(3)+y(213)u&(1)uz(2)d(3)

P ' 4&6 P P P P P AP

+y(132)uq (1)dq (2)u q (3)+q)(231)dq (1)uq (2)u g (3)
P P P P P P

+(p(312)u q (1)dq (2)ug (3}+qr(321)dg (1)u q (2)ug (3)
P P P P P P

—[p(213)+y(312)]d ~ (l)u~ (2)u~ (3)—[y(321)+p(123)]u~ (1)d ~ (2)u~ (3)
P P P P P P

—[p(132)+p(231)]up (1)ug (2)d g (3)},
P P P

(3.3)

where we have omitted the color indices and q(i,j,k) is a short notation for p(x;, x, ,xz) (i,j,k =1,2, 3). F~ is a di-
mensional constant, analogous to the pion decay constant and related to the value of the nucleon wave function at the
origin; QCD sum rules yield [14,16]

~F~~ =(0.5+0.03) X 10 GeV

in qualitative agreement with a lattice calculation [30].
By using Eq. (3.3) in Eq. (2.2), we have

F
M++.++ = [dx, ][dy;]([g (132)+p (231)+[q&(132)+tp(231)] }T++

+ [p(231)y(321)—q)(132)[q)(321)+p(123)]—[y(132)+q)(231)]y(123)}T++

+ [y(132}q)(312)—q(231)[q&(213)+tp(312)]—[q(132)+p(231)]y(213)}

X T++

+ [y(321}y(231)—p(123)[q&(132)+y(231)]—[q&(321)+qr(123)]tp(132)}

+ —+, ++ —;++

+ [y (123)+qr (321)+[y(123)+y(321}]}T+

+ [q(123)qr(213)—tp(321)[p(213)+y(312)]—[y(321)+q&(123)]g(312)}

XT+ + +

+ [q&(312)y(132)—p(213)[q)(132)+y(231)]—[qr(213)+y(312)]y(231)}

—++ ++ —++

+ [y(213 }q&( 123 ) —y(312)[q)(321)+y( 123 ) ]
—[qr(213 ) +y(312) ]g(321)}

XT +++ +

+ [y2(213)+tp (312)+[y(213)+y(312)] }T ++ ++.~+ },

(3.4)

(3.5)

where, as usual,

[dz;]—:dz&dz2dz36(1 —
z&

—zz —z3);

by the product of two distribution amplitudes q&(i,j,k)y(l, m, n ) we mean y(x;, xj,xk )q&(y&,y,y„) (i,j,k, l, m, n

)

The helicity amplitudes for the elementary process Tz z & z z & .z & can be computed from the Feynman dia-
V3'

grams of Fig. 2, where we also define the kinematical variables (details of the computation can be found in Ref. [28]).
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By inserting their expressions into Eqs. (3.5) and (3.1) and performing the d k integration with the help of Eq. (2.g),
we obtain

&++(g,o~pp)= —ma,.F~~R'(0)im (Mr 4—m )'/
27 3

1 —x2 i 1 —
y2 1

d~2 d~3 dy, dy3
0 0 0 0 (xzyz —xz —yz+1)Mxz+(xz —yz)zmpz

1

[xzyzM&+(xz —yz) m ][x3V3M&+(x3—y3) m ]

X
1

(1—xz}y3Mr+(I —xz —y3) m e—m

1

—,(2xzyz —xz —yz)Mr+(xz Vz) mp
r

2 2 2 2~ ' mp [f++—;++—+rp+ —+;+—++% ++;——++ ]

(x z
—yz )(1—xz+y3 —e)M&

—,
' (2x zyz

—x z
—

yz )Mr + (x z
—

yz ) m

(xz —yz) (M —4mz)
+ —, z z z

+1 (1—xz —V3+e)
4 —,'(2xzyz —xz —yz)M +(xz —yz) m

1 (xz —yz) (Mr —4m )
t++ —.+ +M+ —

z z
—1 (1—xz —y3 e)—

4 —,'(2xzyz —xz —
yz )Mr + (xz y, )'m,'—

2 2 2+Mr[I++ —.—+++@—++ ++—]

(xz —yz)(Mry3+2(1 —xz —
y3

—E)m z)

2 ( xzyz xz yz }Mr +(xz —
yz )'m,'

(xz —y, )'(Mrz —4m ')
—,'(2xzyz xz yz)M&+(xz —yz) m~

+Mr [@'+ +;—+++%—' ++;+—+]—2 2 2

1 (xz —yz) (Mr —4m }
X —1 (1—xz)

4 —,'(2xzyz —xz —yz)Mr+(xz —yz) mp
(3.6)

where by y& & & .& & & we mean the bilinear com-
q& q2 q3' q& q2 q3

binations of y s appearing in the squared brackets multi-

plying Tz z z .z z z .++ in Eq. (3.5).
ql qz q3 ql q2 q3

The above amplitude, as expected, is proportional to

Meson M

PL
EL
4'L.

Icz (0)~co

14.114
8.896
5.357
4.820
2.736

I (m /M )

13.830
8.078
3.902
3.468
1.828

(%)

—4
—21
—53
—56
—64

TABLE II. Mass corrections to the results of Chernyak and
Zhitnitsky [4]. For each meson the first column gives the value
of I with m =0. The second column gives I with mass

q &co

corrections, and the third one gives, in percentage, the value of
[I (m„&0)—I (m, =0)]/1 (m„=0).

I

the proton mass m so that it gives zero in the limit in
which all masses are neglected. The parameter e appear-
ing in Eq. (3.6) requires some explanation. In each of the
Feynman diagrams of Fig. 2, there is a quark propagator
which brings a factor (f+m )/(q —m ), if q is the quark
four-momentum and m its mass. In our scheme, where
the (constituent) quarks are considered as Dirac particles
with an e6'ective mass xm or ym, it is not clear what
value to use for the quark mass m in the propagator; we
have kept trace of this ambiguity by defining a= m /m .
However, in all subsequent numerical evaluations, we
shall fix e=O; that is, we properly take into account the
quark masses in the kinematics and external Feynman di-
agram legs, but stick to the usual perturbative QCD
Feynman rules for gluon and quark couplings and propa-
gators.

The value of iR'(0)i, the first derivative of the radial
wave function at the origin, can be fixed from experi-
ment. The two gluon decays of y,0,2 are computed to be
[31]
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q&, Aq, q2, Aq2 q3, Pq3

m] m2 m3
Jl

, ~~'YY$V
c A i a ill C

- YYP'

the decay width

I (y,capp ) = (M~ —4m~ )'
l A++ (y,o~pp ) l

32m M~

(3.11)

fYVY KYAT~—cA;, j 5

7lg A2 A3
IE si

—q&, Aq, —q2, Aq, —q3, Aq,

YlfVl' VT~ ' where the remaining dx2 3 and dy2 3 integrations in A++
can be performed numerically.

The results given by Eqs. (3.11) and (3.6) depend on the
choice of the proton momentum distribution amplitudes

In our computation we shall use the following
different wave functions, which can be found in the litera-
ture.

Asymptotic QCD predicts [2]

qF'(x;)=120x, xzx3 . (3.12a)

Aiili~' ;~~eieWi~~
Chernyak and Zhitnitsky [15] first modified the above ex-

pression by exploiting QCD sum rules to obtain

(x; ) =y"(x; )[18.06x, +4.62x 2

+ 8. 82x 3
—1.68x 3

—2.94] . (3.12b)

FIG. 2. Feynman diagrams contributing, to lowest order in

a„ to the elementary process QQ~q~qzq3q, q2q„ for a quar-
konium state with charge conjugation C=+1. In the QQ
center-of-mass frame, c"=(E,k/2), c "=(E, —k/2), with
k=(k sina cosP, k sina sinP, k cosa); q; =x;p, q, =y;p
(i =1,2, 3), with p"=(E,p), p "=(E,—p), and p=(p sin0, 0,
p cosO). a, b, c,i,j,k, l, m

& 2 3, n l 2 3 are color indices; the A, 's la-

bel helicities.

More refined versions of the previous QCD sum-rule
wave function were subsequently proposed by King and
Sachrajda [16],

( x; ) =y"(x; ) [20. 16x ', + 15.12x ',

+22. 682x 3
—6.72x3

+1.68(x, —x2) —5.04], (3.12c)

CX

1(x,o gg)=6 ', IR'(0)I',
m4

and by Chernyak, Ogloblin, and Zhitnitsky [14]:
(3.7a)

2

I (X, gg)= — lR'(0)l
5 m4

C

(3.7b)

(x; ) =y"(x; ) [23.814x ) + 12.978x ~~

+6.174x3+5.88x3 —7.098] .

where we have given, consistently with our calculation,
only the lowest-order results. The data tell us [9,32]

(3.12d)

Another possible choice is offered by Gari and Stefanis

[33],
I (g,c~hadrons)=13. 5+5.3 MeV,

I (g,z~hadrons)=1. 71+0.21 MeV .

(3.8a)

(3.8b)

Assuming, as usual, I (y, ~hadrons)=I (y, ~gg) and

comparing Eqs. (3.7) and (3.8), we obtain

y '(x; ) =y"(x; ) [
—1.027x ', + 12.307x ',

+ 111.32x (x3+25.88x2

+9.105(x, —x3)—19.84], (3.12e)

and, finally, we mention the nonrelativistic distribution
(o)l =0.52+0 lo Gev'",

R r (0)
l
=0.39+0.03 GeV'

(3.9a)

(3.9b)

3

q "(x;)= Q 6(x, —
—,') . (3.12f)

lR '(0)
l
=0.46+0. 10 GeV (3.10)

From the knowledge of the decay amplitude, we have

The two above values, as they should, agree with each
other, at least within errors. In our numerical computa-
tions, we shall use their average value

In Table III we show the values obtained for

1(y,o~pp) with the different distribution amplitudes
(DA's) described above. We have used, in agreement
with Ref. [9],a, (M& ) =0.27.

The same procedure can be repeated for the process

g, ~pp. In such a case (L =S=0), instead of Eq. (3.1),
we have
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TABLE III. Values of I (y,o~pp) for the different distribution amplitudes considered in the text.
All results are in eV. Experimentally, I (y,o—+pp ) ( 12 000 eV.

DA NR

(2+1)X 10-'
as

0.46+0.23

CZ

45+22

COZ

26+13 10+5 23+11

A+~(g, ~pp)= fd'k g„(k)[M++.++(8,k) —M++. (O, k)j,
2 2' C

with

(3.13)

A+ (z), ~pp)=A +(ri, ~pp)=0,
pp)= ~++(n, pp) .

We can now exploit the nonrelativistic g, wave function
' 1/2

(3.14)

(k)= 7T

~C
IR(0)~ z 5(k),

j6
(3.15)

to write

&++ (z), ~pp ) =~lR(0)l [M++.++ (k =0)—M++. (k =0)j,
where the M++.++ can be computed from Eq. (3.5) and the Feynman diagrams of Fig. 2. The final result is

(3.16)

A++(ri, ~pP)=i —m. a,F@~R(0)~m~M„(M„—4m }
27 3

1 —x2 ) &
—y 1

dx, f «z dyz dy3
0 0 (xzyz —xz —yz+ 1)M„+(xz—

yz )zm z

1

[xzyzM' +(xz —
yz )'m,'][x3y3M' +(x3 —y3 ) m ]

1

(1—xz)y3M„+(1 —xz —y3) m —e m

—'(2xzyz —xz —yz)M„+(xz —yz) m

X [9++ .+ +(1—

+ [9'+ —+; —++ %—++;+—+ ](1 xz ) j (3.17)

The value of ~R (0)
~

can be evaluated by comparing the
computed expression [31]of

16r(q, 77 )=,~R(0)~',
27 m

with the experimental value [34]

I (z), ~yy)=5. 9+,
II

GeV

which yields

~R(0}~=0.64+0. 15 GeV ~

Finally, from

(3.19)

(3.20)

I (q, ~pp)= (Mz —4m )' ~A++(z), ~pp)~
32m. M„

(3.21}

we can compute the decay width for the process g, ~pp.
In Table IV we show the values obtained with the
diFerent distribution amplitudes (DA's) described in Eqs.
(3.12).

Let us now comment on the results summarized in
Tables III and IV.

As usual, the asymptotic and nonrelativistic wave func-
tions give much smaller results than the other distribu-
tion amplitudes.

The QCD sum rule wave functions [Eqs. (3.12b)—
(3.12d}] yield sizable values of I (g,o~pp }, in agreement
with the only available experimental information [5], a
huge upper bound. These results are only a factor
-2—10 smaller than the values measured for
I (g„,z~pp) [6,7,9], decays which are not forbidden by
the helicity-conservation rule and have been successfully
computed in pure perturbative QCD schemes with mass-
less quarks [14]. Actually, on phase-space considerations
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TABLE IV. Values of I (q, ~pp), for the different distribution amplitudes considered in the text.
All results are in eV. Experimentally, I (g, ~pp ) = 12.1+7.9 keV.

DA NR as CZ COZ KS

(4+2) X 10 l. 8+1.0 l.0+0.5 0.4+0.2 14.0+7.0

alone, one expects the pp decay rate for y, 0 to be indeed
smaller than for g„,2. Also, the Gari-Stefanis wave
function [Eq. (3.12e)] gives a large result.

The values of I (y,a~pp ), obtained here with massive
quarks, are somewhat smaller than the values obtained
within the quark-diquark model of the nucleon [21],
where both constituent quarks and diquarks are present.
A definite measurement of I (y,a~pp ) would help in un-

derstanding whether or not a genuine diquark contribu-
tion is present; some common features of the quark and
the quark-diquark models are expected from the observa-
tion, made in Ref. [35], that the QCD sum-rule wave
functions, strongly asymmetric in the sharing of the pro-
ton momentum by the three quarks, correspond to a
quark-scalar diquark configuration.

The results obtained for I (g, ~pp) are not zero, but
much smaller than the experimental data [8]: Once more
[27], q, decays seem to defeat any attempt of explana-
tion. The values obtained here (Table IV) are comparable
to those obtained in the quark-diquark scheme [21,22].
The Gari-Stefanis wave function [Eq. (3.12e)] gives the
relatively best result; it is not clear, however, if it satisfies
the QCD sum rules, and before concluding that it indeed
gives a better description of the quark momentum distri-
bution, more detailed phenomenological analyses should
be done. We shall comment again on the g, in Sec. IV.

IV. 9, DECAYS AND CONCLUSIONS

We have shown that mass corrections to charmonium
decays into HH are, as expected, large and proportional
to mH/m„ in cases where massless perturbative QCD
gives a fair description of the process, mass corrections
can be, depending on mH, as large as 40 —60%%uo of the
zero-mass result. Such is the case of g,0,2 decays into
longitudinally polarized p, K*, and P. Encouraged by
these results, we have computed, with massive quarks,
the decay widths I (y,a~pp ) and I (g, ~pp ): The latter
processes are forbidden in massless perturbative QCD by
the helicity-conservation rule, which can be broken by
terms proportional to m~ /m, .

We have found that, using the proton wave functions
suggested by QCD sum rules, it is easy to obtain sizable
values of I (y,a~pp ), values comparable, taking into ac-
count the smaller mass of the g,0, with those measured
for the analogous decays I'(y, &,&happ ); although there is
no precise experimental value for I (&,0~pp), but only a
very large upper bound, we still consider it significant to
have obtained such results. Of course, a definite measure-

ment of the process would help in clarifying the situation.
The decay g, ~pp is different: Even with massive

quarks, the results obtained, although nonzero, are still
consistently smaller than the data. Moreover, one should
remember that mass corrections to other forbidden g, de-
cays, previously computed, such as g, ~vector-meson
pairs, are strictly zero [27]. Other nonperturbative
corrections to the massless QCD scheme, like those
modeled in the quark-diquark scheme, also fail with

g, ~pp decay [21,22]. While it remains to be seen if fur-
ther corrections, such as higher-order Fock states or in-
trinsic transverse momentum of the quarks, might help
with the q, decays, one has to admit, at this stage, that
there is no clear way of computing them. It might be
that a more drastic modification is needed, such as as-
suming that the g, is not a pure cc state, but has a large
gluonic component [20].

In the energy region of the charmonium decays,
Q + 10 GeV, one expects several nonperturbative or
higher-order corrections to play a non-negligible role; we
have here explored mass corrections alone, leaving aside
other possible effects, such as the Fermi motion of the
quarks or higher-order components of the hadron wave
functions. The importance of two quark correlations, di-
quarks, has already been studied and found to be relevant
[21], in the case of decays into pp, with the usual excep-
tion of the g, . As, in the quark-diquark model, the nu-
cleons also contain massive constituent quarks, it is
difficult to evaluate separately the pure mass corrections
and pure diquark ones.

Charmonium decays are clearly in a Q transition re-
gion where both perturbative and nonperturbative effects
are present; moreover, the latter are of different natures
and this makes it difficult to disentangle the various con-
tributions. Nevertheless, a detailed study of these decays,
with better and more refined experimental information,
should yield a valuable information about the structure of
hadrons in this transition region of few GeV, a region of
great importance for most of the high-energy experi-
ments. Of course, it would be most interesting also to
have data on the decays of heavier mesons, such as bb
bound states, to see if indeed the pure perturbative re-
gime eventually takes over.
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