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We consider the predictions of chiral perturbation theory and heavy-quark symmetry for the decays
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I. INTRODUCTION

Heavy-quark symmetry and chiral symmetry put con-
straints on BI4 and DI4 semileptonic weak decay ampli-
tudes [I—3]. In this paper we explicitly display the impli-

cations of these symmetries for D~I( mlvI, D~m~lvh,
B~~m Iv&, and B~D~l v& decays.

The strong interactions of the lowest-lying mesons con-
taining a heavy quark Q with the pseudo Goldstone bo-
sons ~,E,g are determined by the chiral Lagrangian den-
sity

?
Tr(B"XB„X )+AOTr[(m X+m X ) i Tr —H, v„t}"H,+ Tr H, H—

t, v"(g t}„(+g't}„g)t„

+—Tr H, Hby"ys(g d„g gB„g )b,
—+A, ,TrH, Ht (gm~g+g m g )b, +AITrH, H, (mqX+m~X )bb

2

k2+ Tr H, o„+,cr"'+
mg

where the ellipsis denotes terms with additional deriva-
tives, factors of the light-quark mass matrix

while for Q=b,

(P, ,P?,P3 ) =(B,B,B, )

m„0 0

m=0md0
0 0 m,

(2)
and

(P;,P?,P3 )=(B ',B ",B,") .

associated with explicit violation of SU(3)L XSU(3)„
chiral symmetry or factors of 1/m& associated with
violation of heavy-quark spin-flavor symmetry. The La-
grangian is written in terms of a 4X4 matrix H, that
contains the pseudoscalar and vector-meson fields P, and

P,*„. (Note that v"P,'„=0.) Explicitly [4,5]

The factors of +mt and Qm, have been absorbed

into the P and P* fields. Consequently they have dimen-
sion 3/2.

The field H, is a doublet under heavy-quark spin syrn-

metry SU(2), and a 3 under the unbroken SU(3}~ light-

quark flavor symmetry. Under SU(2)„and
SU(3)L X SU(3)z it transforms as

H, = 1+&
2

(P,*„y" P, y, ), —

H, =y H~y

(3a)

(3b)

H, ~S(HU ), , (4)

This is a "shorthand notation. " In cases where the type
of heavy quark Q and its four-velocity v are important
the 4 X 4 matrix is denoted by H,'~'( v ).

In the Lagrangian density (I}the light-quark flavor in-

dices a, b go over 1,2,3 and repeated indices are summed.
For Q =c,

(P, , P?,P3 ) = (D,D+,D, }

and

(PI,P?,P3 ) =(D *,D+*,D,*)

and

(=exp(iM/f ) (Sa)

( =X=exp(2iM/f ) .

In Eqs. (5) M is the matrix of fields

where SESU(2)„and U is the usual space-time depen-
dent 3 X 3 unitary matrix that is introduced to transform
matter fields in a chiral Lagrangian.

The pseudo Goldstone bosons appear in the Lagrang-
ian density through
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K

—1 p 1

~—77 + ~—'g

K

KP

and

(~LUAU =UgR

and f is the pion decay constant (f = 132 MeV).
Under SU(3)L XSU(3)z chiral symmetry

X~LXR

(6)

(7a)

(7b)

ously discussed by Kane and co-workers [8]. We have in-
cluded a short review of the kinematics for completeness.
Section III gives the predictions of chiral perturbation
theory for D ~K~l v, , D ~~~1vI, and 8~~~l vI decay
form factors. In Sec. IV the predictions of chiral pertur-
bation theory for B~D~lvI are given. Section V con-
tains a brief discussion of the expected kinematic range
where chiral perturbation theory for 8 ~Dvrlvr is applic-
able. Concluding remarks are made in Sec. VI.

For 8I4 and DI4 decay the kinematic region where
chiral perturbation theory is applicable is small. In the
kinematic region where chiral perturbation theory is
applicable

B(B~Dn.iv))-(1/16m. )B(B~Dlvi)-10

where I.GSU(3)r, R ESU(3}z, and U is a function of
L,R and the meson fields. Typically U is space-time
dependent. However, for SU(3) i. transformations,
V=L =R, U is equal to V.

Heavy-quark favor symmetry implies that, to leading
order in A&CD/m&, g is independent of heavy-quark
flavor. For Q =c the D ~De decay width is deter-
mined by g:

(8)

The present experimental limit [6] on this width
[I (D+'~D ~+)(72 keV] implies that g (0.4. Ap-
plying the Noether procedure, the Lagrangian density (1)
gives the following expression for the axial-vector
current:

q, T,by Xs~b
= —g TrH, Hb~.rsTb, +

In Eq. (9) the ellipsis represents terms containing the
pseudo-Goldstone-boson fields and T is a flavor-SU(3)
generator. Treating the quark fields in Eq. (9) as constit-
uent quarks and using the nonrelativistic quark model
[i.e., static SU(6)] to estimate the D' matrix element of
the left-hand side (LHS) of Eq. (9) gives [3] g=1. (A
similar estimate for the pion-nucleon coupling gives

gz =
—,'.) In the chiral quark model [7] there is a

constituent-quark pion coupling. Using the measured
pion-nucleon coupling to determine the constituent-
quark pion coupling gives that g=0.75. The decay
8*—+B~ is kinematically forbidden and so it will not be
possible to use it to test the heavy-quark flavor indepen-
dence of g. The amplitude for the semileptonic decay
B~D~lvI, in the kinematic region where the pion has
low momentum (and the Dm. mass is greater than that of
the D ), can be predicted using chiral perturbation
theory. In principle, experimental study of this decay
can give information on the flavor dependence of g.

In the next section we discuss the kinematics of weak
semileptonic D&4 and BI4 decay. The fully differential de-
cay rates are expressed in terms of form factors. The re-
sults of Sec. II are a slight modification of the kinematics
of K&4 decay to the situation where the two hadrons in
the final state have different masses. The generalization
of KI4 decay kinematics to D ~KmlvI decay was previ-

The situation is worse for the modes with two pseudo
Goldstone bosons in the final state. For example, we ex-
pect that

B(D~mmlv&)-(1/16m. )sin Hc(fD/mD ) B(D~X,lvl ),
where fD is the decay constant for the D meson. For
fD-200 MeV this crude order of magnitude estimate
gives B(D~mmlvl}-10 . The factor of sin Oc is ab-
sent for the Cabibbo-allowed decay D ~K~lvl, but the
fact that the kaon mass is not very small makes the valid-
ity of lowest-order chiral perturbation theory dubious. It
will be very dificult, in the kinematic region where chiral
perturbation theory applies, to observe 8I4 and DI4 decay
to two pseudo Goldstone bosons. However, the results of
this paper may still prove useful for these decays. Phe-
nomenological models that predict the form factors over
the whole phase space should be constrained to agree
with chiral perturbation theory in the kinematic region
where it applies.

While this work was in progress we received Refs. [2]
and [3]. Some of the work in these papers overlaps with
that presented here. The form factors for 8 ~m. +sr IvI
were considered in Ref. [2] and those for B~De.lvI in
Ref. [3]. However, this paper gives the first detailed cal-
culation of the rate for 8 —+D~lVI in the kinematic re-
gion where chiral perturbation theory is expected to ap-
ply

II. REVIEW OF THE KINEMATICS

Consider for definiteness the decay D ~KmlvI. At the
end of this section we show how to modify the formulas
so they apply to the other decays we are considering. It
is convenient, following the analysis of KI4 decay by Pais
and Treiman [9], to form the following combinations of
four-momenta:

I'=px+~. Q =p~ —p.
L =PI+I.,

Like K&4 decay, DI4 decay is kinematically parametrized
by five variables. For two of these we take the Km and
Ivr squared masses:

SKAT p $1v



S042 CLARENCE L. Y. LEE, MING LU, AND MARK B.WISE

For the remaining three variables we choose OK, the an-

gle formed by the kaon three-momentum in the K~ rest
frame and the line of Aight of the E~ in the D rest frame,
O&, the angle formed by the l three-momentum in the l v&

rest frame and the line of Aight of the lvi in the D rest
frame, and P, the angle between the normals to the planes
defined in the D rest frame by the Km pair and the 1vi
pair.

Over most of the available phase space (including the
kinematic regime where chiral perturbation theory can be
applied) the mass of the lepton can be neglected (i.e.,

mi Isi, ((1)and we find that, with mi =0,

g flf, f'=4G,'fv„ I'H„.L~",
SPInS

where

H„= ( vr(p )K(p» ) Isy„(1—y~)c ID(pD ) )

&«~(p. )I:(p»)l sy.(1 y—5)c ID(pD }&'

L"'= '(L "L—' N"N—' s@""—ie—» L N ) .
2 I a y

(17)

(18a)

(18b)

The form factors w+, r, and h are functions of s&, SK„,
and cos OK. Summing over the lepton polarizations the
absolute value of the square of the matrix element is

The differential decay rate takes the form

d'r =, , XPI(s».,s,„,O», O, , y)
(4m) mD

2
mD $K s)P.L =

2
(12a)

L N=O, P Q=m» —m

Q =2(m»+m )
—s»„,N = —si„,

(12b)
Xdsigs»g cos 8»d cos Oidg .

The dependence of I on Oi and P is given by

I=I,+ I2cos28, +I,sin Oicos 2P+I4sin 28icos P

+I5sin Oicos P+I6cos Oi+I7sin Oisin P

+Issin 28isin P+I9sin Oisin 2P,

(12c)

mK —m2 2

L Q= P L+PXcosO»,
SKn

(12d)

(12e)P N=xcosOi,
(20)

mK —m„2 2
'

X cos Oi +PP 'L cos 8» cos 8(
SK~

P(sip» }'—i sin 8»sin Oicosg, (12f)

e„„Q"P"N~L = —PX(sip» )' sin 8»sin Oisin P .
mK —m„2 2

X w, (21a)
SKn

(12g) F, =Xw++ PP L cos 8»+

where I„.. . , I9 depend on sK, si, and OK.
To display I„.. . , I9 in as compact a form as possible

it is convenient to introduce the following combinations
of kinematic factors and form factors:

In Eqs. (12),

X=[(P L) —s»~i, ]' (13)

—2s» m» —2s» m„) /s»„.2 1/2 (14)

Taking the limit, m» =m, Eqs. (12) agree with the re-
sults of Pais and Treiman for Ei4 decay.

The invariant matrix element for D~E~lv& semilep-
tonic decay is

GF
Mf; = —V„(m.(p„)K(p» ) ls y„( 1 —y, )c ID (pD ) )

2

X u (p„)y"(1—y, )v(p-, ), (15)

and p is (2/Qs» ) times the magnitude of the kaon
three-momentum in the K~ rest frame,

P=(s» +m +m» —2m»m

F2 =P(&is».)'"w

F3=PX(sty»„)'i h .

In terms of these combinations of form factors,

I, =-,' [IF, I'+-,'sin'8»(IF, I'+ IF, I')],

I,= —
—,'[IF, I' ——,'sin'8»(IF, I'+ IF, I')],

I,= —-„'(IF, I' —IF, I') is'n»8,

I4= —,'Re(F fF~)sin 8»,

I, =Re(F*,F, )sin 8»,
I6 =Re(F2 F3 )sin 8»,
I7 =1m(F, F~ }sin 8»,
I8 =

—,
' Irn(F&F3 )sin OK,

(21b)

(21c)

(22a)

(22b)

(22c)

(22d)

(22e)

(22fj

(22g)

(22h)
where V„ is the c ~s element of the Cabibbo-
Kobayashi-Mashawa matrix and GF is the Fermi con-
stant. The hadronic matrix element can be written in
terms of four form factors w+, r, and h that are defined

by

( vr(p„)K(p» ) fsy„(1—y, )c ID(pD ) )

=[iw+P +tw Q +&r(pD P)„+he & pDP Q ] . —

(16)

I9= —
—,'Im(FzF3 )sin 8» . (22i)

Equations (20) and (22) are the same as Eqs. (11) of Pais
and Treiman. However, the definitions of F, , F2, and F3
are slightly different because mK&m

It is evident from Eqs. (22) that the partial-wave expan-
sions for the form factors F, , F2, and F3 are

F, (s», si„,cos 8»)= g F, i(s», si„)Pi(cos 8»), (23a)
1=0
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F3(sK„,s,„,cos 8K) (OIq'r'rsQIP, '~'(v)) =if ~u~m ~~~v" .
a a

(28)

1 d
3 ~FBI(sK~,s») PI(cos8K),

, [$(/+ I )]'~~ ' d cos 8K

(23b)

F3(sKvnsl„icos 8K )

1 d
F3 /(sK s/ ) PI(cos 8K )

, [/(&+ I)]'~~ ' "' 1 cos8K

(23c)

Integrating over the angles gives

.r= "I'I'xp
3(4m) mn

(IF) (I'+ IF2, ( I'+ IF3, I I')dslgsK. ,
I

Taking the P,''2' to the vacuum matrix element of Eq. (27)
(for this matrix element g can be replaced by unity) gives

cx f&(g) m+~g)
a a

(29)

The parameter a has a calculable logarithmic dependence
on the heavy-quark [10,11]mass from perturbative QCD.

For DI4 and BI4 decay to two pseudo Goldstone bosons
the Feynman diagrams in Fig. 1 determine the required
matrix element. In Fig. 1 a solid line represents a heavy
meson and a dashed line represents a pseudo Goldstone
boson. The shaded square denotes an insertion of the
left-handed current. The form factors w+, r, and h that
follow from calculation of these Feynman diagrams are
given below.

(i) D~I nlvi

and the total decay rate is

(24) D ~Em.lvi decays are determined by Q =c matrix ele-

ments of L„3. For the decay D+~K ~+Ivi computa-
tion of the Feynman diagrams in Fig. 1 gives

r

m (mL —s ) d2I
I=,ds ds, „

(m~+m )' ~ 0 dS IQSK
(25)

fDmDg

2f2
1

W+ — W +r
UP +6, (30a)

One advantage of the variables 8K, 8I, p, s&„, and sK„ is

that in terms of these variables the region of phase-space
integration is quite simple. The angles are unrestricted
and Eq. (25) gives the region for sK and s& .

Although we have focused on D ~Kml vi decay the re-
sults presented above can be straightforwardly altered to
apply to the other decays we discuss in this paper. For
D~mmlvi decay one simply changes V„~V,d and

mK ~m„. For 8 ~~mlv& decay one changes V„~V„'b,

mD ~ms, and mK ~m . Also, in Eq. (15) PT and p„are
switched. Consequently the term proportional to the al-
ternating tensor in Eq. (18b) and the expressions for Is,
Is, and I7 in Eqs. (22e), (22f), and (22g) change sign. Fi-
nally, for B~D~I vi decay the changes V„V,b,
mD m~, mz mD, and the same sign changes as for
B—+~el vi decay are made.

fD

f2

1 1 vPK vP„g(vP )

2 2 u'(pK+p~)+p v.p~+5,

(30b)
[v (pK+p )+p][u'p +6 ]

(30c)

(3 la)

p=mD mD (31b)

fag' 1 1

2f2 v (p +PK)+6, +JLt v p +b,,
In Eqs. (30),

6, =m —mD,

III. DECAYS TO TWO PSEUDO GOLDSTONE BOSONS P P P*

The semileptonic decays D ~K~Ivr D ~~el vi and
B~n.~lvI are determined by matrix elements of the left-
handed current

L, =e'r.(1 rs)Q . — (26)
ps(c

panic

PQ P
This operator transforms under chiral

SU(3)I X SU(3)z as (3I, lz ). In chiral perturbation
theory its matrix elements are given by those of

L, = 1CX Trr, (1 rs)IIbgb + (27)

where the ellipsis denotes terms with derivatives, factors
of the light-quark mass matrix m or factors of 1/m
The constant a is related to the decay constant of the
heavy meson:

FIG. 1. Feynman diagrams for D ~Kn. , D ~~~, and
B~a.m. matrix elements of the current L„,. The shaded square
denotes an insertion of the current in Eq. (27). Dashed lines

denote pseudo Goldstone bosons.
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and v" is the four-velocity of the D meson, i.e.,
pg =mDv". Isospin symmetry implies that the form fac-
tors for D ~K vr 1v& are I/&2 times those above, the
form factors for D+ ~K n Iv& are —1/&2 times those
above, and the form factors for D ~E m. Ivr are equal
to those above. It is straightforward using Eqs. (11) and
(12) to express these form factors in terms of 0)r, s)r„, and
siv.

(ii) D+ ~n+nlv&.

For this decay a Q =c matrix element of L„2 is needed.
It is straightforward to see that the form factors in this
case are given by those in Eqs. (30) if the changes
pz~p and p ~p + are made and p is set to zero.
Again using Eqs. (11) and (12) these form factors can be

expressed in terms of 0,s, and si„.
1

(iii) B ~m+n lV)

In this case a Q =b matrix element of L, is required.
The form factors are given by those in Eqs. (30) if the
changes fn f~, mv +m—~, b,,~b,» px~p +, and

p„~p are made and )u is set to zero. Using Eqs. (11)
and (12) these form factors can be expressed in terms of

+ 777r d Iv.

(iv) D ~m mo1v,

In this case the Q =c matrix element of L „2 is required.
Computation of the Feynman diagrams in Fig. 1 gives
that the form factors are

gfDmD

2~sf'
1 1

vp +6, v pa+6, (32a)

W+ = gfDmD

2~of'
1

V p —+~c
1 +r,

U P 0+Le
(32b)

"+
u(p +pa) up 0+9,,

U 'P

U.P +5,
p p o

—(u p )(v p 0)

u (p -+p 0)

vp +6,
1

U 'P p+6 (32c)

fDg' 1 1

2V'2f2 v ~ (p +p 0)+6, v p +b,
1

V 'pg+~c
(32d)

It is straightforward using Eqs. (11) and (12) to express
these form factors in terms of 8,s, and st, . (Here the

difference of four-momenta Q"=p" —p "0.)

IV. B~DmlvI

In this case matrix elements of the operator
cy„(1—y5)b are needed. This operator is a singlet under
chiral SU(3)L X SU(3)„and in chiral perturbation theory
its matrix elements are equal to those of

cy„(1—y, )b = —q(v u')TrH, "(v')

Xy„(1—y5)H,' '(v)+ (33)

The ellipsis in Eq. (33) denotes terms with derivatives, in-
sertions of the light-quark mass matrix or factors of
1/m&. The B~D and B~D* matrix elements of this

(v) B ~~+a. Iv)

In this case the Q = b matrix element of L„, is needed.
The form factors are given by those in Eqs. (32) if the fol-
lowing changes are made: fD ~f))), mD ~mz, b,,~hb,
and p ~p +. Using Eqs. (11) and (12) the form factors
can be expressed in terms of 8 +, s „,and sr .

+l&~g~~e v v ] (34b)

The normalization of g at zero recoil, i.e., v v'=1, is
determined by heavy-quark flavor symmetry and by
high-momentum strong interaction effects that are com-
putable using perturbative QCD methods, [10—14]

a, (mb)

a, (m, )

—6/25

Since the operator in Eq. (33) does not involve the
pseudo-Goldstone-boson fields, in the leading order of
chiral perturbation theory B~Dm matrix elements of
the current are determined by the pole-type Feynman di-
agrams in Fig. 2. They give, for a charged pion,

current are [10]

(D(v') ~cy„(1 y5)b ~B(v)—) =QmsmDri(v v')(u+v')„,

(34a)

(D'(v', e) ~cy„(1—y, )b ~B(u) )

=Qmsm +ri(u v')[ —e„'(I+u u')+(e' v)v„'
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B D B D D

1
w+ —w = Qm—zmDrl(u v'+1)

V Pn c

1 +r,
U P~+Ab

(35a)

FIG. 2. Feynman diagrams for B~Dm matrix element of
cy (1—y5)b. The shaded square denotes an insertion of the
current in Eq. (33).

The form factors for a neutral pion are obtained from the
above by multiplying by + I /v'2.

We have assumed in writing Eqs. (35) that the kinemat-
ic region is chosen so that v' p is not too close to 5, .
For the use of the effective theory propagator to be ap-
propriate it is necessary that

v'.p —A, ))m„(m /2mD)=5 MeV . (37)

This also ensures that the D' width can be neglected in
the propagator (it is expected to be only about a hundred
keV).

It is convenient to reexpress some of the formulas of
Sec. II in a way that makes the dependence of the heavy
meson masses explicit and neglects terms suppressed by
m /mD or m /mz. Introducing the pion's four-velocity
u"=p" /m we change integration variables from sn
and s&„ to v'-v and v v' using

' 1/2

mDr=
m,

1/2
p .(v v')

7l
U 'P n. ++b

—g ms
w++w

mD

p ~ (v+v')
yP

(35b)

(35c)

dsD+s» -—4m&m mDd(v' v„)d(u. v') . (38)

The form factors F. are conveniently written in terms of
dimensionless quantities P:

3/2m 1/2

FJ= gal(v v')PJ . (39)

2f QmsmD v' p —~,

In Eqs. (35),

1

V 'Pm+ Ab
(35d) Using

P=(2m /mD)[(u' u )
—1]'~

and

X=ms mD [(u.u') —1]'~
6, =m +

—mD ——140 MeV,

hb =m, —mB -50 MeV .B

(36a)

(36b)
the differential rate (after integrating over 8I and P) be-
comes

d I=
2

8G~msmn~ V,& ~
m

g rl [(u'.v ) —1]
3(4n. )

X[(v' v) —1]' [~P&~ +sin 8D(~Pz~ +~ P~3)]d(u' v„)d(u' v)dcos8D . (40)

Combining Eqs. (39},(35), and (21) the dimensionless form factors P are found to be

P, =[(u.u') —I]'~ (u+u'). u
mD

U U +Ab V.U

—v' u (v v'+1)[(v v') —1]'i 1

U V +Ah U Ur kc

+cos8~[(v' v„) —1]' (v v'+1)(v v' mD/ms)— 1

V V~+ kb U Vr ~c
(41)

F2=[(v'.u„) —1]' (v.u'+1)[1+(mDImz) —2(mD /m& }v.v']'~2 1

V V~+ kb V Vm. ~c
(42)

P3= —[(v' v ) —1]'~ [(v.v') —I]'~ [1+(mD/ms) —2(mD/ms)v. v']'~ 1

V 'U~+kb
(43)
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d'f'/d(v. u'}d(v'. u„}

0.030
0.042
0.024
0.034
0.021
0.030
0.018
0.027

(U.v')

1.2
1.4
1.2
1.4
1.2
1.4
1.2
1.4

1.2
1.2
1.3
1.3
1.4
1.4
1.5
1.5

In Eqs. (41)—(43)

TABLE I. d'f'/d(u. u'}d(u'. u ) for various values of (v v')

and (v'. U ).
experience from comparisons of the predictions of chiral
perturbation theory for ~~ scattering, weak kaon decays,
etc. , with experiment. As we shall see shortly, the situa-
tion in B~De.lv& decay is somewhat different.

For B~Dm. lv& the leading contribution is of order
unity. One factor of p from the D "D~ (or B*Bn) ver-
tex is canceled by a factor of 1/p from the D* (or B )

propagator. At the next order of chiral perturbation
theory, corrections come from two sources: (i) operators
in the chiral Lagrangian for strong D' and D (or B' and
B) interactions with pions containing two derivatives or
one factor of the light-quark mass matrix; (ii) operators
representing the weak current cy„(1—y5)b that contain
one derivative.

For example, one term in the ellipsis of Eq. (33) is

and

u v =(u' u )(u v')

—[(v' u ) —I]'~ [(u u') —I ]'~ cos OD (44)
Tr[H,"'(v')y„(1—ys)H„' '(u)y "y, ]

x(g'a, g
—ga, g')„. , (47)

b, , =(m, —mD)/m, b, b =(m g
—ms)/m (45)

Chiral perturbation theory should be valid for U U and
v' u not too much greater than unity. From Eq. (44) it
is clear that the kinematic region where cos OD is positive
yields (for given u' v and u v') a smaller value for v v .
Note that because m and f are comparable, the rate for
B~D~lvI is not suppressed by factors of m /mD or
m /m~. In fact, the above formulas indicate that there
is a significant rate for B~DmlvI in the kinematic region
where chiral perturbation theory is expected to be applic-
able (and the Dnmass is .large enough to neglect the
width in the virtual D" propagator). To illustrate this we
write

2 5

~vb~ g 7J d f'GFm~

192m
(46)

V. VALIDITY OF CHIRAL PERTURBATION THEORY

Chiral perturbation theory is an expansion in momenta
so our results are expected to be valid for only a limited
kinematic range. For B~D~1vi naive dimensional
analysis suggests that the expansion parameters are
(v.p )/A and (v' p )/A, where A is a nonperturbative
strong-interaction scale around 1 GeV. However, it is far
from clear precisely how small these quantities must be
for the B~Dmlvl differential decay rate given in Eqs.
(40)—(45) to be a good approximation. We do have some

In Table I we give d f'/d(v u')d(u' u ) for various
values of (u u') and (u' v ). Provided g does not fall oF
very rapidly as v' v increases, the rate for P~D~lvi, in
the region where chiral perturbation theory is expected to
be applicable (i.e., u v and u' v around unity) is compa-
rable with what was estimated in the Introduction. In
Table I we used 6, =1. The rate in the kinematic region
where U U is near one is quite sensitive to the value of

For B+~D+m. lvt decay 5, =1 is consistent with
the measured masses, but for B ~D m+ lV& decay b,, = 1

is slightly less than the experimental value.

where ri(v v') is a new universal function of v u'. This
"higher-order" contribution to the current cy„(1 y5)b-
gives rise to the following changes in the form factors
w+, r and h:

5(w+ —w )=— QmzmDr)(v v'+ I )+5r, (48a)
2

r 1/2
mg

5(w++w )== 2

A mD

1/2
2 mD5r=

Af m~
ri(p v'),

ri(p„v )+5r, (48b)

(48c)

5h=
Af gmsmD

(48d)

VI. CONCLUDING REMARKS

In this paper the semileptonic B and D meson decays,
D~K~lvI, D~mvrlvl, B ~mlvt, and B~D~lv( were
considered. Chiral symmetry and heavy-quark symmetry
were combined to deduce the decay amplitudes in the ki-

For the mm. phase shifts, the first corrections to the
leading predictions of chiral perturbation theory are
suppressed by s/A and come from operators in the
chiral Lagrangian with four derivatives and from one-
loop diagrams. However, for B~Dm.lvl loops do not
contribute to the leading correction which is only
suppressed by u p /A or v' p /A.

There are too many higher dimension operators with
unknown coefficients to make any predictions for the
next order contribution to the form factors for
B~D~lvI. However, it is certainly possible that our
leading prediction for the B~Dmlvi differential decay
rate is valid at the 30%%uo level over the kinematic range
displayed in Table I. Eventually the range of validity of
lowest-order chiral perturbation theory for B~Dmlvi
may be determined by experiment.
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nematic region where the pseudo Goldstone bosons are
soft. There was earlier work on these decays that con-
sidered the implications of chiral symmetry but it did not
implement heavy-quark symmetry in a model-
independent fashion [15].

For B~Dm-lv, decay the rate is large enough that de-
tailed experimental study of the decay (in the kinematic
regime where chiral perturbation theory is expected to be
applicable) may be possible at a B factory. Table I gives

d f'/d(U v')d(u' u ) for various values of U.U' and U' v

[see Eq. (46)]. These indicate that the branching ratio for
semileptonic Bt4 decay to nonresonant Dtr (in the kine-
matic regime where the pion is soft, i.e., u v and v'. v

around unity) is about 10
The results of this paper rely on heavy-quark spin and

flavor symmetry. There is experimental evidence from
semileptonic B decay [16] and from the decays of excited
charm mesons [17] that (at least in some cases) the charm
quark is heavy enough for heavy-quark symmetry to be
applicable. However, several theoretical analyses suggest
that there are large AQcn/m, corrections to the predic-
tion of heavy-quark symmetry for the relation between B
and D meson decay constants [18—20]. If this is an iso-
lated case, where the AQCD/m, corrections that break the
flavor symmetry are anomalously large, then the results
of this paper can still be used (with fit and fD in Sec. III
treated as independent constants).

Semileptonic B~Dlv& and B~D*lv& decay can be
utilized to check that there are not large AQcD/m,
corrections to the expression for the b ~c transition
current in Eq. (33). However, our predictions for
B~Dmlvl decay still depend on the validity of heavy-
quark spin-flavor symmetry for the chiral Lagrangian in
Eq. (1). The dependence on the liavor symmetry arises
from the equality of the B*B~and D 'Dn couplings. If
heavy-quark flavor symmetry is not used then the form
factors for B +De.lV& deca—y given in Eq. (35) of Sec. IV
become

my mD
w+ —w = (v U'+1)

v'.p
gc gb

u P~+Ab
+7' (49a)

W+ +W

gb mDT=
m,

p (U+v')
I

v .p
g, m~

mD

p (v+U')
7l

u pn. +Ab

+r, (49b)

(49c)

1 g gc

2f Qm~mD v' p.—~,
gb

u 'P~+kb
(49d)

This work was supported in part by the U.S. Depart-
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81ER40050.

It would be interesting to use B~D~l vI decay to test the
heavy-quark flavor symmetry prediction, gb =g, .

It is not known precisely for what range of v p and
u' p chiral perturbation theory will be valid. Our ex-
perience with light hadrons suggests that the relevant ex-
pansion parameters are roughly v.p /1 GeV and u' p„/1
GeV. It may be possible in B~De.lv& to study the range
of validity of chiral perturbation theory for heavy-meson
pion interactions.

A number of extensions and improvements on our
work are possible. The decay B~D*~lvI can be con-
sidered [3]. It is interesting to explore to what extent it
can also be used to fix g and to test the heavy-quark
flavor symmetry prediction g =gb =g, . There are com-
putable a, (mb) and a, (m, ) corrections to the form fac-
tors for the decays discussed in this paper [4,21,22] and it
is worth examining their influence on the rates for BI4
and DI4 decays.
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