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We describe a multiple scattering model of nucleus-nucleus collisions for use in simulation of atmos-

pheric cascades produced by high-energy cosmic-ray nuclei. We emphasize the importance of a realistic

treatment of nuclear fragmentation of the incident nucleus for fluctuations in quantities such as high-

energy muon bundles and longitudinal development of giant air showers. The model is realized in a cas-

cade program that can be combined with any treatment of hadronic interactions.

PACS number(s): 96.40.Pq, 24.10.Ht, 25.75.+r, 96.40.Tv

I. INTRODUCTION

At energies above 100 TeV, it becomes impractical to
study the composition of the primary cosmic radiation
directly because the flux is too low. Instead, one must
study properties of the air showers induced by primary
nuclei. A first approximation in this process employs the
so-called "superposition model, " in which a shower pro-
duced by a nucleus of mass A is equivalent to the super-
position of A nucleon showers. In this model the effect
of the incident nucleus is completely specified by the dis-
tribution of the positions of first interaction of the nu-

cleons that compose the nucleus. Superposition implies
an exponential distribution characterized by the nucleon
interaction length.

In reality, when a nucleus enters the atmosphere it
quickly interacts, because the interaction length for a
heavy nucleus is very small. However, usually only one
or a few of its nucleons scatter inelastically at this first
point. Several spectator nucleons, light fragments, and
usually one heavy fragment are also released in the in-
teraction. These must be followed through subsequent
collisions until all nucleons from the initial nucleus have

interacted inelastically.
A natural extension of the superposition model, which

we will call the "semisuperposition" model, retains the
idea that a nucleus-induced shower is the superposition of
A nucleon showers, but uses a "realistic" distribution of
the positions of their first interaction. The new distribu-
tion of nucleon-subshower starting points reflects the
properties of nucleus-air cross sections and of the frag-
mentation of the residual nuclei composed of spectator
nucleons.

In this paper we develop the semisuperposition model
in detail. It is still only approximate because it neglects
the correlations between the number of interacting nu-
cleons and the properties of the resulting inelastic in-
teractions. %'e have two reasons for describing the re-

suits of this intermediate model. The first is that many
existing cascade calculations are set up to treat nuclear
showers as a set of A independent-nucleon-induced
showers with a specified set of starting points. The
second is that this simplified model is sufhcient to encom-
pass the important enhancement of fluctuations in
showers associated with a realistic treatment of nuclear
disintegration in the atmosphere.

To develop the semisuperposition model, we need three
fundamental elements: (i) the nucleus-nucleus cross sec-
tions, (ii) the probability that in an inelastic nucleus-
nucleus collision a number n of the projectile nucleons
"participate, " and (iii) the fragmentation probabilities of
residual nuclei.

This work is organized as follows. In the next section
we review the standard Glauber formalism [l] for
nucleus-nucleus scattering [2]. We show how the "pro-
duction" cross section can be expanded as a sum of par-
tial cross sections for given numbers of "wounded" nu-
cleons in the target or in the projectile nucleus. In Sec.
III we treat the fragmentation of the residual nucleus,
combining an estimate of deposited energy with the sta-
tistical decay model [3].

In Sec. IV we discuss the realistic distribution of the
points of first interaction in showers induced by a pri-
mary nucleus. %e obtain a simple and useful result
which determines the average values of all observable
shower parameters: For any additive measurable quanti-
ty Q, the semisuperposition model predicts the same
average properties as the superposition model

(Q ) z = A (Q )~, i.e., A times the average value for the
quantity computed in a proton shower of energy
E =E„/A. However, the fluctuations are significantly
wider than in the superposition model. The wider fluc-
tuations reflect correlations among nucleons in the same
nucleus.

In Sec. V we present two examples directly related to
experiment: the production of TeV muons by primary
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cr„(n„)=fd bf [dr„]f[d ]g g Q, g (1—Q),
Inj j EInj IGA —Inj

where

B

Q, (b, t.. ., . . . , )=1—g [1—P(Ib —t, + I)]
k=1

is the probability that nucleon j from nucleus A interacts inelastically with at least one nucleon in nucleus 8. We indi-
cate by {n] a set of n nucleons in nucleus A. The summation is then over all 3!/[(A n)!n—!]such sets. For each term
the n nucleons in the set {n ] interact at least once, and the remaining A n—do not interact. In the approximation that
the nucleon positions in A are uncorrelated, we can use symmetry to rewrite Eq. (4) as

A~ n&

, , fd'b f [«.]f [«.] rI Q, rI (1-QI )n!n!— j= 1 l=n +1
A

For any integer A and any set of A real numbers (X„.. . , X„),we have the identities

A A

X g (1—X, )=1—ff (1—X„),
n=l Inj jEInj I&A —Inj k=1

A A

g ng g X, g (1—Xl)=+X„.
n=1 Inj jEInj IEA —Inj k=1

From these, follow the simple results

A

AB nA =&AB

(7)

and

prod
0pB
prod

OAB
(10)

It is also possible to expand the production cross section as a sum over the number of nucleon-nucleon interactions.
Each pair of nucleons k in nucleus A and j in nucleus 8 has a probability of interaction P.k,

' the probability of having N
nucleon-nucleon interactions can then be obtained by summing over all possible combinations. We indicate by {N] a
set of N pairs of one nucleon from nucleus A and one from nucleus 8. Then

(N)=fd bf[d „]f[d ]g g P„ (11)
IN j j,k& IN j IG AB —IN j

The summation is over all ( AB)!/[( AB —N)!N!] possible
combinations, and in each term there are exactly N
nucleon-nucleon interactions. Using the identity (8)
again, we can prove that

(N) PP

~AB

Figure 2 shows the distributions for wounded nucleons in
the projectile and target in collisions of iron projectiles on
nitrogen targets. Also shown is the distribution of the
number of nucleon-nucleon interactions. Despite their
large widths, a11 distributions peak at one wounded nu-
cleon, i.e., for very peripheral collisions.

III. FRAGMENTATION
OF THE RESIDUAL NUCLEUS

The ideas underlying the Glauber picture readily lend
themselves to a treatment of nuclear fragmentation. Al-
most all fragmentation models [9] begin by dividing the
projectile nucleus in any collision into participants and

I

spectators. The collision sweeps away the participants, in
the process transferring some energy to the spectators,
which then fragment in accordance with some dynamics
and/or statistical mechanics. To quantify this descrip-
tion, we need to estimate the energy deposited in the
spectators and to model the subsequent decay. We are
interested in the fragmentation of the projectile nucleus,
which depends on the amount of energy deposited into
the projectile, i.e., on the interaction properties in its
frame. Thus, for testing our algorithms, we can use data
taken at much lower energy, e.g. , at 1 to a few hundred
GeV/nucleon. (Some energy dependence might arise
from a possible change in rapidity density in the fragmen-
tation region, which contains the particles that are slow
enough in the projectile frame to deposit energy in the
spectators. ) The majority of cosmic-ray collisions are
peripheral, wounding only a few nucleons and depositing
relatively little energy in the spectators. Having estimat-
ed this energy, we should therefore also be able to employ
decay models developed for lower-energy beams.

We estimate the deposited energy as follows. A
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dE
ap—o (E)E,

dx
(13)

wounded nucleon near the surface of the projectile nu-

cleus will be kicked essentially perpendicular to the beam
direction with kinetic energy typically less than 150 MeV.
Roughly half the time it wiH enter what remains of the
projectile (the "prefragment") and lose some of its energy
in collisions with other nucleons. We estimate the
amount of energy loss via the equation

10 ~—
1

I

ji

l I

Ii
i

h
i

I

where p is the nuclear density, 0. is the elastic nucleon-
nucleon cross section, a represents the fraction of the
particle's kinetic energy lost in each collision, and dx is
the element of path length in the residual nucleus. We
take all of these quantities from Ref. [10].

To calculate the path lengths through the residual nu-
cleus, we sample from a distribution corresponding to the
pseudorapidity distribution of the leading nucleons in the
interaction, assuming an approximate scaling. The exci-
tation energy is obviously strongly correlated with the
number of wounded nucleons. Summing over all possibil-
ities, we And that the projectile prefragment from an
iron-air collision receives on average 7 MeV of excitation
energy per nucleon; about half of all collisions, however,
deposited less than 3 MeV per nucleon. There is also an
additional energy deposition attributable to the deforma-
tion of the prefragment surface, which we calculate fol-
lowing Ref. [11]. For high-energy collisions, this
represents a small correction to the mechanism discussed
above. Finally, we neglect any energy that may be depos-
ited in the prefragrnent by secondaries. These are gen-
erally slower (in the laboratory) than the leading nucleon
and enter the prefragment less often. The occasional fast
pion or kaon that does enter the prefragment will, ac-
cording to a calculation similar to that described above,
deposit less energy than a nucleon, so that the error in

neglecting it is small.
Our next assumption, also commonly made, is that the

excitation energy equilibrates among all the spectators.
To determine the fragmentation of the resulting prefrag-
ment, we use a model due to Friedman [3]. In this model
the prefragment is a hot Fermi gas that cools by expand-
ing adiabatically and evaporating nucleons, deuterons,
and heavier clusters. The model has the advantage of
describing both multifragmentation (the emission of a few
intermediate-mass clusters) and the evaporation of nu-

cleons and light clusters (usually leaving a single heavy-
fragment residue) within the same physical picture. This
is important because, while most of the emitted frag-
rnents are nucleons, multifragmentation is not negligible,
particularly in high-energy cosmic-ray collisions, which
deposit on average somewhat more energy than any ac-
celerator can. In addition, the model predicts that if the
excitation energy is very large, the prefragment disin-

tegrates essentially completely into nucleons, a result of
about —,

' of al1 iron-air collisions according to our energy-

deposition calculation. Figure 3 compares the output of
the Monte Carlo code for fragmentation of Fe on air nu-

clei to the data of Ref. [12] (Fe on C). No data were tak-
en below AF =34.

Finally, we need to know the transverse mornenta im-

Oii
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FIG. 3. Mass distribution of fragments produced in iron-

nitrogen collisions at E0 = 1 X A TeV. The histogram shows the
result of the simulation; the data points are from Ref. [12] for
iron collisions on carbon.
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FIG. 4. Transverse momentum distribution of spectators pre-
dicted by the model for iron-nitrogen collisions at Eo=1X 3
TeV.

parted to the various fragments. In the initial collision,
when the participants are sheared away, the remaining
prefragment has some net overall momentum coming
from the Fermi motion of the spectators. The distribu-
tion of prefragment momenta P can be estimated in
several ways. A good approximation [13] is to

—P /2A
sample from a Gaussian e, where
A=pF&5n ( A —n)/( A —1), pF is the Fermi momentum,
and n is the number of wounded nucleons. When the nu-
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cleons and clusters subsequently leave the cooling
prefragment, they isotropically carry off some kinetic en-

ergy, the distribution of which is characterized by the
temperature at the time of emission; this last quantity is
obtained from the expanding-Fermi-gas model described
above. Figure 4 shows the distribution of transverse mo-
menta acquired by the spectator nucleons.

Together these ingredients allow us to include
projectile-fragmentation properties in our shower Monte
Carlo program, including the initial transverse momenta
of the spectator fragments. For technical reasons we
have not included the longitudinal fraction of the Fermi
motion in the current version of our codes, but we will
show in Sec. V that the errors due to its omission are
small.

IV. DISTRIBUTION OF FIRST INTERACTIONS

Now that we have the distribution of wounded nu-
cleons in the projectile, determined by o „s( n „), and a
scheme for fragmenting the group of spectator nucleons,
we are in a position to determine the distribution in the
atmosphere of points of first interaction for all nucleons.
In the semisuperposition model, this distribution specifies
the subsequent development of the cascade. We consider
a shower induced by a primary nucleus of mass 3 and

I

dX.F~ X1,X2, . . . , X~ —1

In the superposition model, we have

F„(X„X,. . . ,X„)
—X./A.

e

where A, is the interaction length of a proton. In gen-
eral, the function F„will be a more complicated com-
bination of the interaction lengths A, „with 1 ~ 2'~ /I

for the inelastic scattering of nucleus A' on air, of the
probability Pz.(n) of having n participating nucleons in
an inelastic 3-air collision, and of the branching ratios
B [(A' n)"—~a, +a2+af ] for the fragmentation of the
( A' —n)-nucleon residual nucleus into a given set of frag-
ments (with the obvious condition gf af = A' n) —As.
an example, consider an extreme model in which all spec-
tator nucleons are completely freed. Then

define the probability of having a certain set of positions
of first interaction, [X„X2,. . . , X„],as

F„(X„Xq, . . . , X„)dX,dX 2. . . dX„.
The normalization is chosen so that

exp( —Xi/A, z )F„(X„.. . ,X„)=g P„(n) g 5[X,—X, ]
n=1 A j=2 k=n+1

exp[ —(X„—X, )/A, ]
8(Xk —X, )

P

(16)

The most general expression is straightforward; however, it is also long and not very illuminating. An obvious feature
is that the function is not factorizable, and there are correlations between the positions of the nucleons.

It is useful to define an inclusive distribution:

F„""'(X)=—„y. J g dX„F„(X,, . . . , X, , . . . , X„)
j=1 kAj X.=X

(n„)= Q nP„(n)=
n=1

(18)

then independently of how the spectators fragment, we
have

If we consider a set of 1V nuclei of mass A, all of the same
energy, then F„'"'(X) is the distribution of the positions
of first interactions for all ( A XX) nucleons, i.e., summed
over all nuclei.

We can now state an important result.
Theorem If the probabil. ities P„(n) (of having n parti-

cipating nucleons when a nucleus interacts) satisfy

exp[ —X/A, ]

In other words, the inclusive distribution of first interac-
tions is identical with that of the superposition model;
i.e., it is equal to the distribution one would obtain if all
the nucleons arrived independently at the top of the at-
mosphere. From Eq. (10) we see that condition (18) does
indeed hold in the semisuperposition model.

It is easy to verify this theorem in the special case of
the extreme model of fragmentation described above,
where it is assumed that all spectator nucleons are freed.
Integrating Eq. (16) and summing over the number of
wounded nucleons in the first interaction, we obtain the
inclusive distribution

—X/A, ~
F'""(X)=—gP (n) n +(A n)—

n

( )
—x/i ~

A, ~

(n) e
A

—X/A. —X/A,
P A
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If we now substitute ( n ) = 3 A. „/A. , we obtain the result (19). Equation (20) can also be derived by observing that the
first term in square brackets corresponds to the nucleons that interact and the second to the nucleons that are specta-
tors in the first interaction. The distribution of positions of interaction for the spectators of the first interaction can be
obtained by folding two exponentials:

fdy fdz
—2/k

e
5[y +z —X]=

—x/k —x/k
~ —e

(21)

A

X=—gXJn
(22)

Note that we are now averaging the A positions of first
interaction from a single incident nucleus. The quantity
X will have a distribution HA that can be calculated as

:1
F

„ 1 [ T I i I i I i I
'

i I i

I
I ! I I

1

This result is true in general for any spectator fragmen-
tation scheme. A formal proof can be constructed by
iterating the argument outlined above. The theorem is in
some sense physically transparent; it follows from the as-
sumptions of the Glauber picture, in which nucleons in-
teract independently of each other and the distribution of
nucleons in the nucleus is not appreciably deformed dur-
ing the crossing time.

The difference between the models shows up in fluctua-
tions from event to event, which are larger in the more
realistic model. A forrnal treatment of fluctuations is
given in Appendix C. A physical way to understand the
increased fluctuations is to examine the average position
of interaction of the A nucleons that compose a nucleus.
Consider the average

In the superposition model, this function can be comput-
ed explicitly:

H„(X)= 1

A,
" (~ —1)l

X 'exp (24)

with (X ) = A, and o x =A, /V A .

In general, the function HA will have a more compli-
cated form. The "average of the average" (X) will still
be A~ [because of Eq. (19)], but the fluctuations in X will

be much wider. This is due to the positive correlation
among the different positions of first interactions; they
tend to be close together. Any quantity that is sensitive
to the starting point of the shower will exhibit these
properties —the same average as in the superposition
model, but with broad fluctuations.

In Fig. 5 we show the distribution H„(X) for several
different models for fragmentation of the residual nucleus
in collisions of iron on nitrogen. In addition to the super-
position model and the realistic fragmentation described
in the previous section, we show two extreme models of
fragmentation that bracket the realistic model. One of
these extremes (also described above) assumes that the re-
sidual nucleus dissolves completely into individual nu-
cleons and the other that the residual nucleus with
A'= 3 —n A always remains intact as a single fragment.
The latter is close to the realistic picture.

V. APPLICATIONS

A

H„(X)=f g dX, F„(X,, . . . , X„)5 —g X„—X
j=1 I& =1

(23)

V
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FIG. 5. Distribution of the average position of first interac-
tion of 56 nucleons (X) in atmospheric showers induced by a
primary iron nucleus of energy Eo = 1 X TeV. We show the re-
sults of our fragmentation model (heavy histogram), the super-
position model (curve), and the two extreme fragmentation
models described in the text (light histograms).

In this section we discuss some examples of the general
results obtained above. We consider two directly measur-
able quantities that are used to determine the composi-
tion of cosmic rays. The first is the number of TeV
muons generated by a primary cosmic-ray heavy nucleus.
Heavy nuclei are more prolific than protons of the same
total energy in production of TeV rnuons, and so experi-
mental data on the multiplicity of muons in deep under-
ground detectors is sensitive to composition. The energy
range in which the relative rates of multiple muons is sen-
sitive to composition depends on the detector depth, but
includes the range from 10' to 10' eV, which includes
the interesting "knee" region of the spectrum [14,18].

The second quantity is the position of the rnaximurn
(X „)in the development of a nuclear shower as mea-
sured by air-shower experiments. Showers initiated by
heavier nuclei dissipate their energy faster than proton
showers, thus having shallower X „. The aim of the
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A. High-energy muons

As an example, we consider the number of high-energy
muons E„~1 TeV produced by a vertical iron nucleus
(A =56) of total energy E„,=A X100 TeV. In Fig. 6
we show the muon multiplicity distribution P (N„) calcu-
lated in superposition and sernisuperposition. The curves
superimposed on the Monte Carlo points show negative
binomial distributions with the same averages and disper-
sions as the points. They are a good fit to the Monte Car-
lo results. As expected, both distributions have the same
average (N&) =30.0, but different widths. The superpo-
sition model generates a nearly Poissonian distribution
with cr(N„)=5.9; in the more realistic case, 0 (N„)=7.5.
The extreme fragmentation models (not shown in the
figure) give cr(N„)=6.8 and 7.9. Considering the steep-
ness of the cosmic-ray spectrum, these seemingly small
differences could have an impact on the interpretation of
data.

The transverse momentum gained by the spectator nu-
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FIG. 6. Distribution of the number of muons with E„~1
TeV produced by a vertical (zenith angle 8=0 ) iron nucleus of
energy Eo = 100X A TeV simulated in the superposition (circles)
and the semisuperposition (solid squares) models. The curves
show negative-binomial distributions with the averages and
dispersions fit to the simulated data.

work presented in this section is to determine the size of
the corrections to the superposition model from a realis-
tic treatment of the positions of first interactions. The
application of the results to any experiment will neces-
sarily involve a detailed account of fluctuations due to
detector resolution. In the Monte Carlo calculations
presented in this section, we have used a simple model of
p-air and ~-air interactions, originally developed by Hil-
las [17],which exhibits Feynman scaling. Realistic inter-
pretation of data will require use of a more realistic
hadronic interaction model, as well as detailed treatment
of detector-dependent selection effects, but that is not our
purpose here.

and

r ff ( r ) ( 1+0.06 ) superposition

r ff ( r ) ( 1 +0'22) realistic fragmentation ~

B. Size development

Here we consider fiuctuations in shower size (number
of electrons) for nuclear showers as a function of atmos-
pheric depth. We have simulated iron showers and cal-
culated the rnaxirnum depth X,„and shower size S(X).
In the superposition model, the position of the maximum
and the shower size are almost fully determined by the
energy of the primary nucleus. The increased fluctua-
tions of X induce corresponding fluctuations in X,„.
Figure 7 shows the distributions of X,„ for iron showers
of total energy 10' eV developing at a zenith angle of
45', calculated in the superposition and semisuperposi-

cleons and fragments in the nuclear fragmentation do not
affect noticeably the lateral spread of the muons in the
bundle. Formally, one would expect the contribution in
the separation to be of the order

200
p cm .

Eo Eo(TeV)cos8

Added in quadrature to the separation due to the trans-
verse momentum gained in the interaction, this is not an
observable effect. The average displacement of TeV
muons produced by iron nuclei of energy 10
TeV/nucleon is -2 cm, as compared to several meters
for typical separations of multiple muons deep under-
ground. This effect, however, may not be negligible for
different types of cosmic-ray experiments. In particular,
the average additional displacement by 2 crn might be
significant for the interpretation of the results on y and
hadron families in mountain emulsion chambers, where it
would be comparable to the lateral spread of the family
due to transverse momentum gained in the interaction.

An effect that is potentially important is the correla-
tion between multiplicity and separation. Two cir-
cumstances give rise to events with large numbers of
muons: A large amount of energy goes into charged
rather than neutral pions and/or the shower starts high
in the atmosphere where the relative probability of meson
decay (rather than interaction) is greater [16]. These two
factors depend on the underlying hadronic interaction
model. The correlation between height of origin and
multiplicity gives rise to a correlation between multiplici-
ties which depends on the nuclear fragmentation model.
Since the (X;„,) distribution is wider for the semisuper-
position model, the range of variation in the lateral
spread is correspondingly bigger. The size of this effect
can be estimated from distribution of X shown in Fig. 5.
In the example shown, for the superposition model, 80%
of the events have X between 68 and 95 g/cm, whereas
in the realistic fragmentation model the corresponding
depths are 43 and 140 g/cm . The corresponding
effective heights of origin are 16.3+1 and —16.3+3 5 km.
Thus
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elusive rapidity distribution averaged over all types of
events. This occurs for the following reason: In a
hadron-air collision, each wounded nucleon in the target
interacts exactly once. In a nucleus-nucleus collision, the
wounded nucleons in the target can interact more than
once. Thus, if we correctly specify the average number of
participating nucleons in the projectile and treat each one
as a nucleon-air interaction, we are bound to have too
many participating nucleons in the target. The semisu-
perposition model, therefore, overestimates the produc-
tion of particles in the backward (target} hemisphere.
Figure 8 shows the pseudorapidity distribution for an
iron-nitrogen interaction calculated in two ways: (a) in
the semisuperposition model and (b) with a correct treat-
ment of the participating nucleons in the target as well as
the projectile. In (a) the distribution is

FIG. 7. Distributions of X,„, the position of the maximum

size, for showers induced by a primary iron nucleus of total en-

ergy E„,=10' eV and zenith angle 8=45', calculated in the
semisuperposition (heavy histogram) and superposition (light
histogram} models.

tion models. The two yield the same average
(X,„)=700 gem, but exhibit quite different widths.
In the superposition model, o (X,„)=9 g cm, whereas
in the more realistic semisuperposition model the width is
about 3 times larger, o (X,„)=25 g cm . The extreme
fragmentation models give dispersions correspondingly of
o (X,„)=21 and 29 g cm . For comparison, a proton
shower of the same energy has o (X,„)=59 g cm . In-
clusion of realistic fluctuations for nuclear primaries
gives a significant improvement in matching the X,„dis-
tribution observed by the Fly's Eye [18].

VI. LIMITATIONS
OF THE SEMISUPERPOSITION MODEL

40
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which gives an excess on the target side.
On the projectile side, away from the central region,

the two distributions are essentially the same. It is this
feature that justifies the use of the semisuperposition
model to estimate some features of cascades, because the
development of showers is sensitive primarily to the for-
ward region. In the remainder of this section, we discuss
how the features illustrated in Fig. 8 arise in a class of
"multistring" models (see also Fig. 9).

Multistring models [5,7] are those in which hadronic
interactions are modeled as the formation and subsequent
fragmentation of a set of color strings. A proton-nucleus
interaction with nB participating nucleons in the target is
modeled in leading order as the formation and fragmen-
tation of 2nB color strings. The projectile proton "splits"

In the sernisuperposition model, each participant nu-
cleon in the projectile is treated as if it interacted in-
dependently with an air nucleus (though often at the
same macroscopic point as other nucleons}. The real
physics of the interaction is quite different. In the serni-

superposition model, interesting correlations, easily un-

derstandable on geometrical grounds, are left out. For
example, if n~ =1, the nucleus-nucleus collision is very
likely peripheral, and the interaction wi11 look very much
like a p-p interaction. In this case the single wounded nu-
cleon in the projectile will probably not interact more
than once inside the target. At the other extreme, a large
n„signals a central collision in which each participating
nucleon in the projectile has a high probability of in-
teracting several times in the target and vice versa. Such
a collision will likely have a softer distribution of pro-
duced particles than a sum of nucleon-air interactions.

In addition to omitting these correlations, the semisu-
perposition model also systematically distorts the in-

I

25 '—

o~—

5 r—

-2 0

I
I

I
I l I I !

2 4 6

Pseudorapidity q

FIG. 8. Pseudorapidity distribution for charged particles in

an iron-nitrogen (solid histogram) collision at &s =43.3
6eV/nucleon, compared with the inclusive distribution for
proton-nitrogen collisions rescaled by a factor ( n „,)F, N (dotted
histogram).
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tation of this string. The kinematical limits for the pro-
duction of a particle of mass m are

Vmax
S x&, V;„=—1n

s
m

(26)

I

-6 -4 -2

I I

I I I I I I ) I I I I I

0 2 4 6

into 2nz components: two valence components (a di-

quark and a quark) and (ns —1) quark-antiquark pairs,
with fractional energy distribution p(x, , . . . , xz„).Ply

Each wounded target nucleon is decomposed into two
valence components. Pairs of partons of opposite color
(one from the projectile and one from the target) are then
paired together to form color strings that fragment into
physical particles.

In a nucleus-nucleus interaction, a participating nu-
cleon that interacts with nz target nucleons will again
split into 2nz components with the same fractional ener-

gy distribution. Partons of opposite color in the projec-
tile and in the target are again paired to form a tota1 of
2N;„, strings (where N~„, is the total number of nucleon-
nucleon inelastic interactions in the collision). In this
case, however, quark-antiquark pairs from the target sea
may also be involved.

At high c.m. energy, the "partonic structure" of an in-
teraction becomes more complex, and more color strings
are formed. This additional structure can be interpreted
as arising from parton-parton semihard scatterings (mini-
jets) [19] or as an expansion in the number of cut Pom-
erons [20,5]. We will not discuss these important compli-
cations here [8]. The arguments we are developing
remain valid (neglecting small kinematical effects) even
including these higher-order terms.

We now state some well known properties of the frag-
mentation of color strings. Let us consider a color string
produced by a parton at the projectile side of fractional
energy x& and flavor q, and a target parton of fractional
energy x2 and flavor q2. The string wi11 have a mass

M=+sx, xz and, in the c.m. frame of the nucleon-
nucleon scattering, will move with velocity
P=(x, —xz)/(x, +xz). Let f (y, M, q&, qz) be the rapidi-
ty distribution of the particles produced in the fragmen-

Pseudorapidity g

FIG. 9. Ratio R (g) of iron to proton pseudorapidity distri-
butions for charged particles in collisions with nitrogen, with

the inclusive distribution in proton-nitrogen collisions rescaled
byafactor (nF, )F, N.

which depend only on the fractional energy of a single
parton. The entire rapidity range is (y,„—y;„)
=21n(M/m). For M not too small, two properties fol-
low from the dynamics of string fragmentation [7].

(i) The shape of the rapidity distribution in the limit

y ~y,„depends only on the flavor q, and is indepen-
dent of the mass M and the other flavor qz. (Symmetri-

cally, the rapidity spectrum for y ~y;„depends only on
the flavor qz. )

(ii) In the central region, there is a rapidity plateau
with properties that are independent of q, , q2, and the
mass of the string.

Item 1 assures that the semisuperposition model gives
the correct rapidity distribution in the forward region. It
follows from the basic structure of the multiple-scattering
framework of Sec. II that the distribution of the number
collisions suffered by a single wounded nucleon in a pro-
jectile nucleus is independent of the mass of the projec-
tile. The distribution is the same as the distribution of
wounded-nucleon number in the target for projectile pro-
tons. Nucleus-nucleus and proton-nucleus collisions are
distinguished by the fact that the "projectile partons" are
paired together with "target partons" that have different
flavor and energy distributions for the two cases. The in-
clusive spectrum is the sum of the spectra produced by
the different strings. Because the spectra and flavor dis-
tributions of the particles produced in the fragmentation
of the "forward part" of the string are independent of the
mass of the string and of the flavor attached to the other
end, the inclusive distribution will be equal over a large
part of the forward hemisphere to what is obtained by su-

perimposing nucleon-nucleus interactions.
We can also clarify, from similar considerations,

the reason that the semisuperposition spectrum
( n „)&„(dn /dy)~~ is significantly larger than the
nucleus-nucleus spectrum in the backward hemisphere.
The total number of color strings is on average the same
in the two situations, but in the case of nucleus-nucleus
interactions the number of participating nucleons in the
target is lower, and a larger number of strings wi11 be
short (i.e., coupled to qq pairs from the target sea). The
particle-particle rapidity correlation length in string frag-
mentation is of the order of a unit in rapidity, and there-
fore the two spectra (the semisuperposition and the
nucleus-nucleus) will differ also in the forward hemi-
sphere for one or two units of rapidity.

To demonstrate the validity of our approach, we simu-
lated nuclear collisions using a full Monte Carlo pro-
gram, incorporating the physics described above, in
nucleus-nucleus collisions at 200 GeV/nucleon and com-
pared the output with experiment [21]. For ' 0 on a tar-
get mixture of 20% He and 80% Ne, the experiment
yielded distributions with averages of 47.8 charged parti-
cles and 17.3 negatively charged particles and standard
deviations of 32.8 and 13.8, respectively, while our Monte
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Carlo program generated averages of 39.1 and 17.9 for
charged and negatively charged multiplicities, with stan-
dard deviations of 31.3 and 14.5. For the same beam on
Cu (A =63.5), the experimental averages for charged
and negative multiplicities were 81.5 and 35.7, with stan-
dard deviations 64.0 and 27.9. Our Monte Carlo calcula-
tion with an iron target ( A =56) yielded 76.4 and 35.1 as
averages, with standard deviations of 73.7 and 34.2, re-
spectively. The Monte Carlo calculation apparently
reproduces the multiplicity of negatively charged parti-
cles quite well. The differences in the total charged mul-
tiplicity are mostly due to the omission from our calcula-
tion of spectator protons and light fragment nuclei. The
widths of the calculated multiplicity distributions are also
very similar to the experimental ones, although our
Monte Carlo code seems to generate slightly wider distri-
butions. It is not our aim to make exact comparisons to
data at this stage of model development. The good agree-
ment of both the average multiplicities and the widths of
the distributions indicates that the basic quantities we use
in the semisuperposition model are sensible.

VII. CONCLUSIONS
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APPENDIX A: NUCLEAR DENSITIES

For nuclear density profiles, we have used simple
shell-model wave functions for nuclei with 6 3 18 and
a Woods-Saxon shape for heavier nuclei [24]. In the sim-

ple shell model for values of A given above, the nuclear
density has the form

4 r f /fo
p(r) = 1+—( A —4)—e

3/2 3 6 2Ip p

(A 1)

where the normalization is chosen so that

d r p(r)=1 . (A2)

The average radius is
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The main point we wish to make in this paper is that a
realistic treatment of incident cosmic-ray nuclei leads to
showers with significantly larger fluctuations than are ex-
pected in the superposition model. This fact will un-
doubtedly affect the interpretation of air-shower data. A
semisuperposition model is a convenient way to represent
the effects of nuclear fragmentation within existing cas-
cade codes. Generalization to a more detailed treatment
of target nucleons as well as projectile constituents is cer-
tainly possible.

An earlier attempt to include effects of fluctuations [22]
was based on a library of fragmentation of cosmic-ray nu-
clei in emulsion. The analysis was complicated by the
need to select events on "airlike" targets and the indirect
procedure by which the number of projectile wounded
nucleons was inferred. Although that model gave a more
realistic representation of fluctuations in nuclear showers
than the simple superposition model, the conclusions of
that study are quantitatively different from those present-
ed here because the number of wounded nucleons in nu-
clear collisions extracted from the experimental data did
not satisfy the basic equation (12). As a consequence, the
auerage values of shower properties calculated in Ref.
[22] diff'er from those calculated in the superposition
model and that work is superseded by the present model.

Effects of nuclear primaries may also arise in the con-
text of uncorrelated cruxes of secondary cosmic rays —for
example, in recent calculations of atmospheric neutrino
fluxes [23]. However, because calculating uncorrelated
Auxes involves an average over many incident primary
nuclei, the arguments of Secs. II and IV ensure that semi-
superposition and simple superposition will give the same
value for these cruxes.

In a subsequent paper, we will explore further the
effect of including the nucleus-nucleus correlations dis-
cussed in Sec. VI that are omitted in the semisuperposi-
tion model.

(A3)

In the Woods-Saxon model, the nuclear density has form

Cp
p(r) =

1+exp[( r —ro ) /ao ]

with a normalization constant

3 1
Cp=

4mro 1+(ao~lro)

(A4)

(A5)

1 r2
pH, (r) = C 1+w—

21+exp [(r ro ) lao ]— (A6)

with rp=0. 964 fm, ap=0. 322 fm and w =0.517.

APPENDIX 8: APPROXIMATIONS
AND DEFINITIONS

The nucleon-nucleon profile function I (b) is the
Fourier transform of the elastic-scattering amplitude:

I(b)= fd qe 'q f(q) .1

2mk

From the relations

cr„,= Imf (0),4~

o.„=f i f (q)i d 0„.,

(B1)

(B2)

(B3)

and

For the two parameters rp and ap, we have used the
values listed in Refs. [24,25].

In He, following Ref. [24], we have used the "parabolic
Fermi distribution"
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Oinei «ot ~e& ~ (84) where we have used the identity

(86)

and

where q=k —k', one obtains the following expressions
for the cross sections in terms of the profile functions:

0„,=f d b 2ReI'I'(b)], (85)

~„=fd'blI (b)l', and

T

g k k x (1 x—) "=Ax
k=1

f d'b PB(b) =fd'b P (b)= o''I,"" .

(813)

(814)

0' i= b 1 1 r b

The last equation makes clear the interpretation of

(87) Approximation 2. We also use the point nucleon ap-
proximation, in which P (b) =5 [b]o I,

"". In this case,

P(b) =I—
I

1 —r(b) I' (88) PB(b)=TB(b)e'I,"", (815)

as the probability that nucleons at impact parameter b
undergo an inelastic interaction. Analogous interpreta-
tions, with additional variables denoting relative nucleon
position in the nucleus, hold at the nuclear level.

The partial cross sections of Sec. II are evaluated by
Monte Carlo integration. In the process the full struc-
ture of the event is generated: the number of inelastically
wounded nucleons in the projectile and target, the num-
ber of inelastic interactions, and the number of elastically
scattered nucleons in the projectile and target. The cal-
culations are done for a variety of incident nuclei, includ-
ing A =1.

For these calculations two approximations to the for-
mulas of Sec. II are made. We illustrate them here for
the case of projectile mass A =1 and target mass B. The
generalization to incident nuclei is straightforward.

Approximation 1. The equations are much simplified if
we neglect the delta function in Eq. (3). This is a conven-
tional approximation of limited validity. It is valid if the
collective momentum variable conjugate to the center-
of-mass coordinate can be replaced by zero in relevant ex-
pressions. Roughly, if one is calculating the expectation
value of an n-body operator, then conjugate momenta
K ) I /(R &B n) will —be suppressed, where R is the nu-
clear radius. When correlations involving higher-body
operators (n ) 1) are treated carefully, this approxima-
tion needs to be reconsidered.

Here we make the approximation of neglecting the 5
function and introduce the notation

where

TB(b)=f dz pB(z) . (816)

Substituting in (810) and (Bl1), we obtain some often-
used approximations. The expressions (815) and (816)
are used to compute o ~'z and related quantities. Corre-
sponding expressions with ~&~"~0.

&~ are used in ap-
propriate combinations to compute quasielastic quanti-
ties.

The values of key quantities at several energies of in-
terest are listed in Table I.

A =16 A =28 A =56

+prod

0qe
(nr )
(n, &

&n;„, )

(n,"&

496.0
37.0
2.14
2.64
3.68
0.20
0.37

(a)
970.0
51.0
4.37
4.42
7.73
0.49
0.47

1103.0
44.0
6.40
4.74

11.06
0.79
0.43

1471.0
77.0
10.32
5.38

17.79
1.31
0.42

TABLE I. (a) Cross sections at &s =10 GeV (Opp 32 1

mbarn, o.p~=7.4 mbarn). (b) Cross sections at &s =10 GeV
(0~"=54.5 mbarn, op@ 19.98 mbarn). (c) Cross sections at
&s = 10 GeV (o'""= 110.9 mbarn, cr" =90.9 mbarn).

PB(b)= f d3r pB(r)P(b r) . —

Then

cr „d=fd b [1—(1 PB ) ]—
and

(89)

(810)

B—f d2b pn(1 p )B —n (8 1 1)

1
inc]

(n) = incr„=
prod n r fB

(812)

The average number of wounded nucleons can be calcu-
lated as

+prod

0qe
&nr)
(n, )
&n;„, )

(n,"&

~prod

~qe
&np&

&nr)
&n;„, &

& nr'&

&n )

595.0
78.0
2.33
3.25
5.12
0.27
0.70

826.0
241.0

2.57
4.01
7.52
0.61
1.93

(b)
1179.0

98.0
5.10
5.14

11.21
0.75
0.76

(c)
1448.0
311.0

6.06
5.62

18.84
2.01
1.96

1239.0
109.0

7.76
5.55

17.15
1.31
0.76

1527.0
351.0

9.15
6.12

28.46
3.30
1.77

1674.0
114.0
13.02
6.94

28.72
2.21
0.70

1999.0
361.0

14.84
7.17

44. 17
5.46
1.76
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APPENDIX C: FLUCTUATIONS

The difference between a true nucleus shower and the
superposition-model shower arises because the positions
of first interaction for the A nucleons of a nucleus are

strongly correlated with each other. These correlations
are ignored in the superposition model. We can define a
two-point distribution F~ '( Y&, Yz ) (the probability of
having two different interactions, one at Y, and one at
Y2) and a correlation function C„(Y, , Yz ) by

2F„"'(Y„Y)= g f P dX,F„(X,,X, . . . , X„)
Yi =X., Y2 Xk

(C 1)

—Y /A. —Y /A.
1 p e 2 p

[I+C~(Yi Y»].

The function C„(X„Xz)vanishes in the superposition model, but in general is positive. This is clearly due to the fact
that in a nuclear collision several nucleons interact at the same point.

Having defined an appropriate correlation function, we now consider an additive physical observable Q (for example,
the number of muons or electrons at a certain depth produced by the shower, but not the depth of the maximum, which
depends logarithmically on A). We define G (Q) to be the probability that a proton shower will result in the value Q
for the observable (in this discussion we are considering the zenith angle and energy per nucleon, Eo, fixed).

In the superposition model, the probability G„(Q) that the shower of a nucleus of mass A (and same energy per nu-

cleon) will result in a value Q for the satne observable is simply the convolution of A proton distributions:

A

G„(Q)=f g dQ„G (Q„)fi[(Q,+ +Q„)—Q] . (C3)

From this assumption follow the expected results:

&g)„=A(g), ,

(~', )„—= & g'), —( g )'„=A( ', ), .

(C4)

(C5)

[Note that, as a consequence of Eq. (B14), the relative fluctuations in nuclear showers are, of course, smaller than those
in proton showers. ]

As we have noted, if we use the semisuperposition model and theorem (19), then Eq. (C4) is still valid; that is, the
average value of a given quantity predicted by the simple superposition model is still correct. The fluctuations, howev-

er, are larger than what is predicted by (C5).
To prove this statement, we start by defining the function G~ (Q,X)dX as the distribution of the quantity Q for proton

showers that have the first interaction between X and X+dX. This quantity obviously satisfies the condition

f "dx'
0

—X/A,

G'(Q, X)=G~(Q) . (C6)

Then the distribution of the quantity Q in the showers of nucleus A in the semisuperposition model can be written as

A A

G, (g)= f g dX,F,(X„ , X, )f g dg G,'(Q, X )fi[(g + +Q. )
—Q] (C7)

Then

(g ) „=f dQ QG„(g)= A fdXF'„'"'(X)G,'(Q, X)Q

=A&g&, .

Equation (C8) is true in general. To obtain (C9), we have used the result (19).
Similarly, with the help of Eq. (19),we can show

(Q ) = f dg Q G„(Q)= A(Q &, + A (A —1)&g &'+&Cg),

so that

(erg)„= A (o g) + (Cg ),
where

(C8)

(C10)

(C 1 1)
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X] /k X2 /A

(C&)= JdX, J dX C„(X„X,)(Q (X, ))(Q, (X, )) . (C12)

Thus the width of the distribution for the quantity Q depends on the correlation among the positions of first interac-
tions of the nucleons that compose the nucleus. The stronger this correlation is, the wider the fluctuations.
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