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Thermalization in ultrarelativistic nuclear collisions.
I. Parton kinetics and quark-gluon plasma formation
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A relativistic kinetic formulation of the time evolution of parton distributions during the early
preequilibrium stage of nucleus-nucleus collisions at the BNL Relativistic Heavy Ion Collider (RHIC)
and CERN Large Hadron Collider (LHC) is presented to study the microscopic dynamics and equi-
libration of the system. The nuclear collision is described as a sequence of multiple hard and soft
parton-parton collisions and associated parton emission and absorption processes. Important aspects
for the space-time evolution of the partonic system are the balance between emissive and absorptive
processes, dilated formation of gluon radiation, and the effects of soft gluon interference. The time
evolution of central 3284328 and °7 Au+!97Au collisions at RHIC (/s = 200A GeV) is studied in
complete phase space and the approach to equilibrium is investigated. The results obtained imply the
formation of hot quark-gluon plasmas in these collisions with estimated equilibration times, temper-
atures, and energy densities of Teq ~1.2 (1.8) fm/c, T' ~290 (325) MeV, and € ~17 (31) GeV/fm? for
3254325 (197 Au+'%7Au). The consequences of such rather high temperatures and energy densities
should be clear quark-gluon plasma signatures, observable in the production of charm, strangeness,
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direct photons, and dileptons.

PACS number(s): 25.75.4+r, 12.38.Bx, 12.38.Mh, 24.85.4+p

I. INTRODUCTION

The possibility of producing dense plasmas of uncon-
fined quarks and gluons in ultrarelativistic heavy-ion col-
lisions may be realized in the near future in the planned
collider experiments at the Relativistic Heavy Ion Col-
lider (RHIC) at Brookhaven and the Large Hadron Col-
lider (LHC) at CERN. In order to observe characteristic
signals of quark-gluon plasma formation it is important
to understand what happens at the very beginning, the
“first few fm/c,” of the nuclear collisions. It is usually as-
sumed that the quanta which are produced in the central
rapidity region quickly reach a state of local thermody-
namic equilibrium. Such an assumption is the convenient
basis of most theoretical studies addressing the proper-
ties of a quark-gluon plasma [1]. However, the validity
of this assumption remains to be checked. In particular,
one would like to know how the quanta evolve in phase
space, if and under what circumstances they eventually
thermalize, the time scale for this thermalization, the
typical energy density and entropy soon after equilibra-
tion, etc. To study these questions systematically in a re-
alistic model, a comprehensive description of the dissipa-
tive processes occurring during the preequilibrium phase
of high-energy nuclear collisions has been developed in
Ref. [2]. The model is based on the parton picture of
hadronic interactions and describes the nuclear dynamics
in terms of quark and gluon interactions within pertur-
bative QCD, embedded in the framework of relativistic
transport theory. The time evolution of the system is
simulated by solving an appropriate transport equation
in six-dimensional phase space with Monte Carlo meth-
ods.

In this and in a following paper [3] I report on the de-
velopment of the work of Ref. [2] and present results of
a quantitative analysis of the evolution of ultrarelativis-
tic nuclear collisions towards equilibrium. The present
paper is devoted mainly to the microscopic dynamics of
partons and their approach to equilibrium. The second
paper deals with the macroscopic thermodynamic prop-
erties of the system. The essential conclusion is that
high-temperature quark-gluon plasmas can be formed in
central A + A collisions at RHIC (E. . = 2004 GeV).
In particular, for the two systems studied, 32S + 32S and
197 Au + 197 Au, the estimates for the initial temperatures
and energy densities of the plasmas are Ty = T(7eq) =
290 MeV (325 MeV) and € ~ 17 (31) GeV/fm3 for S+S
(Au+Au).

In the parton cascade model presented here, the re-
action mechanism is viewed as a succession of binary
parton-parton collisions with associated radiative emis-
sion and absorption processes which are described as the
evolution of multiple, internetted parton cascades. The
approach incorporates the following important features.

(i) The parton distribution functions are evolved in
full phase space and time; relativistic kinematics is used
throughout.

(ii) The initial phase-space distribution of partons in
the colliding nuclei is modeled on the basis of experi-
mental knowledge of the flavor, momentum, and spatial
parton substructure of nucleons.

(iii) The scale dependence of the initial parton distribu-
tions through the nuclear structure functions and their
evolution according to renormalization-group improved
perturbation theory is taken into account and computed
dynamically in a self-consistent manner.
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(iv) Several distinct interaction processes are included:
lowest-order 2 — 2 scatterings, 1 — 2 decays, and
2 — 1 fusions supplemented by multiple radiative emis-
sion and absorption processes which correspond to the
dominant contributions of higher-order QCD corrections
to the Born amplitudes.

(v) A number of important effects that characterize the
space-time evolution of a many parton system in nuclear
collisions are accounted for: the individual time scale of
each parton-parton collision and the formation time of
parton radiation, the effective suppression of radiative
emissions from virtual partons due to an enhanced ab-
sorption probability of others in regions of dense phase-
space occupation, and the effects of soft gluon interfer-
ence in low energetic gluon emissions.

Furthermore, a coalescence model for the final
hadronization has been developed that recombines the
partons into color neutral clusters when the perturbative
evolution ceases to be valid and nonperturbative confine-
ment mechanisms become essential. These clusters then
decay into final observable hadrons. The hadronization
scheme for the parton cascade model will be presented in
a separate paper [4].

I believe that the model is suitable for the study of
the equilibration process in ultrarelativistic nuclear col-
lisions for the following reasons. The approach is almost
exclusively based on the firmly established framework
of perturbative QCD. The time evolution of the parton
system in phase space according to the structure of in-
teractions is rigorously calculated from a kinetic equa-
tion. The time variation of the parton densities, the
number and type of interactions, etc., is determined by
the dynamics itself. Attempts to model nonperturba-
tive color exchange forces are avoided; rather, the per-
turbative evolution is cut off when it reaches its limits.
The nonperturbative hadronization mechanism is con-
sidered within a completely separate model framework.
Furthermore, these cutoff parameters which divide the
perturbative from the nonperturbative domain are ad-
justed such that the perturbative parton cascade evolu-
tion reproduces the measured pp and pp cross sections
over a wide range of energies, and, supplemented by the
hadronization scheme, yields final particle distributions
that agree with pp collider experiments at CERN and
Fermilab Tevatron (1/s=200-1800 GeV) [4].

The reliability of the model rests on the assumption
that the dynamics is governed predominantly by inde-
pendent parton-parton collisions plus associated parton
emissions and absorption processes. If this assumption is
correct, at least for the early evolution, then this model
is probably the most appropriate description of ultrarel-
ativistic nuclear collisions to date.

The study of the early stage of high-energy nuclear
collisions has received rather scant attention. However,
there are a number of works similar in spirit to the one
presented here. A simple parton cascade model has been
presented in Ref. [5]. Properties of parton thermaliza-
tion have been addressed in Refs. [6-9] from a more phe-
nomenological point of view. Recently, a two-stage equili-
bration scenario for gluons and quarks has been proposed
within lowest-order perturbative QCD [10].

KLAUS GEIGER 46

The organization of this paper is as follows. Sec. II is
devoted to the description of the model. The relativistic
kinetic framework is introduced and details of the newly
included physics are explained. In Sec. III the results
of simulations for central 32S + 32S and °7Au + 197Au
collisions at RHIC energies are presented. Two distinct
evolution scenarios for the collisions are compared and
their characteristics are analyzed. Furthermore, predic-
tions for thermalization times, temperatures, and energy
densities are extracted. In Sec. IV some conclusions are
drawn and possible observable consequences of the results
are pointed out.

II. DESCRIPTION OF THE MODEL

In this section I establish a consistent kinetic frame-
work based on the principles of relativistic transport the-
ory. Furthermore, the essential concepts of the parton
cascade model [2] are recalled and updated with empha-
sis on the newly included physics components.

A. The QCD transport equation

The basis of the model is a semiclassical, relativistic ki-
netic equation for the phase-space densities of quarks and
gluons which can be solved by means of a Monte Carlo
simulation. The partons are represented as classical point
particles. The state of each parton is characterized by its
type a = gy, 45, g (quarks, antiquarks of flavor f, and glu-
ons), position r, momentum p, and its possible invariant
virtuality M? corresponding to a spacelike (M2 < 0) or
timelike (M? > 0) virtual mass. The energy of a parton is
therefore determined by E2 = p? + m2 + M? > 0, where
mg is the flavor-dependent rest mass (with m, = 5.6
MeV, mg = 9.9 MeV, m; = 199 MeV, m, = 1.35 GeV,
mp = 5 GeV, and my = 0). The time-dependent phase-
space density of partons of species a is represented by
a Lorentz-invariant single-particle distribution function
F,(p,r)d3pd®r/(27)%2E depending on the four vectors
p = (E,p) and r = (¢,r). The transport equation has
the manifestly invariant form

PoFpr) = Y I®@r) (1)

processes k

with Lorentz-invariant collision integrals I$¥) . The left-
hand side (LHS) of this Boltzmann-type equation de-
scribes the free propagation of partons, here generally
taken to be on mass shell [11], whereas the collision term
on the RHS represents a sum over all contributing inter-
action processes in which at least one parton of type a is
involved.

Some remarks are opportune here (see also Sec. IIF).
The transport equation is, as it stands, a semiclassical
formulation: it describes the evolution of a many-particle
system in terms of single-particle distribution functions
and classical particle trajectories. The quantum nature
of the system is inherent exclusively in the collision term
(as will be explained below). The latter models the space-
time structure of parton interactions within the frame-
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work of improved QCD perturbation theory via the rel-
evant matrix elements and takes into account quantum
statistical effects by using Fermi-Dirac and Bose-Einstein
statistics for quarks and gluons, respectively. Note that
long-range color forces are neglected and that no color
mean field is included. It is important to realize that this
transport equation is not derived from first principles of
QCD. Rather it is a special case of Landau’s kinetic equa-
tion which can be deduced from the general many-body
Schrédinger equation within the statistical approach of
particle transport theory, or alternatively from classical
many-body theory.

In order to solve the transport equation (1) for the time
evolution of the parton distributions in phase space, one
needs to specify (i) the initial parton distributions in the
incoming nuclei and (ii) the form of the collision term,
that is the parton interaction processes to be considered.

B. The initial state

Choosing the center-of-mass (c.m.) frame of the col-
liding nuclei as the reference frame, with the collision
axis in the z direction, the nucleons carry equal frac-
tions of the c.m. momenta +P, ,, of the nuclei A and
B, P = (0,0,+Pcm./Na,B), where + (—) refers to the
nucleons of nucleus A (B) and N4 (Npg) is the number
of nucleons in A (B).

The initial phase-space distribution F? of the partons
in the incoming nuclei A and B generally depends on the
total beam energy, s = EZ2_ , as well as on the parton
momenta and positions at time ¢ = tg, the moment the
nuclei collide. For each of the two nuclei it is chosen to be
a superposition of parton distributions in the individual
nucleons

Fg(3§E,P,r:t=t0)

Nnuc

= Z PN'(E p,P) RN (p,r,R) (2)
i=1

Here PN: and RY": give the initial momentum and spatial
distribution, respectively, for partons of type a in each in-
dividual nucleon N; inside the nuclei and the sum runs
over all Ny = Ny + Np nucleons in nucleus A and nu-
cleus B. The vectors p, P and r, R denote the momenta
and coordinates of partons, respectively, nucleons. The
parton energies E = E,(M?2) = /p? +m2 + M? take
into account their initial spacelike virtualities M2 < 0 as
an independent variable.

For each nucleon the number of partons, the distribu-
tion of the flavors, their momenta, and associated initial
spacelike virtualities are obtained from

P (B,p,P) = Z £ (=, Q})9(pL) 3)

with the momentum and energy fractions (P = |P|)

c=2 (4)
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and the normalizations

> / zfNi(z,Q2)dz = / 9(p1)d®pL =1, (6)

3
S [ BEpP) 5Ey = @), ™

The functions fN:(z,Q2) are the scale-dependent mea-
sured nucleon structure functions with z being the frac-
tion of the parent nucleons longitudinal momentum P
carried by the parton. The labels N; and a characterize
the type of nucleon and parton, respectively. The set of
structure functions employed in this work is the higher-
order parametrization of Gliick, Reya, and Vogt [12]. The
transverse momentum distribution g(p, ) is specified be-
low. The factor z/Z in Eq. (3) is included to form the
invariant momentum integral [ d3p/(27)32E out of the
distribution PN:. In (7) n™: refers to the number of par-
tons in a given nucleon.

The resolution scale Q3 at which the structure func-
tions fN¢(z,Q%) must be evaluated has the physical
meaning of how detailed the partons of one nucleus “see”
the parton structure of the other nucleus. In practice,
Q2 is computed on a statistical basis of simulating many
nuclear collision events. Before the first collision Qg is
chosen to be a lower limit of 1 GeV. For the following
events, Qo is set equal to the average momentum trans-
fer of those parton-parton collisions that involve at least
one primary parton. This average value is estimated from
accumulated statistics up to the previous collision event.
This procedure converges rather fast, yielding a Qg of the
order of a few GeV, since most of the parton collisions
involve a relatively small momentum transfer. The mag-
nitude of Qo depends only weakly on the beam energy
and the mass of the beam nuclei. In addition, primary
parton collisions with a momentum transfer > Q32, which
correspond to rare fluctuations, are taken into account in-
dividually by the Q? evolution of the nucleon structure
functions through spacelike radiation processes (see Sec.
IIC below).

The primordial transverse momenta of partons are dis-
tributed according to the function g(p, ), chosen to be
a Gaussian ~ exp(—|p.|?/p?), independent of the type
of parton or nucleon. It takes into account the uncer-
tainty of momentum due to the partons’ confinement
within the nucleon. The width pg is adjusted so that
the invariant mass of the parton distribution of each nu-
cleon equals the nucleon [mass: B2 = (X ph)? -
&, py)2 —(X;pL)? = M2,.. Here the sums run over all
partons in a nucleon, their number n being determined by
the conditions (6) and (7). The resulting value py ~ 0.42
GeV/c, corresponding to (p1) ~ 0.38 GeV/c, agrees well
with values inferred from experimental data [13-15].

The initial spatial distribution of partons appearing in
Eq. (2), RY:, depends on the magnitude of their mo-
menta, the positions of their parent nucleons and on the



4968

spatial substructure of the latter. It is represented as
Révi(p’r, R) = [hclzv‘(r)HN,'(R)]boostedy (8)

where 1 = 1,..., Ny and the p dependence is assumed
to result purely from boosting the distributions to the
nuclear c.m. frame (see below). It is obtained as follows:
The incoming nuclei are given their initial c.m. positions
corresponding to & chosen impact parameter. Then, in
the rest frame of each nucleus, the individual nucleons
are assigned positions around the centers of their parent
nuclei according to a Fermi distribution for nuclei with
mass number A > 12 and a Gauss distribution for nuclei
A<12:

& {1 +exp[(R—c)/a]}! (4> 12),
HN;(R) =
(4 <12).

(9)
The parameters are ¢ = rg A3, g = 1.14 fm, a = 0.545
fm and b = 1/2/3 Rys, where Ry, is the mean-square
radius of the nucleus.

The partons are distributed around the centers of the
nucleons, still in the rest frame of the actual nucleus, with
an exponential distribution

3

1 v
ey exp[—vr], (10)

‘% 72;3 exp[—R?/b?

h(r) =

where v = 0.84 GeV/c corresponds to the measured elas-
tic form factor of the nucleon with a mean-square radius
of Rpye = 4/12/v = 0.81 fm.

Finally, as indicated by the subscript “boosted” in Eq.
(8), the positions of the nucleons and their valence quarks
are boosted into the c.m. frame of the colliding nuclei.
The sea quarks and gluons are smeared out in the lon-
gitudinal direction by an amount Az ~ A/p, < 2Ruuc
around the valence quarks. This procedure yields the
distributed Lorentz contraction which is an important fea-
ture of the partons when boosting a nucleus to high ra-
pidities [6,16,17]. As a consequence, the parton positions
are correlated in longitudinal direction with their mo-
menta, as required by the uncertainty principle.

C. The space-time structure of parton kinetics

The evolution of the parton distributions due to inter-
actions among the quanta has been extended consider-
ably since the previous version of the model [2]. In par-
ticular, (i) hard and semihard parton-parton collisions,
described within perturbative QCD, are supplemented by
“soft” interactions below a critical momentum transfer,
(ii) newly included perturbative recombination processes,
described as parton fusions, are treated on the same foot-
ing as parton-parton collisions, (iii) the radiative emis-
sion of gluons is now balanced by the reverse processes
of gluon absorption, (iv) the formation time of the radi-
ation and its specific space-time evolution according to
the Landau-Pomeranchuk effect [18] is incorporated, and
(v) the suppression of radiative emissions resulting from
destructive interference of soft emitted gluons is taken
into account.
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FIG. 1. Schematical illustration of the three general types
of parton interactions that are considered to contribute to the
collision term (11): 2 — 2 collisions [Eq. (12)], 2 — 1 fusions,
and 1 — 2 decays [Eq. (13)]. Each of the partons coming into
(emerging from) a vertex is dressed by an S (T") form factor
taking into account higher-order perturbative QCD correc-
tions. The S form factors include radiative corrections from
primary spacelike partons having their first collisions, whereas
the T form factors account for multiple emissions and absorp-
tions by timelike secondary partons. Note that there is no S
form factor for the 1 — 2 branchings, because these processes
occur only for timelike excited partons originating from pre-
vious collisions or decays.

Recall that the collision term on the RHS of the trans-
port equation (1) generally includes all possible n — n’
interaction processes. Each term of the sum over con-
tributing processes is a phase-space integral involving
the corresponding squared matrix elements [M,_,,/|?. In
the parton cascade approach presented here, a subset of
n — n' processes is considered which consists of 2 — 2
collisions, 2 — 1 fusions, and 1 — 2 decays in lowest-
order perturbation theory. These are supplemented by
higher-order corrections which are associated with mul-
tiple emissions and absorptions of partons. Correspond-
ingly, the collision term is represented as a sum over all
possible lowest-order 2 — 2, 2 — 1, and 1 — 2 parton
interactions, in which each of the partons coming in and
going out of the vertices is “dressed” by a specific form
factor that includes the QCD radiative corrections in the
leading-logarithmic approximation [19,20]. This concept
is schematically illustrated in Fig. 1.

The collision term in Eq. (1) changes the phase-space
distribution F,(p,r) of parton species a at the space-
time point 7 = (t,r) due to interactions in which a par-
ton a may be gained or lost in a phase-space element
d®p/(2m)32E. 1t is represented as

S IF(p1r) =Y Jabealpr,m) + D Kabe(pr,7)-

processes k b,c,d b,c

(11)

The two distinct types of interaction integrals J and K
are given by the difference of gain and loss terms (with
respect to partons of species a) for 2 — 2 and for 2 — 1,
1 — 2 processes, respectively. Specifically,
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Jabcd(pla 7‘) =j§;§:a,b(p1, T) - jclz%si»cd(ph T)
__1 1 1 / d®po / d®p3 d®py
2 \T+60 /) \1+06.0) ] @m)32E, | (2n)%2E; | (2n)32E;
X {Fa(1)Fo(2)[1 £ Fe(3)][1 & Fua(4)] — Fe(3)Fa(4)[1 + Fa(1)][1 + Fy(2)]}
x (2m)% 6%(p1 + P2 — Ps — Pa) D [Mab_cals, (12)
and
Kape(p1,7) = kfii:b(Pl, ) — k98, (p1,7)
1 1 d®pa d®ps 454
- _5 (1 + 5ab> (27(')32E2 (271')32E3 (27r) 6 (pl +p2 _p3)
 { F(DF(2)[1 £ Fo(3)] Y [Mapmrolly = Fe()1 £ Fa(VIL £ (] Y IMemarlin} - (13)

In expressions (12) and (13) I introduced the notation
F, (i) = Fu(p;,r) for the distribution functions of parton
species a = a,b,c,d and corresponding four-momenta
p; = p1,P2,P3,P4 at space-time point » = (¢,r). The
squared matrix elements, characteristic for the types of
interactions, are weighted by a distribution function F,
for each of the particles coming into the interaction vertex
and a factor [1 + F,] for each of the outgoing ones. The
minus sign refers to quarks and antiquarks with [1 — Fy]
indicating Pauli blocking, and the plus sign is for gluons
so that [1 + Fy] results in a Bose enhancement. The fac-

J

Z IMab—-cdlgﬂ' = Sa(pa§ Q27 Qg) Sb(pb§ sz QS) Z IMég)—md 2(Q2)T0(Q27 N(z)) Td(Qz’ P’g)’
> | MaboclZe = Sa(Pa; P2, Q3) S5 2, Q%)Y MG 12 (02) Te(p?, 1),
S IMeanlZe =" 1M, 2 (02) Ta(p?, 1) To(p2, 13)-

The lowest-order invariant squared matrix elements
S |M©)|2 are well known for the elementary processes
specified below and the form factors are introduced in
Sec. ITE. The distribution functions Fy(p,r) in Egs. (12)
and (13) on the other hand are not available in analytic
form since they are determined by the dynamics itself.
During the cascade evolution, they can be estimated by
dividing phase space into cells and counting the number
of partons n, (k) in each cell k for each species a individ-
ually at a given point of time [3]:

nq (k)
Yo Ji, d3pdir/(2m)3’

Here 7, is the product of degeneracy factors for spin and
color associated with parton species a: v, = 2 x 8 and
Y = Y¢ = 2 x 3. The quantum statistical effects of
Pauli blocking for quarks and Bose enhancement for glu-
ons are accounted for in the simulation by multiplying
the squared matrix elements for each process by the esti-
mated distribution factors [1 — Fy(k)] and [1 + F(k)] for

Fa(p,r) — Fa(k) = (17)

f

tors 1/(1+645) and 1/(1+68.4) account for the cases where
the two incoming and/or outgoing partons are identical.
Finally, the factors 1/2 in front of the RHS of Egs. (12)
and (13) result from the normalization 1/2E;.

The effective squared matriz elements Y |M|?; are ex-
pressed in terms of the lowest-order matrix elements

|[M©@]2 summed over spin and color, and are multi-
plied by S (spacelike) and T (timelike) form factors for
the partons coming in, respectively, going out of, the ver-
tex (see Fig. 1). That is,

(14)
(15)
(16)

[

quarks and gluons, respectively, with k referring to the
phase-space cell at p and r.

To elucidate the physical significance of the effective
matrix elements (14)—(16), a number of remarks are help-
ful:

(i) In (14), Q? specifies the invariant scale at which
the interaction occurs. It generally depends on the four-
momenta of the scattering partons and is not unambigu-
ous in lowest-order perturbation theory. It is chosen to
be the transverse momentum of the scattered partons in
their c.m. frame, Q2 = p?, except for ¢ annihilation
where Q? = (EZ;)c.m.. The value of Q2 determines the
strength of the QCD coupling a, (Q?) associated with the
vertex.

(ii) Q% is the (small) resolution scale at which the col-
liding nuclei initially were resolved into their parton sub-
structure [cf. after Eq. (7)] and 2 is an invariant-mass
cutoff below which parton emission is considered to be
unresolvable. The values of Q2 and u2 define the initial
and final point, respectively, between which the evolu-
tion of parton cascades is followed perturbatively. The
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nonperturbative dynamics outside this regime must be
absorbed in the initial parton distributions (2) depend-
ing on Q2 (via the nuclear structure functions) and in
the final hadronization of partons which takes effect be-
low p2.

(iii) The representations (14)—(16) may be pictured as
elastic processes with the incoming and outgoing par-
tons being off mass shell or “dressed,” corresponding to
higher-order inelastic contributions. Setting the form fac-
tors S and T equal to unity therefore corresponds to
treating the external particles as bare quanta on mass
shell.

(iv) The phenomenological difference between the S
and T form factors is important to realize. The S form
factors are of relevance only for primary spacelike partons
that evolve directly from the initial nuclear parton clouds
and encounter their first interaction. For all other (sec-
ondary) partons, those that have either emerged from a
scattering or been produced in a decay process, S is equal
to unity. Furthermore, one might get the impression that
the T form factors only “dress” those partons that emerge
from an interaction vertex. However, these “dressed”
partons can subsequently interact again, so that the 7'
form factors are implicitly present also in those interac-
tions where timelike partons are incoming to the vertex.
To avoid double counting, therefore only the partons re-
ceding from a vertex are “dressed” by a T form factor in
Egs. (14)—(16).

At this point I would like to comment briefly on the
properties of detailed balance of the various interaction
processes taken into account in the collision integrals
(12) and (13) and the implications for equilibration of
the parton system. When the collision term (11) be-
comes zero, the parton distribution functions provide a
stationary solution to the transport equation (1). During
the evolution of nuclear collisions there are basically two
cases when the collision term can vanish locally: (i) in
the central region, when the system of partons reaches a
state of detailed balance with respect to the contributing
2 — 2,2 — 1,1 — 2 processes, implying equilibration,
and (ii) when the partons in the beam fronts are fast re-
ceding from the collision region and are approaching free
streaming.

In general the interaction processes contributing to
the collision term (11) processes fall into two categories;
namely, processes that do not change the number of
quarks and antiquarks, and those that alter the quark
flavor composition. For the 2 — 2 processes these are

a+b—a+b, (18)
a+a—c+e (19)

(a,b = ¢,3,9 and ¢ = q), where (18) corresponds to
elastic scattering and the annihilation process (19) is a
“chemical reaction” that changes the number of quarks.
The inelastic processes 2 — 1 and 1 — 2, which produce
or annihilate one gluon, are

a—a+g, (20)
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gec+c. (21)

Here (20) is a gluon emission (—) or an absorption («)
process with parton a appearing in both initial and final
state. The process (21) is a “chemical reaction” that
increases (reduces) the number of quark-antiquark pairs.

Semiclassical kinetic theory [21] states that when the
system is in local equilibrium with respect to the elas-
tic binary collisions (18) and the gluon emission and ab-
sorption processes (20), then the distribution functions
in phase space for the various species a, F,(p,r), take
the form

1
B (P — AL

Here p, is the four-momentum of the particle and the
upper sign refers to fermions (quarks) and the lower sign
to bosons (gluons). A,(r) and B,(r) are four vectors
constructed from the local flow velocity u,(r), the local
chemical potentials pu,(r) (one for each quark species),
and the inverse local temperature B(r) = 1/T(r):

Aa(r) = pa(r)u?(r) , (23)

Fi(p,r) =

(22)

BY(r) = B(r)u”(r) . (24)

The nonvanishing chemical potentials u, for flavor a are
the parameters which measure the number of quarks mi-
nus antiquarks. In the baryon-free central rapidity region
they give the deviation from complete chemical equilib-
rium. In addition, equilibrium with respect to the “chem-
ical reactions” (19) and (21) requires that the sum of the
chemical potentials of the particles on the LHS equals
the sum on the RHS for each process [22]. This can
easily be verified by inserting the distribution functions
(22) into the collision integrals and using the identity
1 F F* = exp[B,(p¥ — XY)]F*. For the processes (19),
the equilibrium conditions are

Pa + Pa = pe + Bz (25)

Ha + Ha = 21q , (26)

and, for the processes (21),

Mo+ Ha = fg - (27)
Consequently, from (26) and (27), one sees that the gluon
chemical potential must vanish and therefore p, = —pa.

On the other hand, in a baryon-free plasma particle-
antiparticle symmetry imposes p, = ua, so that the con-
ditions (25)—(27) imply

pg =0, (28)

Ha = Ha = 0 ’ (29)
and the latter equality must hold for each quark flavor
individually.

Thus, in the approximately baryon-free central region,
a complete thermal and chemical equilibrium is estab-
lished, if the system is characterized by detailed balance
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with respect to the processes (18)—(21), that is by van-
ishing chemical potentials for all quark flavors.

As far as the baryon-rich nuclear fragmentation region
is concerned, the collision term becomes very small at
times when the fast partons in the beam fronts approach
free streaming and move collinearly away from the central
region. In this case the parton densities become dilute
and the probability of two partons a and b to collide,
dPyp < v/(pa - Pb)? — m2mi dap, tends to zero.

D. Lowest-order contribution to the collision term

The lowest-order contribution to the collision integrals
(11) is equivalent to setting the form factors in the ef-
fective squared matrix elements (14)—(16) equal to unity,
S M2 — S |M©)2. This corresponds to retaining
only the lowest-order Born terms for 2 — 2 collisions,
2 — 1 fusions, and 1 — 2 decays of partons.

1. 2 — 2 collisions

Two distinct classes of processes a+b — c+d are con-
sidered: (i) hard and semihard parton scatterings in the
framework of perturbative QCD; (ii) soft parton inter-
actions modeled as low momentum transfer, two-gluon-
exchange processes. The motivation for this differentia-
tion of parton-parton collisions is to smoothen the singu-
lar behavior of the collision integrals (12) which results
from the divergence of the squared matrix elements for
small momentum transfers (except for ¢ annihilation).
Clearly, this is due to the long-range nature of the color
forces, or more precisely, to the fact that many-particle
correlations, which provide the Debye shielding, are not
included in the transport equation. The heuristic proce-
dure for incorporating collective effects of a many-parton
system into binary collision theory is to introduce a cutoff
at the Debye screening length. Long-range interactions
may be incorporated in terms of an expansion with re-
spect to small momentum transfers in collisions [23,24].

In the present model, an invariant cutoff scale Q2,, =
p3 .y is introduced such that collisions with py > picut
are treated as (semi)hard scatterings within QCD pertur-
bation theory, whereas for p; < pjcut a soft interaction
is assumed to occur. From an analysis of pp and pp cross
sections [25] it was concluded that this cutoff depends on
the beam energy. It was shown that the parametrization

b
S
Dlcut = 0a ( beam) (30)

S0

with @ = 0.35 GeV/c, b = 0.14, and sp = 1 GeV? re-
produces the pp and pp cross section for a wide range
of energies. For the case of nuclear collisions the cutoff
D1 cut Might be replaced by the Debye screening mass in
the gluon propagator P} s = m2 = g2T? [26], and simi-
larly, p3 ., ~ m2 = g2T?/6 [27] in the quark propagator,
where g, is the strong coupling and T the local temper-
ature. However, these features are not included yet and
remain to be studied in the future. Instead, for A + A
collisions the p| cy¢ value is chosen according to the form

(30) with the replacement \/Sbeam — v/Sbeam/A-

The following 2 — 2 interaction processes are included:

99 — 99, 99 — qq, a9 — 99, a9 — 49,

(31)

99—q9q9, q@—3q0 97—497, 97— g9
For the perturbative (se;ni)hard collisions above p; cyt,
the momentum transfer ¢ is determined by the corre-

sponding differential cross sections

hard
daab—vcd

(0 PPN
dt 167!'82 ZI tf.bz—ocdl (Q2,S,t,u), (32)

where S = (pa, +Pb)2 = (Pa —pc) y &= (pa — )21
Q* = p? ~ta/3, and 3 |M 0)|2 is the spin- and color-
averaged squared matrix element in lowest-order pertur-
bation theory. For the processes (31) the cross sections
are published in the literature [28].

In the case of a soft interaction between two partons,
below P cut, it is assumed that a very low energy double-
gluon exchange occurs. This provides a natural continu-
ation to the harder collisions above p| .yt Where the dom-
inant one-gluon-exchange processes gg — g9, 99 — 94,
and gg — gq have the same overall color structure [29)].
The momentum transfer f between two soft interacting
partons is chosen according to the simple phenomenolog-
ical distribution

do,soft . n

— t—t
a;t od = f(Eg.m.?tJ-Cut) €xp [Tcut] ’ (33)

where E¢m. = +/3beam/A4, to = 1 GeV? and

) 5 42
P~ == (1—\/1—-”—;%). (34)

The factor

f(EZ.m. ’ 7EJ-cut) =

(V]

exp[_flcut/fol -1

is determined by the requirement that the sum 4" =
g%oft 1 ghard per nucleon corresponds to the measured
inelastic pp and pp cross sections for given beam energy
v/Sbeam/A. Thus, the soft contribution adds to the to-
tal inelastic cross section what is left out by (semi)hard
parton collisions.

2. 2—1 and 1 — 2 processes

In lowest-order perturbation theory the possible 2 — 1
fusion processes among partons are
99—9% @3- 9", 99— ¢, (36)

where the asterisk indicates that the produced parton is
off mass shell. Correspondingly, the reverse 1 — 2 decay
processes are

g* — g9, 9" —qd, ¢" — qg. (37)

The fusion processes (36) have the same initial states
as the 2 — 2 collisions (31) and therefore compete with
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the latter. The relative probability of whether two par-
tons a and b (ab = gg;qq;qg) scatter from each other,
ab — e* — cd, or fusion, ab — e*, is determined by treat-
ing the virtual parton e* as a resonance with a proper
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lifetime associated with its virtuality and the possible
decay channels e* — cd. The lifetime of a parton e* with
virtuality p2. = ¢? is related to the inverse of its decay
width in the c.m. frame:

dps

(27)32E, (2m)*6% (g — pr — p2)[1 £ Fa(L)][1 = Fo(2)] Z |Me+—cal® (38)

1 d*py
Pe*(Q) - ‘Z—Q g / (271')32E1

where ¢ = (Q,0). Y |M|? is the appropriate spin- and color-averaged matrix-element squared weighted with the
distribution factors [1 & F] for the decay products. In order to obtain an analytical expression for the width, the
factors [1 + F] are approximated by unity, i.e., F' < 1 and the partons ¢, d are assumed to be on mass shell. Then the
decay rate (38) is readily evaluated in lowest order. In the laboratory frame the Lorentz-dilated lifetime 7. = «y/T-

of a parton e* is

E .
T+ (Q) = (.é.) [Fq‘—*qg(Q)}_l
3E,. 2 2 2m2  m
" 50, (1‘ q *%) (l‘@“@
— Eg‘ -1
g+ (Q) = ( 0 ) [Lgr—gg(Q) + Tgr—gq(Q)]

B iy LAY 2
T 20,Q7 | T84 Qo @

where the sum in the expression for 7,. runs over the
quark flavors with m2 < Q?/4 and

B B 127
Q= Ots(Qz) — (33 — 2nf) ln(Q2/A2) (40)

is the running QCD coupling strength. The probabil-
ity that a virtual parton e* decays within a given time
interval At in the laboratory frame is then determined
by

I+ (Q, At) = 1 — exp[—At/7ex (Q)]. (41)

It is important to realize that the use of Eq. (41) relies
on the intuitive, classical point of view which pictures
virtual partons as unstable particles that will live for a
time 7, determined by the degree to which they are off
mass shell, and then decay. Clearly Egs. (39)—(41) serve
only as a rough prescription for estimating the effect of
the uncertainty principle. A more rigorous, quantum me-
chanical treatment would be desirable, but remains to be
developed.

In practice the combinationof2 — 2,2 —» 1,and1 — 2
processes is simulated as follows: Since the time evolution
of the parton system is described in small discrete time
steps At (= 1072 fm/c), the time scale of an interaction
process is compared with At to decide whether the inter-
action occurs within this time interval. A virtual parton
e* produced via a + b — e* has a short lifetime 7 if its

>1/2

-1

(39)

-1

invariant mass Q? is large and it is likely to decay within
At. Therefore, the 2 — 2 process a +b — e* — c+d
preferably occurs. On the other hand, if Q2 is small,
corresponding to a long 7.+, parton e* will probably not
decay within At and the fusion process a +b — e* rather
happens. In this case, e* propagates as a quasistable par-
ticle until in the following time step it has an increased
decay probability II..(Q,2At). This may then result in
the 1 — 2 decay e* — ¢+ d. Alternatively, e* might
collide with another parton before its decay or may prop-
agate freely until the following time step, and so on.

E. Higher-order corrections to the collision term

The contributions of 2 — 2 collisions, 2 — 1 fusions,
and 1 — 2 decays to the collision term (11) correspond
to the Born terms of lowest-order perturbation theory.
However, as is well known, higher-order terms are en-
hanced by large logarithms arising from the singulari-
ties of radiative corrections. These can be described by
multiple parton branching processes, that is, in terms of
chains of successive elementary 1 — 2 parton branchings
q — q9, 9 — g9, 9 — qq [2,19,20,30]. In the kinetic
formulation of Sec. II C these radiative processes are rep-
resented by the S and T form factors in the effective
matrix elements (14)—(16) (see Fig. 1).

The QCD branching processes occur in two different
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contexts: spacelike and timelike branchings. Spacelike
branchings arise exclusively from the primary partons.
If such a parton scatters for the first time at some scale
Q? > Q3, its initial small spacelike virtuality |go|? ~ Q3
increases as a result from successive parton branchings up
to |g|> ~ Q2. Timelike branchings, on the other hand,
may be regarded as sequences of branchings that are initi-
ated either by one or both of a pair of scattered partons,
or by a single timelike virtual parton. The parton de-
creases its timelike virtuality M? by successive branch-
ings until either the chain is interrupted by a collision
with another parton, or the virtualities of the radiated
partons fall below some cutoff 42 beyond which nonper-
turbative mechanisms are dominant.

In high-energy collisions of heavy nuclei this picture
of independent cascades of successive parton branchings
will be modified by a number of important effects.

(i) The density of partons in the central region is likely
to become rather large during the nuclear collision: First,
partons from different nucleons overlap spatially, and sec-
ond, there is an enhanced production of additional, new
partons through multiple emission processes. Therefore
the reverse processes of parton absorption become impor-
tant. The net emission rate will decrease until emissions
and absorptions locally reach a detailed balance.

(ii) The radiation emitted by a virtual parton has
a specific formation time which results in the Landau-
Pomeranchuk effect [18]. If the density of partons be-
comes large, so that there is a good chance that a par-
ton undergoes multiple scatterings in a short time in-
terval, then the radiation this parton wants to emit is
suppressed.

(iii) An important feature of parton radiation is the
interference of soft gluons. It reduces the multiplicity of
produced partons due to destructive interference [20,30-
32]. This effect, which is claimed to be significant already
in ete~ annihilation and in pp and pp collisions [31], is of
particular importance if the number of low-energy gluons
becomes large. This is expected in heavy-ion collisions
as the system thermalizes.

1. Competitive emission and absorption

To take into account absorptive processes according to
the parton densities in phase space the naive emission
rate of partons in multiple branchings is modified to an
effective rate. Suppose that in some order N of pertur-
bation theory we have evaluated the amplitude Ay for
an outgoing parton a of momentum p, [Fig. 2(a)]. It is
convenient to visualize the correction associated with the
branching a — bc as the “decay” of parton a into b and c.
For example, the lowest-order Born amplitude Ag repre-
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d
Ao =
C
d
(+) e
A1 - a b
c
d

¢ ©
A1 = a
b c
FIG. 2. Top part: Graphical representation of the Nth-
order amplitude A% for the production of a parton a with
momentum p, and invariant mass # = p2, and the next-order
correction associated with the branching a — bc. Lower part:
Diagrams for the lowest-order Born amplitude Ao and the

first-order corrections Ag“ and Ag_) for the emission and
absorption of an additional parton, respectively.

sents the decay e — cd of a virtual parton e into outgoing
partons ¢ and d [Fig. 2(b)]. In the absence of any other
partons, the first-order correction A; results exclusively
from an emission of one additional parton from either one
of the two outgoing partons. In Fig. 2(c) this contribu-

tion is labeled A§+) and is illustrated as e — a+d with the
subsequent emission of a parton b, a — b + ¢. However,
in the presence of a significant number of neighboring
partons in the relevant region of phase space, for each of
the branching processes ¢ — ¢qg, ¢ — g9, g — qd there
will be a competing absorption process, namely, qg — ¢,
g9 — g, g¢ — ¢q with amplitude Ag—). In Fig. 2(d) it is
depicted as e — a+d followed by the absorption of a par-
ton b, a+b — c. In the frame where p, = ¢ = (Q, 0), the
corresponding lowest-order rate dRg, the emission rate
ngJ") , and the absorption rate ng') are

]
1 d. d3py 2 acd0
dRo——ia (@r )32, (2r)*2E; [1£ Fo(po)ll + Fa(pa)] Y |Me—scral® (2m)*6%(q — pe — pa) (42)
R = L P AP APy pin s Ry,

2Q (2m)32E, (27)32E, (27)32E,4

X (1% Fa(pa)] ) |Membroral® (2m)*6* (¢ — po — pc — pa) (43)
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ng—) - 1 ,d3pb dapc dapb

2Q (27)32E, (27)32E. (27)32E4
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Fy(po) [1 £ Fe(pe))

*[1£ Fa(pa)] ) |Mevbscrdl® (27)*6* (¢ + po — pe — Pa) - (44)

As Dbefore, the distribution functions Fy(pe) =
Fo(pa,r,t) are the phase-space densities of partons of
type a with four-momenta p, at given r and time ¢, and
3" |M|? are the squared matrix elements, summed over
spin and color and weighted by a factor [1 + Fy(pq)] for
each outgoing parton, with — for & = ¢,§ and + for
a=g.

By making use of the symmetry relation
S| Meabicrd? = Y | Metboc+dl? the emission rate (43)
and absorption rate (44) can be combined to an effective
net rate:

Fy(p»)

dR; = dR\Y) —dR{™) = (1 LAY £V
! ! 1 1+ Fy(pp)

) dRr{" .

(45)

The relative contribution of emission and absorption pro-
cesses to the total rate dRy + dR; is obtained by factor-
izing out the lowest-order rate dRp to yield the relative
probability

dR;

dpabc = m . (46)

Introducing the variables z = E,/E, and f = p2 one
finds, in the “leading pole approximation [33],”

Fy(z,) ) 0l p . )azdé (@)

dPabe = (1 -
b ( 1+ Fy(z,0)) ont

with the usual Altarelli-Parisi functions [34]

4 (1422
Pq—wg(z)zg (1—z>’

f

and o,(f) is given by Eq. (40). The expression (47) re-
covers the ordinary relative emission probability of the
leading pole approximation if the phase-space density
Fy(z,1) is zero. However, if Fy(z,t) grows during the
nuclear collision, emission processes will be increasingly
suppressed until a balance between emissions and absorp-
tions is reached. Furthermore, Egs. (47) and (48) exhibit
the usual collinear (df/t) and infrared (dz/z) singular-
itiés, which when integrated over produce the leading
logarithmic divergence. However, in a dense parton sys-
tem the increased absorption probability due to a large
phase-space occupancy Fy(z, ﬂ may act as a natural cut-
off for collinear and soft emissions, a point that remains
to be investigated.

2. The Landau-Pomeranchuk effect

The Landau-Pomeranchuk effect [18,35,36] is a conse-
quence of the specific space-time evolution of radiation
emitted by an accelerated charge and can be observed
in the bremsstrahlung of electrons. When a charge un-
dergoes multiple scatterings in a medium and the time
between the successive scatterings is shorter than the
“formation time” of the radiation, then the contribu-
tion from intermediate scatterings cancel out, resulting
in an effective suppression of radiation. This effect is ex-
pected to occur also for the radiative gluon emissions of
partons in relativistic heavy-ion collisions [35,36], where
partons may encounter multiple scatterings shortly after
each other.

A simple way to incorporate this effect into the frame-
work of multiple parton emissions of Sec. IIE1 is to es-
timate the formation time of radiation from a timelike
virtual parton through its lifetime 7, as given by the for-
mulas (39). The probability that a parton a with time-

P _6 (1—2(1—2)2 (48) like virtuality = p2 decays within a time interval At is
9—90(2) = 2(1—2) given by II,(V%, At) according to Eq. (41). Thus, multi-
1., 2 plying the relative emission probability dPasc (47) with

Pyqq(2) = ) 2"+ (1 -2)7, the decay probability II, yields

|
a A Fy(z,9) > o () A

dPape = T,(VE, At (1— ) Pype(2)dz di . 49
o al ) 1+ Fy(z,0)) 2nt ° be(2)dz (49)

This expression gives the probability that the branching
a — be occurs within the time interval At. Since the
time scale of the process is 7, & B/t = Eq/[2(1 — 2)k%]
where k| is the transverse momentum spread of b and

¢, large angle emissions preferably happen within rather
short times, whereas more soft and collinear emissions
are delayed. Note however that in Eq. (49) the introduc-
tion of a time delay for an emission through the function
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II, is based on the classical picture of treating a time-
like virtual parton a as an excited state that decays af-
ter a lifetime corresponding to its off shellness [cf. Eq.
(41)]. This finite lifetime prevents an instantaneous, ir-
reversible emission and mimics the possibility that the
parton rescatters before it radiates. On the other hand,
the Landau-Pomeranchuk effect is actually caused by the
phenomenon that a parton “shakes off” its color field in
the first scattering, and, until this field is regenerated,
subsequent scatterings of the “half dressed” parton may
occur, without intermediate radiation [35]. It is obvious
that these are two different physical pictures. Neverthe-
less, Eq. (49) effectively takes into account the formation
time of the radiation and is therefore a first approxima-
tion to incorporate the Landau-Pomeranchuk effect in a
simple manner in the model. It can, in principle, be re-
fined along the formalism presented in Refs. [35,36].

M? dM"?

To(M?, ud) = exp {— —WHG(M’, At) Z/
b 4

This form factor gives the probability that a parton a
does not branch between M2, the invariant mass asso-
ciated with the vertex at which it was produced, and a
minimal invariant mass p2 < M? in a specified time in-
terval At. The argument in ¢, is generally a function of
M? and z; here it is chosen as M? = z(1 — z2)M? ~ k?
[30-32].

In the case of a spacelike cascade of parton branch-
ings, one asks for the probability that a primary parton
b which encounters its first collision at some scale Q7
might have evolved from a previous spacelike branching

J

Q* dQn? as(Q/Z) /Zmnx(Qm) p
zmm(le)

Sb(zb,sz Qg) = €xp {_Lg Q? orm

a

Here 2o = (Pa)z/P (@ = a,b) are the longitudinal
momentum fractions of the partons’ parent nucleons,
% = zp /x4 is the fractional momentum of parton b taken
away from a, f, (o, @?) are the corresponding nucleon
structure functions, as in Eq. (3), and Q% = Q? is asso-
ciated with the scale of the scattering vertex of parton
b.

4. Soft gluon interference

The form factors (50) and (51) correspond to the sum-
mation of dressed ladder diagrams without interference,
in a physical gauge, and sum up the leading collinear
logarithmic contributions to all orders in a;. However,

zmnx(Mm)

mln(Mlz)
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8. Effective form factors for multiple parton emission
and absorption

Integrating Eq. (49) over the kinematically allowed re-
gion of the energy variable z gives the effective probabil-
ity that during a change df a parton a may branch into
b and ¢ within a time interval A¢. In the “leading loga-
rithmic approximation” [20] the probability for a cascade
of multiple, connected branchings becomes a product of
probabilities for each single branching. Summing up the
cumulative effect of many small changes di one obtains
the probability for no branching to occur. When written
as a form factor, it provides a convenient basis for Monte
Carlo simulation of multiple branchings [30-32]. For a
timelike cascade, initiated by a parton a with virtuality
p2 = M2, proceeding as a tree of successive branchings
of partons with decreasing virtualities M? > M2 ,, the
form factor T, is obtained on the basis of Eq. (46):

2 72
. T I ROV

f

a — be at |¢'|? < Q2, while the parton a itself may be a
product of a preceding branching at |¢”|? < |¢'|?, and so
forth. This “backward evolution” [37-39] of the space-
like cascade reconstructs the parton virtualities from the
g2 value implied by the scattering of the primary parton
b back to the initial resolution scale Q3 of the incoming
nuclei and takes into account the Q2 evolution of the ini-
tial nuclear structure functions. The corresponding form
factor Sy, gives the probability that parton b has not orig-
inated from a preceding branching a — bc between Q2
and Q% < Q2 [38):

: (”C_fﬁ_@ﬁ> p,,qbc(z)} . (51)

xbfb(xbv le)

r

when soft gluons are present there are additional contri-
butions that are less singular in collinear directions, but
have compensating infrared singularities. In the leading
logarithmic approximation some of these collinear loga-
rithms are then replaced by infrared ones. In contrast
with the leading collinear singularities these new terms
cannot be associated with dressed ladder diagrams in a
physical gauge. They necessarily involve interference be-
tween soft gluon radiation from different partons. Nev-
ertheless, the interference can be taken into account in
a modified form of the parton branching processes using
the soft gluon techniques originally developed by Basetto,
Ciafaloni, and Marchesini [20].

The modifications required for a proper inclusion of
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leading infrared singular contributions are rather sim-
ple [30]: parton emission is still described by successive
branchings but the available phase-space is reduced to
an angular ordered region in which the branching angles
are ordered in a decreasing sequence. Outside the an-
gular ordered region the coherence of different emission
diagrams leads to destructive interference. The angular
variable

€= % ~ 1 — cos By (52)
replaces the parton virtuality M2 as evolution variable
in the form factor (50) for timelike cascades. The two
variables are related by

M? = M2+ M? 4+ 2E,E £ ~ 2E,E £ = 22(1 —2)E2%¢
(53)

where z = Ey/E, and (1 — z) = E;/E,, as in Eq. (47).
Furthermore, the argument of o, in (50) is replaced as
M? = 2(1 — 2)M? — 22%(1 — 2)2E2%¢.

As long as the parton energies are all of the same or-
der of magnitude, angular ordering is equivalent to or-
dering the parton virtualities and the result of the two
procedures will be similar [30-32]. But when some par-
ton energies are much smaller than others the ordering
of angles is a stronger constraint, corresponding to the
suppression of disordered configurations.

For spacelike cascades the different kinematics are ex-
pected to prevent soft gluon interference to play as im-
portant a role as in the timelike processes, because the
ordering of virtualities in this case imposes a natural an-
gular ordering that inhibits interference [30]. Therefore,
the evolution variable in the spacelike form factor (51) is
taken to be the parton virtuality Q2.

F. Comments on assumptions and approximations
of the model

After having outlined the framework of the parton cas-
cade model and introduced the newly included features,
I believe it is very important to point out clearly the
limitations and shortcomings of the approach. Since the
model is a combination of a variety of physical mech-
anisms, it is conducive to disentangle the theoretically
rather well understood components from the more phe-
nomenological elements. In addition there are a number
of assumptions and open questions on which I would like
to comment with the following critical remarks (see also
Ref. [2]).

(1) The parton cascade model is a semiclassical ap-
proach to model some of the numerous complex mecha-
nisms that predominantly govern the dynamics of high
energy nuclear collisions. It is based on a classical trans-
port equation for the single-particle distributions of par-
tons, in which the collision term is constructed on the ba-
sis of renormalization-group-improved QCD perturbation
theory. The central assumption is here that (at least dur-
ing the early stage of the nuclear reactions) the dynamics
is essentially driven by binary parton-parton collisions in
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which the partons are treated as classical, pointlike par-
ticles that interact through independent scatterings with
associated radiative emissions and absorptive processes.
This means, although these perturbative QCD processes
are firmly established by experimental evidence, their in-
terplay, as incorporated in the model, is a purely Abelian
approximation. Furthermore, the presence of a long-
range color field and color correlations among the partons
are neglected. There are numerous theoretical works in
the literature attempting a rigorous derivation of a closed
kinetic theory of quarks and gluons, based on quantum
mechanical Wigner functions and the Dirac and Yang-
Mills equations [40]. It has been shown that, in addition
to the appearance of a number of specifically non-Abelian
terms in the collision integrals, a self-consistent regular-
ization of the arising infrared singularities requires the
use of generalized Lenard-Balescu terms [41]. These is-
sues and many other, to date, poorly understood aspects
of a correct quantum theoretical kinetic formulation are
beyond the scope of this paper. It should be clear that
the model presented here is a much more “nuts and bolts”
approach that avoids the tremendous complexity of these
problems, but that benefits from the intuitively under-
lying picture and the opportunity to actually perform
practical calculations.

(2) Aside from formal theoretical objectives it needs
to be emphasized that the model combines the rather
well understood dynamics of parton cascades [20] in the
framework of perturbative QCD with a number of rel-
atively bold phenomenological elements. In particular,
the most crucial assertions and approximations concern
(i) the ansatz for the initial parton distribution of the col-
liding nuclei, (ii) the extrapolation of (semi)hard parton
collisions to a phenomenological soft scattering region,
(iii) the use of free-space matrix elements together with
a medium independent cutoff for the parton momentum
transfer in scatterings and the invariant mass cutoff for
emitted gluons, which stand in for a dynamical regular-
ization, ultimately provided by thermal parton propaga-
tors and color screening in dense quark-gluon matter, and
(vi) the scheme to model the Landau-Pomeranchuk effect
that estimates the formation time for radiative emissions
in a rather simplified way by treating the virtual partons
as unstable excitations with a finite lifetime.

(3) There are several phenomena that may be of im-
portance for the dynamical evolution of the system of
partons in high-energy nuclear collisions, but which are
(up to now) completely neglected in the current model.
The most important, I believe, are the following.

(i) Parton shadowing: There is clear experimental ev-
idence [42] for “nuclear shadowing,” an effect that is ev-
ident in a depletion of the quark structure functions in
a nucleus relative to a free nucleon at small momentum
fractions £ < 0.1. Considerable theoretical effort within
various models [43] has been made to understand this
effect. Relatively recently also “gluon shadowing,” the
expected similar behavior of the gluon structure func-
tions, has been addressed [44,45]. Although there is no
clear experimental signal for this yet, gluon shadowing
is especially of interest for high-energy nuclear collisions,
because it may significantly influence the initial condi-
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tions in such a reaction. In particular, it has been shown
in Ref. [45] that the single-particle inclusive p; spectra
in proton-nucleus and nucleus-nucleus collisions should
exhibit a clear observable supression due to gluon shad-
owing. These quark and gluon shadowing effects are not
included in the present parton cascade model, but can in
principle effectively be implemented in a similar fashion
as in, e.g., Refs. [45,46].

(ii) Fluctuations and particle correlations: Aspects of
“color transparency,” concerning fluctuations in the spa-
tial extension of the partons inside the nucleons of the
initial nuclei, are neglected. Color transparency, which
has been studied in the context of hadron-nucleus col-
lisions [47], is the expected property of QCD that the
possibility of small-size, almost pointlike parton configu-
rations in a nucleon results in a smaller interaction prob-
ability with the target. It has been claimed however, that
at RHIC energies this effect practically should disappear
[48]. Nevertheless; correlations between, e.g., the par-
tons’ flavors and positions or momenta may be of interest,
because the form of the initial phase-space distribution
of partons clearly affects the dynamical conditions of the
nuclear collision. However, because of the current lack of
a more detailed experimental knowledge of correlations
among flavor, momentum and spatial distribution of the
partons in the nucleons, the ansatz of Sec. II B should
be a sufficient approximation. Furthermore, in accord
with the form of the transport equation (1), the par-
ton distributions are to be interpreted as single-particle
distributions which average over the correlations in the
many-body system. Effects of two-particle correlations
on the parton level have recently been studied in simu-
lations of minijet production in hadron-hadron collisions
[49]. The theoretical understanding of such correlations
is still very incomplete. For experimental observables in
the mean they should be irrelevant.

(4) Finally, some remarks on Lorentz invariance and
gauge invariance. It is well known that a Lorentz-
invariant many-body theory must necessarily be of many-
time nature, even at the classical level: each particle car-
ries its own proper time. On the other hand, the struc-
ture of any conventional cascade calculation is that the
(three-dimensional) variation of spatial distance for ev-
ery possible pair of particles is followed to arrange the
ordering of binary collisions taking place in cascades (i.e.,
which pair collides first, which next, etc.). Since the spa-
tial distance separation is not a Lorentz invariant quan-
tity, the time ordering of collisions can be different from
one reference frame to another. The distance of clos-
est approach (T4p)min between two particles a and b that
must be compared with the interaction radius /G./7
to determine whether a collision occurs is most clearly
understood in the c.m. frame of the pair. The trans-
formation of the distance of separation 74, to a Lorentz
frame moving with velocity 3 relative to the c.m. frame
of a and b is r2, — 2 = 12, + 4%(B - rep)?. Now, the
most relativistic parton-parton scatterings are those be-
tween energetic partons emerging. directly from the two
incoming nuclei. The vector minimum distance rqp; for
such pairs is almost perpendicular to the beam direction.
This property will be true in any Lorentz frame moving in
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the beam direction. Therefore the minimum distance of
approach (74p)min is almost Lorentz invariant under such
a Lorentz transformation. I have checked this property
numerically by comparing collisions in the total nuclear
c.m. frame and the target rest frame, with negligible dif-
ferences in the results when transformed from one frame
to the other.

Concerning the radiative emission and absorption pro-
cesses of partons, the question of Lorentz invariance is
inevitably connected with the choice of the kinematic
variables used in the description. For timelike processes,
the choice of { = popy/FEoEp and z = Ey/E, (Sec. IIE4)
guarantees approximate Lorentz invariance [31]. A vio-
lation of Lorentz invariance arises in principle from the
noninvariance of the energy fraction z, but it has been
shown in Ref. [31] that this effect is negligible. Similarly,
for spacelike branchings the choice of the invariant par-
ton virtuality —g? and the momentum fraction % = z; /Za
(Sec. IT E 3) provides an almost Lorentz invariant descrip-
tion of the branching process, except for small violations
of rotational invariance associated with z.

Turning to the problem of gauge invariance, the par-
ton cascade approach meets a fundamental problem: the
parton-parton scattering amplitudes with off-mass shell
partons in the initial or final state of the vertex are not
gauge invariant. This is of relevance when timelike vir-
tual partons-partons propagate and rescatter before they
have returned on mass shell. However, the majority of
timelike partons have relatively small virtualities, close to
the mass shell, because most of the parton-parton scat-
terings, which provide them with this virtual excitation,
involve a moderate momentum transfer. Only in the rare
truly hard scatterings partons get scattered far off-mass
shell. Therefore the violation of gauge invariance should
be small in the mean. Nevertheless, a satisfactory im-
plementation of gauge invariance in the parton cascade
approach remains a conceptual problem which needs to
be addressed in the future.

III. CENTRAL COLLISIONS
OF S+S AND Au+Au AT RHIC

The results presented are devoted to central 3254328
and 197Au+197Au collisions, respectively, at RHIC with
c.m. energy /s = 2004 GeV (A4=32, 197). The method
of solving the transport equation (1) for time evolution of
the parton distributions during the nuclear collisions by
Monte Carlo simulation is described in Ref. [2]. At cer-
tain points in time the phase-space distributions, number
and types of interactions, etc., were extracted to provide
the information for the analysis below. The results shown
were obtained by averaging over 25 runs for S+S and 5
runs for Au+Au. In the mean there were about 1300
(7500) particles initially and 2200 (17 800) at the end of
the evolution for S+S (Au+Au). Statistical uncertainties
are very small, typically of the order of one percent or
less for the number of partons and for the particle spectra
at their maximum.

Four fundamental parameters are involved in the cal-
culations. First, the QCD scale parameter A that con-
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trols the coupling strength a;, Eq. (40), and determines
the scale dependence of the nuclear structure functions
in spacelike parton branchings, is chosen in accord with
the structure function parametrization of Ref. [12]:

A=02GeV. (54)

Next, the resolution scale Qg for the initial parton struc-
ture of the colliding nuclei and the invariant-mass cutoff
po for the virtualities of final-state partons, which de-
fine the regime inbetween which the parton distributions
are evolved perturbatively. The value of Qg is evaluated
dynamically during the calculation [as explained in Sec.
IIB after Eq. (7)],

1.9 GeV for S+S5,

Qo = {1,7 GeV for Au+Au, (55)
whereas pg is taken to be fixed:

Ho = 1 GeV. (56)

Finally, the scale Qcut = picus that separates hard and
semihard parton collisions from soft interactions is chosen
according to Eq. (30):

DPicut = 1.54 GeV/c. (57)

A. Parton multiplicities and characteristics
of the space-time evolution

Figures 3-5 show some characteristic features of the
dynamics of parton interactions and the space-time evo-
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FIG. 3. Average cumulative number of secondary gluons

and quarks per nucleon produced during collisions of 3254328
and *7Au+'°"Au at /s = 2004 GeV. The plots (a) and (b)
refer to the two space-time evolution scenarios explained in
the text.
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FIG. 4. Time evolution of the average cumulative num-

ber of the various parton interactions in 3?S+32S and
197 Au4-197 Au collisions at /5 = 2004 GeV: hard and semi-
hard scatterings (hs), soft scatterings (ss), time-like branch-
ings (tb), space-like branchings (sb), and parton fusions (fu).
The figure labels (a) and (b) correspond to the two evolution
patterns discussed in the text.

lution of the system. To study the effects of the space-
time structure of parton interactions, discussed in Sec.
II, two extreme evolution scenarios were considered.

(a) Parton scatterings occur instantaneously without
time delay. Associated cascades of successive parton
branchings evolve immediately at the same space-time

S+S
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/N dN(int)/dQ (1/GeV)
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T
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FIG. 5. Relative contributions of (semi)hard and soft
parton-parton collisions in 32S+22S and °"Au+'*"Au (/s =
200A GeV). Shown are the differential probabilities dPin¢/dQ
as a function of Q = p1 (full lines). The (semi)hard collisions
are in addition split up into the individual contributions from
9+9,9+q,9g+g,and g +4¢.
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point as the scattering vertex (zero formation time for
radiative emissions). Absorptive processes and soft gluon
interference are switched off. This evolution pattern cor-
responds to the one of Ref. [2].

(b) The time scale of each individual parton collision
is taken into account and the subsequent parton branch-
ings are delayed according to the characteristic forma-
tion time for the emissions. Absorptions of partons com-
pete with the emissive processes and soft gluon interfer-
ence decreases the available phase space for low energetic
gluon bremsstrahlung.

In Fig. 3 the average cumulative number of secondary
partons per nucleon is displayed as a function of time in
the total c.m. frame for S+S [Fig. 3(a)] and Au+Au [Fig.
3(b)]. The dotted and full lines correspond to the evolu-
tion scenarios (a) and (b), respectively. Here and in the
following the term secondary partons refers to all those
partons that have evolved from initial spacelike virtual
states to real states (on mass shell or timelike) as well as
newly created partons, resulting from spacelike or time-
like branchings. Accordingly, primary partons are initial-
state partons that have not encountered any collision. In
comparing the curves in Fig. 3 for scenarios (a) and (b)
it becomes evident that in the latter case the multiplicity
of secondary partons is significantly lower and the evolu-
tion of the system is dilated. Also, these effects are more
prominent for Au+Au [about 20 percent lower multiplic-
ity in case (b)] than for S+S [about 10 percent lower
multiplicity in case (b)]. Furthermore, an obvious fea-
ture of scenario (b) is the sudden temporary suppression
of parton production following the explosive increase at
t ~ 0.6 fm/c. The reason for this behavior is the abrupt
production of a large number of partons within a very
short time which gives rise to a dense phase-space popula-
tion. The particle emission from excited partons is effec-
tively suppressed because many partons encounter mul-
tiple scatterings and cannot emit radiation immediately.
In addition the absorption of partons by others becomes
important as the system responds to the high density. It
turns out that for Au+Au the significant reduction of the
number of produced partons can be attributed roughly
as follows: 40 percent from the Landau-Pomeranchuk ef-
fect, 35 percent from absorption of partons, and 25 per-
cent from the effect of coherent parton branchings with
soft gluon interference.

Figure 4 shows the contributions of the various interac-
tion processes as the system evolves in time. The average
cumulative numbers of 2 — 2 collisions (hard and soft
scatterings), of 2 — 1 branchings (timelike and space-
like branchings), and of 2 — 1 fusion processes are de-
picted for S+S and Au+Au. Figures 4(a) and 4(b) refer
to the evolution scenario (a) and (b), respectively. One
sees that the relative contributions from soft scatterings
(ss) are less important compared to hard scatterings (hs)
in both scenarios, but especially in scenario (b). This
supports the dominance of perturbative QCD processes.
The contributions from timelike branchings (tb) resemble
the curves in Figs. 3 for the number of produced partons
and again reflect the effects of suppression of radiative
emissions in scenario (b). Spacelike branchings (sb) play
a neglectable role in all cases. This is because the vir-
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tualities of the initial partons are chosen according to
the average momentum transfer of primary parton colli-
sions, as outlined in Sec. IIB. As a consequence, space-
like branchings arise only from a few hard primary colli-
sions with momentum transfers considerably larger than
the partons initial virtuality. Finally, the parton-fusion
processes (fu) are less prominent in scenario (b) for two
reasons. First, the multiplicity of soft partons (which
are the prime candidates for fusions) at early times is
generally lower in case (b) since it takes longer for these
partons to “evaporate” their relatively small excitation.
Second, the parton absorption processes included in the
form factor of timelike branchings partly take over the
role of decreasing the number of partons.

In summary, Figs. 3 and 4 exhibit that the spacetime
evolution according to scenario (a) is characterized by a
very short time scale, in which a large number of partons
is produced almost instantaneously, whereas scenario (b)
exhibits a dilated evolution with a significantly smaller
multiplicity of produced partons. In the following only
the more realistic evolution pattern (b) is considered.

In Fig. 5 the relative probabilities P (Q) =
(1/Nint)dNint(Q)/dQ for soft and hard parton-parton
collisions are shown as functions of the interaction scale
Q =p.. Below pj oyt = 1.54 GeV/c the partons interact
via soft collisions. The interaction probability tends to
zero at vanishing p; because most of the soft collisions
still provide an appreciable momentum transfer. Above
P1cut the hard collisions govern the dynamics. However,
most of these scatterings are not “hard” at all; rather,
their distribution in p, is peaked at 2 GeV/c with a
steeply falling tail ~ p]_s. Genuinely hard collisions are
rare. Also shown in Figs. 5 is the separation of the hard
scatterings into the contributions from the various colli-
sion channels. The most important contributions come
from g + g and g + ¢ scatterings which shows the dom-
inant role of gluons for the dynamical evolution. Note
that gluon radiation from excited gluons and quarks in
addition enhances the number of gluons in the system.

B. Density evolution

The time evolution of the number densities of partons
is shown in the first two columns of Figs. 6 and 7 for S+S
and Au+Au at /s = 2004 GeV, respectively. The spa-
tial region occupied by the partons has been divided into
cells and the number of (primary and secondary) partons
have been counted in each of them at different stages of
the collision. The first column gives the density profile
in the longitudinal (2) direction along the collision axis,
whereas the second column shows the profile in the trans-
verse () direction. The nuclear center of mass coincides
with 2z = r; = 0. Plotted are the normalized distribu-
tions p(z) = (1/N)dN/dz and p(r.) = (1/N)dN/d?r, .
The full curves represent all (primary and secondary)
partons present, whereas the dotted lines show the frac-
tion of primary partons.

At time ¢ = 0 fm/c the nuclei are about to touch each
other. The shape of the incident longitudinal profiles
clearly exhibit the thin slabs of valence quarks that are
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FIG. 6. Time evolution of the spatial distributions p(z) =

(1/N)dN/dz, p(rL) = (1/N)dN/d*r. and the rapidity and
transverse momentum spectra n(y) = (1/N)dN/dy, n(pL) =
(1/N)dN/d?p, in 32S+328 collisions at /5 = 2004 GeV. The
full histograms refer to the sum of primary and secondary
partons, whereas the dotted lines indicate the contribution
of primary partons only. Note, w(p.) refers to partons with
ly] < 2.5 and is plotted in a logarithmic scale.

surrounded by clouds of gluons and sea quarks. The ini-
tial transverse distribution reflects the Fermi shape of the
nuclei. Notice the following features: (i) Although the
nuclei begin to overlap at ¢t = 0 fin/c, it takes about 0.8-
1 fm/c until they are on top of each other. (ii) Along the
beam direction the matter is progressively compressed
and reaches a maximum compression at ¢ ~ 0.8-1 fm/c.
(iii) A dense population of secondary partons is built up
inbetween the fast receding beam fronts as the system
decompresses in the longitudinal direction. (iv) There
is no indication of an appreciable squeeze-out up to t =
1.8 (2.4) fm/c in the r distributions in Fig. 6 (7). The
system expands almost exclusively along the beam axis
and exhibits cylindrical symmetry.

Shortly after the moment of maximum compression,
most of the secondary partons produced in the central
region are excited and, on average, almost at rest. The
system is quite “hot” and the partons seem to represent
the property of a (combined) single lump of matter.

C. Momentum distributions

The third and fourth columns of Figs. 6 and 7 show
the time evolution of the rapidity (y) distributions
n(y) = (1/N)dN/dy and the transverse (p,) distribu-
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FIG. 7. The density profiles p(z) = (1/N)dN/dz, p(rL) =
(1/N)dN/d*r, and the momentum distributions n(y) =
(1/N)dN/dy, n(pL) = (1/N)dN/d?p at various times during
197 Au+1%" Au collisions at /s = 2004 GeV. Full histograms
represent the sum of primaries and secondaries whereas dot-
ted lines show the contribution of exclusively primary partons.
The p. distribution refers to partons with |y| < 2.5. Note the
logarithmic scale.

tions m(p1) = (1/N)dN/d?*p, for S+S and Au+Au at
/s = 200A GeV. The distributions are obtained in the
total c.m. frame at a certain time ¢ by integration over
all r and over p,, respectively, y. In contrast with the
density profiles in the first two columns, the momentum
spectra include only valence quarks and secondary par-
tons, since only these contribute to the reaction dynam-
ics. The full lines show the total distributions whereas
the dotted lines exhibit the contribution of primary par-
tons only. Initially all partons are primary, therefore the
full and dotted curves coincide in the plots for ¢ = 0 fm/c
and correspond to the initial valence quark distribution.

It is evident that the region of small rapidity is quickly
populated, reflecting the production of excited partons in
the central rapidity region with a considerable fraction of
the partons’ kinetic energy being converted into timelike
virtual masses. At the compressed stage (t =0.8-1 fm/c)
the system can be viewed as a collection of a large number
of excited secondary partons nearly at rest crossed by
the remnants of the two opposite initial flows. At the
end of the evolution the initial bumps around |y| = 4
have been almost completely depopulated and a narrow
central plateau has been developed around y = 0 with a
width of about 1-2 rapidity units [50].

For the p, distributions a cut on the partons with |y| <
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2.5 has been imposed to focus on the central rapidity
region. The initial Gauss distribution with (p,) = 0.38
GeV/c rapidly develops a tail for p; > 1 GeV/c which
decreases continuously until the distribution approaches
an exponential shape and an average final (p,) ~ 0.65
GeV/e.

D. Quark-gluon plasma formation

I turn now to the question of equilibration of the par-
ton system (the formation of a quark-gluon plasma in
the central collision region) and the thermalization time
Teq- The characteristic time scale for quark-gluon plasma
formation (usually termed “formation time” 7q) has been
given different meanings in the literature and estimates,
ranging over more than an order of magnitude, have
been made within rather different models. For example,
Bjorken [51] interpreted it as an initial time for imposi-
tion of boundary conditions of hydrodynamic flow and as-
sumed it ~ 1 fm/c. Hwa and Kajantie [6] give ~ 0.1 —-0.2
fm/c for the time scale after which thermalization in a
small central phase-space cell is complete. Blaizot and
Mueller [9] understood it as the time at which the par-
tons are “freed” through their very first collisions with
others, estimating ~ 0.2 — 0.3 fm/c. Finally, Shuryak
[10] gets a global equilibration time of ~ 2 fm/c in a
two-stage equilibration scenario. In comparing the num-
bers, one has to distinguish whether they refer to “local”
thermalization within a microscopic space-time cell, or
to “global” thermalization with respect to a compara-
bly macroscopic volume composed of many such small
cells. Of course local thermalization in individual cells is
the first step for the system to equilibrate globally and
the respective time scales can easily differ by an order of
magnitude.

In the following I will address only the approach to
global equilibration in the central region, defined to be
a cylindrical volume of ~ 34 fm3 for S+S, or 180 fm3
for Au+Au. I will refer to the time during which the
system reaches equilibrium in the central region as 7q.
I define the equilibration time 7.q to be the time span
between (i) the ignition of parton collisions at proper
time 7; and (ii) the time 7; when the parton momen-
tum distributions do not exhibit any further longitudinal
slowing down, and the quanta in the central region have
essentially harnessed the initial kinetic energy for their
interactions. These points of time are determined as fol-
lows.

(i) To specify the actual beginning of the reaction on
the parton level, ¢;, measured in the nuclear c.m. frame,
I plot in Fig. 8 the spatial distribution of vertices where
secondary partons are produced versus time in the nu-
clear c.m. frame. Shown are the distributions in longi-
tudinal (z) and transverse (r,) direction for S+S and
Au-+Au. One sees that it takes a time

t; ~ 0.6 fm/c (58)
after the moment the nuclei began to overlap (¢t = 0 fm/c)

until parton interactions substantially pick up (also evi-
dent from Figs. 3 and 4). This point of time corresponds
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FIG. 8. Distribution of vertices of the production of sec-
ondary partons in longitudinal (z) and transverse (r.) direc-
tion during central collisions of *2S+32S and !°7Au+!9"Au.
The point t = 0 fm/c is the moment the nuclei begin to over-
lap.

to the second rows of Figs. 6 and 7. It is obvious from the
longitudinal density profiles that the very few collisions
occurring before t; are those between the partons in the
clouds of gluons and sea quarks that precede the highly
contracted slabs of valence quarks.

(ii) The reaction is essentially complete when the mo-
mentum distributions of partons become stable and do
not exhibit any further change as the particles move
apart. From analyzing the evolution of the rapidity and
transverse momentum spectra, it turns out that a stabi-
lization is achieved after

ty~1.8 (2.4) fm/c (59)

for S+S (Au+Au). Although, as is obvious from Figs.
3(b) and 4(b), the interactions among partons and espe-
cially branching processes continue up to 3 fm/ec, they
do not contribute significantly to the reaction dynam-
ics. There is no appreciable further time variation of
the distributions observable up to 3 fm/c, when the cal-
culations have been stopped. Furthermore, from Fig.
9, which shows the time evolution of transverse energy
per nucleon produced by secondary partons, £ /A =
(1/A) 3>, /p? + m2, in various bins Az along the beam
axis and centered at the c.m., it appears that for S+S
(Au+Au) at ty ~ 1.8 (2.4) fm/c the curves coincide for
all slabs up to |z| < 0.6 (0.8) fm, implying a constant
value of E; /A ~ 7 (10) GeV over a longitudinal range of
1.2 (1.6) fm.

From these considerations the conclusion is that the
proper equilibration time 7.q is approximately (r =

Vit —ti)2—22fort >t,;)
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FIG. 9. Production of transverse energy per nucleon,

E. /A, by secondary partons versus time in bins along the
collision (z) axis for 3254-32S and %" Au+1°"Au at /5 = 2004
GeV.
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(60)

Turning to the associated temperatures of the system
in the central region, one observes from Fig. 6 (7) that
at ty = 1.8 (2.4) fm/c the final y and p, distributions
exhibit a thermal shape. Note however that the trans-
verse momentum distribution can easily show a close re-
semblance with a thermal distribution even though the
total (or rapidity) distribution may still be distant from
equilibrium. One has to be careful in drawing conclu-
sions when relying on projected distributions to indicate
the form of the full momentum distribution. To reveal
the degree of thermalization in a more accurate way, one
would have to analyze the full phase-space distribution
in the six phase-space variables. This program is carried
out in Ref. [3]. Here I will follow a more crude approach
to estimate the approximate temperatures in the central
region. In order to extract “effective” rapidity (longitudi-
nal) and transverse temperatures, I tried to fit them with
an appropriate thermal form. The fits are made with rel-
ativistic Boltzmann distributions which are good approx-
imations to Fermi-Dirac and Bose-Einstein functions at
high temperatures where quantum statistical effects can
be neglected to a good approximation. Written in terms
of y, p1, the space-time rapidity n = % In[(t+2)/(t — 2)],
and proper time 7 = +/(t —t;)2 — 22 the distributions
are given by [6]
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F(y,p1,n,T =Teq) = Fo exp [—%— cosh(y — n)] ,
(61)

where the temperature T' = T'(7) serves as a fit param-
eter. The corresponding y and p, distributions are ob-
tained by integrating over n and over p, , respectively, y.
The resulting fits are shown in Fig. 10. The sensitivity of
the fits is such that the transverse temperatures T, are
determined within an accuracy of 10 MeV whereas the
uncertainty in the longitudinal temperatures T}, is about
20 MeV. The histograms are the final spectra from Figs.
6 and 7. Whereas the p, distribution is easily repro-
duced by adjusting the temperature T in Eq. (61) to the
slope, the y distribution is too broad for a perfect ther-
mal distribution, because it has a plateau shape of about
two units of rapidity around y = 0. In order to describe
the plateau, I superposed a theta function h6(Ay — y)
with Ay = 0.5 (S+S), 0.3 (Au+Au), and the parameter
h adjusted to give the height of the plateau. The temper-
ature was then fixed to fit the slope of the y distribution
for |y| < 2.5, the rapidity interval that corresponds to
the window set for the p, distributions. From Fig. 10
one sees that the so-obtained longitudinal and transverse
temperatures T, ~ T, within the uncertainties, imply-
ing that the system indeed appears to attain a state of
approximate equlibrium in the central collision region.
The essential conclusion from these results is that
rather hot quark gluon plasmas can be formed in cen-
tral S+S and Au+Au collisions at RHIC, with effective

S+S T=295 MeV S+S T=285 MeV

— A T I EY
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FIG. 10. Final rapidity and transverse momentum spectra
of partons, 7(y) = (1/N)dN/dy and n(pL) = (1/N)dN/d*p.
(the latter for |y| < 2.5) in central collisions of 3?S+2S and
197 Au+197Au at /5 = 200A GeV. The full (dotted) his-
tograms correspond to all “real” partons (primary valence
quarks only). The temperatures T are extracted by fits with
relativistic Boltzmann distributions (full curves).
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temperatures

290 MeV for S+S,

To = T(Teq) = { 325 MeV for Au+Au, (62)

where the equilibration times 7eq are given in (58). Fur-
thermore, in the central rapidity unit, the final momen-
tum spectra give

dN N{ 240 for S+S, (63)

‘dy ~ 2600 for Au+Au,

Il

€

Clearly these numbers are to be understood as crude es-
timates for the densities, since it is averaged over the
whole central volume. It seems that there is still a sig-
nificant longitudinal flow at the edges of the considered
volume, as is indicated by the relatively broad width of
the y distributions in Fig. 10 and also by the large en-
ergy densities (66) as compared to the number densities
(66). The energy associated with such a remaining longi-
tudinal flow is contained in the estimates (66). Therefore
the values given for the energy densities should be taken
as upper estimates. For a more quantitative analysis of
these points, I refer to Ref. [3].

It is instructive to compare the values for the energy
densities (66) with the Boltzmann formula for a free gas
of gluons and quarks:

2
= 4 - 2L
e=3aT* a= 5 (16+ 2nf). (67)

The extracted temperatures (62) would give, taking into
account ny = 3 quark flavors, energy densities € = 14.3
GeV/fm3 for S+8S and € = 22.5 GeV/fm® for Au+Au.
For ny = 4 [52] one gets instead £ = 17.4 GeV/fm? for
S+S and € = 27.5 GeV/fm3 for Au+Au. Although the
formula (67) refers to an ideal gas of a noninteracting,
massless partons, it is satisfactory to see that the model
results are consistent within the uncertainties. Such no-
tably high particle and energy densities would offer an
appealing opportunity to study possibly new and inter-
esting aspects of QCD in nuclear collsions, even indepen-
dent of the question of quark-gluon plasma formation.

IV. CONCLUSIONS

From the study of ultrarelativistic nuclear collisions of
3254325 and 97Au+197Au presented here within a ki-

20.4fm~3 for Au+Au (|z] €0.8 fm, r; <6 fm),

17.1GeV/fm3 for S+S (|z| < 0.6 fm, r; < 3 fm),
30.8GeV/fm3® for Au+Au (|2| <0.8 fm, r; < 6 fm).

{12.6fm’3 for S4S (|z| < 0.6 fm, r; < 3 fm),
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dy 1700 GeV for Au+Au, (64)

with (p1) = 0.67 (0.64) GeV/c for S+S (Au+Au).

In order to estimate number densities and energy den-
sities, I defined the central volume in S+S (Au+Au) to
be a cylinder with length 1.2 (1.6) fm and radius 3 (6) fm
centered at the center of mass. This region is nearly at
rest with respect to the c.m. frame and the partons net
velocity is small, as has been checked numerically. In this
central region, the number densities and energy densities
of secondary partons are calculated to give

dE, | { 160GeV for S+8,

(65)

(66)

[

netic parton cascade approach for the time development
of the parton distributions, I conclude that in central
collisions at RHIC hot quark gluon plasmas may well be
established. The estimates for equilibration times, tem-
peratures, and energy densities in S+S and Au+Au col-
lisions predict Teq = 1.2 (1.8) fm/c, T = 290 (325) MeV,
€ = 17 (31) GeV/fm3. Effects of dilated emission from
excited partons, the balance between radiative emissions
and reverse absorption processes, and the interference of
soft gluons have been shown to considerably affect the
space-time evolution of the system, as compared to the
case of Ref. [2] without these mechanisms. The most sig-
nificant consequences are an extended duration of parton
interactions resulting in longer equilibration times, and
substantially lower multiplicities of produced secondary
partons.

If this “hot parton” scenario of the early evolution of
nuclear collisions is correct, then the proposed standard
quark gluon plasma signatures should be clearly affected.
The observable consequences should be [1,10] the follow-
ing.

(i) Enhanced production of charm. Direct charm pro-
duction in high-temperature quark-gluon plasmas is pre-
dicted to result in 0.7 c¢/event at RHIC [53,54], com-
pared to “thermal” production yielding 0.01 (1) c¢Z/event
at temperatures 300 (400) MeV. Therefore, the temper-
atures obtained in the present work would imply a sig-
nificant increase of charm production as compared to pp
collisions.

(ii) Strangeness equilibration. The enhancement of to-
tal strangeness [22,55] depends on the interrelation of
the strange quark mass m, and the thermal quark mass
m¢n ~ T. For high temperatures as T ~ 300 MeV
and above the thermal mass is considerably larger and
there should be no essential difference between initially
produced u, d, and s quarks. If the multiple strange
quark pairs, once produced, do not annihilate easily,
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there should be an enhanced strangeness production ob-
servable.

(ili) Direct Photon and lepton pair production. The
spectra of direct photons and dileptons produced during
the early stage of the parton cascade evolution should
exhibit a rather different behavior than the spectra ob-
tained in the thermal scenario [56-58]. At early times
most quark pairs are produced from “hot” gluons via
gg — qq and g* — ¢q and therefore should reflect the mo-
mentum distribution of the gluons with their high tem-
perature.
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FIG. 2. Top part: Graphical representation of the Nth-
order amplitude A% for the production of a parton a with
momentum p, and invariant mass £ = p2, and the next-order
correction associated with the branching a — be. Lower part:
Diagrams for the lowest-order Born amplitude Ay and the

first-order corrections Ag"") and A(l_) for the emission and
absorption of an additional parton, respectively.
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FIG. 8. Distribution of vertices of the production of sec-
ondary partons in longitudinal (z) and transverse (r.) direc-
tion during central collisions of 3254228 and '*7TAu+'*7Au.
The point t = 0 fm/c is the moment the nuclei begin to over-
lap.



