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Snagging the top quark with a neural net
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The search for the top quark at pp colliders in the one-lepton-plus-jets channel is plagued by an
irremovable background from W-boson-plus-multijet production. In this paper, we show how the
top-quark signal can be distinguished from background in the distribution of neural network output.
By making a cut on the network output, we maximize the ratio of signal to background in a final
event sample, and compare our results with those obtained by making kinematical cuts on the data
sample. We also demonstrate the robustness of the neural network method by training the neural
network on signal events of one top mass and testing upon another.

PACS number(s): 13.85.Qk, 14.80.Dq

The top quark ¢ is a necessary ingredient of the stan-
dard model (SM), as it is required to ensure the can-
cellation of triangle anomalies [1], to account for the
ete™ — bb forward—backward jet asymmetry [2], and for
the suppression of neutral current B decays [3]. Radiative
corrections to SM parameters measured at the CERN
ete™ collider LEP constrain the top-quark mass to be
89 GeV < m; < 191 GeV [4]. The lack of a top-quark
signal at the Fermilab Tevatron to date furthermore re-
stricts my > 91 GeV [5]. The search for top quarks of
mass up to ~ 120 — 140 GeV at the Fermilab Tevatron is
expected to resume in 1992, with the planned collection
of 20 pb~! of data.

The top quark at the Fermilab Tevatron collider is ex-
pected to be produced dominantly via the gg — tf and
qq — tt pair production channels. Since m; > My +my,
a SM top quark decays via t — bW where the W is
on shell; hence, a tf event results in a bbW+tW— final
state. The cleanest signal for tf occurs in the two-lepton
channel; the two leptons arise from the leptonic decay
of each W boson. The principal backgrounds from W-
pair production and v,Z — 777~ are expected to be
controllable [6]. Event rates in the two-lepton channel
will be low because of the two leptonic branching ratios;
moreover, this channel does not provide a direct determi-
nation of the top-quark mass because the two neutrinos
from W — lv carry off an unknown amount of pr. The
best one can do is to either match the total event rate to
QCD predictions (which depend on m;), or to measure
the relative rates, R;/o and Ry/1, of multijet production
in events with two isolated leptons [6]. Here, R;/; stands
for the ratio of events with 7 jets to events with j jets.

The single-lepton channel of tf decay, on the other
hand, in which one W decays leptonically and the other
hadronically, offers the possibility of a direct determina-

46

tion of the top-quark mass, since the presence of only a
single neutrino permits a kinematical reconstruction of
the event. By computing the invariant mass of the three
leading jets for each event, the first two of which are ex-
pected to come from the hadronic W and the third from
one of two b quarks, one may be able to determine the
top-quark mass. This channel will be sought by the ex-
perimentalists both for its confirmation of the existence
of the top quark, as well as for its value in providing
a direct reconstruction of the top-quark mass, but it is
not considered nearly as clean as the two-lepton channel
because now the principal background is “W-plus-jets”
production, which occurs with a large relative rate even
with well-formulated kinematical cuts. In addition to
this, when one constructs the invariant mass of the three
leading jets, one includes the correct b quark jet less than
half the time when one takes into account the presence
of initial- and final-state radiation. This fact, plus the ir-
repressible presence of background contamination in any
final event sample, tends to smear out the peak at the
top-quark mass, and so one may fail to obtain a precise
determination of m; after all. Indirect top-quark mass
measurements may also be made by comparing experi-
ment with theoretical expectations for R3/; and Ry4/3 in
this channel [7].

In this paper, we report on our use of a neural net-
work to distinguish signal from background events in
the single-lepton channel of top-quark production at the
Tevatron. Neural networks have proven to be an efficient
technique for pattern recognition with important appli-
cations in a variety of high-energy physics problems [8];
our application is another in the area of signal-versus-
background discrimination.

The problem of identifying signal over background pro-
cesses with much larger total rates is a common one in
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high-energy physics, especially in hadron collider exper-
iments. The usual procedure of imposing linear cuts on
the kinematical variables of each event is often not suffi-
cient in providing the reduction of the background /signal
ratio necessary to assess the experimental observability
of the process. This problem, on the other hand, is well-
suited for the neural network. The network builds a non-
linear functional representation of the signal and back-
ground process that permits a classification scheme more
efficient than the conventional cuts, which simply corre-
spond to a hyperplane separation in the kinematical vari-
able space. The neural network can achieve an efficiency
in signal-versus-background discrimination very close to
the theoretical maximum determined by the Bayes deci-
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In Eq. (1), T is the “temperature,” a free parameter of

the algorithm, and the w](-iL) are the connectivity weights.
The learning algorithm of the neural network consists
in computing a set of weights wiP connecting nodes of
jgi !
adjacent layers, such that the total quadratic error in
the identification of a given training set of events is min-
imized. Minimization by means of the gradient descent
method leads to the back-propagation learning rule [10]
employed here. For each event of the training set, the
neural network output (M) is compared with the target
value t (t = 0 for background events, t = 1 for signal
events) and the connectivity weights, which at the be-
ginning are chosen at random, are modified accordingly
by

ij(.f‘) = —176§-L):1:§L_1) + aAwJ(f)°'d,

i=1,.,. N D j=1.,ND (2)

where the Aw§f’)°"’ are the changes in the weights of the

previous iteration, and the 6;1') is defined by recursion:
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Here 1 and a are two free parameters of the learning al-
gorithm. During this learning phase, the neural network
is fed each event of the entire training set Ncycle times,
and the weights are updated according to Egs. (2)—(4).
Then the weights are held fixed and the neural network is
ready to be used as a signal-background classifier. At this
point the network performance can be tested on a sample
of new events that it has not previously encountered, the

ji=1,..,
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sion rule [9].

We employ the feed-forward model of neural networks
based on an input layer, a number of hidden layers, and
an output layer. Each layer L (L = 1,..., M) consists
of NI nodes. The input layer corresponds to L = 1,
and the output layer to L = M (we take N(M) = 1,
i.e., a single output node). During the learning phase
of the procedure, the net is confronted with a set of sig-
nal and background events, called the training set, which
has been generated by Monte Carlo simulation. For each
event, the kinematical variables of the process, :rz(-l), for
i=1,.., N1 are presented as input to the neural net-
work. From these inputs, the output of the next layer of
nodes is computed using the recursive rule:

NO L=2.,M (1)

testing set. With such a neural network, therefore, we at-
tempt to separate the one-lepton top-quark signal from
background, and compare our results with the method of
conventional kinematical cuts.

The training and testing event sets for top-quark pro-
duction and the relevant background are simulated by
the Monte Carlo event generator PYTHIA [11], at pp cen-
ter of mass energy /s =1.8 TeV. The total ¢t produc-
tion cross section generated by PYTHIA using Eichten-
Hinchliffe-Lane-Quigg (EHLQ) set 1 parton distributions
[12] is used for normalization. We have checked that
these results agree within theoretical uncertainty with
QCD leading-log cross sections, even though certain in-
terference terms are neglected in the string picture. We
do not include any next-to-leading-log effects in our total
tt cross section; this is a conservative choice, since these
effects generally enhance the total cross section. Spin
correlations are, of course, neglected in PYTHIA; this is
appropriate for top-quark masses less than ~ 140 GeV.

The W+multijet background is generated by PYTHIA
from qg — Wg and qg — Wgq subprocesses, where the di-
vergences are regulated by requiring pr of the final-state
parton to be greater than 10 GeV; additional jets are then
generated by initial- and final-state QCD shower cor-
rections. The specific lepton-plus-multijet cross section
normalization is not well determined by this procedure
(13], so we fix the normalization at values obtained from
the next-to-leading-log plus shower approach of Ref. [14],
which agrees well with matrix element predictions from
Refs. (7] and [13]. We invoke a simple detector simula-
tion, with calorimeter cells of size én x §¢ = 0.1 x 0.1,
with cells extending between —3.5 < n < 3.5 in pseu-
dorapidity 1. We assume hadronic energy resolution
AE/E = 50%/VE.

We require that each generated event contain: (a)
one and only one electron or muon with pr > 20 GeV
and pseudorapidity |m| < 3.0, and (b) total missing en-
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ergy Er > 20 GeV. We require that each event sat-
isfy (c) lepton isolation defined by limiting the sum of
hadronic energy Y, Er < 3 GeV inside a cone of size

Ar = /(A@)?2 + (An)? = 0.4 centered about the elec-
tron momentum, and finally that each event contain (d)
at least 3 hadronic jets, each of energy Ejet > 15 GeV
and pseudorapidity |njes| < 2.5. The cuts in 7 correspond
approximately to the acceptance of the collider detector
at Fermilab (CDF), as does the jet definition for which
we have taken the cone size to be Ar = 0.7. The combi-
nation of the severe cut on lepton and neutrino pr, along
with the lepton isolation requirement, results in a large
suppression of backgrounds due to bb and c¢ pairs. These
cuts (a), (b), and (c), however, do little to suppress the W
background; on the contrary, these are precisely the kind
of cuts usually invoked to select a leptonically decaying
W signal. It is in fact the deep similarity between signal
and background topology which makes it so difficult to
distinguish between them. In order to reduce the back-
ground to the same order of magnitude as the signal cross
section, therefore, we must also require (d). The resulting
signal cross section, for the three cases m; = 100, 120, 140
GeV, and the background rate from W-plus-multijet pro-
duction, with the so-called acceptance cuts (a)-(d), are
presented in the first three columns of Table I; we have
checked that these rates are consistent with those of Refs.
[6], [7], and [14]. Notice that the rate for background
from W production is still often considerably larger than
that of the signal, especially for the larger values of m;.

We begin by training the neural network to distinguish
between the top-quark signal and the W-plus-multijets
background. As inputs for the neural network we choose
the following 10 kinematical variables to describe each
event: the pr and pseudorapidity 7; of the hardest lepton,
the number of jets Nje, satisfying requirement (d) above,
the missing transverse energy of the event Er, the energy
Ejiet, and angular separation with respect to the lepton
momentum Arjiet for the three hardest jets i = 1,2,3.
We choose then a network architecture based on ten in-
put nodes, one hidden layer of 12 nodes, and a single
output node (M =3, NO =10, N® =12, N® =1)
and train the neural network on 10000 events generated
by PYTHIA. The weights are updated every time after the
net has been presented with a group of 20 events, con-
sisting of mixed signal and background events arranged
at random, but in a proportion to their predicted rela-
tive cross sections. For m; = 100 GeV, the proportion is

TABLE 1.
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9 signal and 11 background events, for m; = 120 GeV,
we use 6 signal and 14 background, and for m; = 140
GeV, 3 signal and 17 background. The entire training set
of events is presented to the net Ngycle = 10000 times.
The neural network is simulated by the program JETNET
[15] with the following choice of parameters: temperature
T = 1.0 [see Eq. (1)], @ = 0.5, and learning parameter
n = 0.0001 [see Eq. (2)]. We have checked that modifi-
cations in this choice of parameters do not largely affect
the neural network performance.

We next test the network performance by holding the
weights fixed and confront the neural network with a
fresh set of 2500 + 2500 signal and background events.
The performance of the neural network is illustrated in
Fig. 1 where the 5000 events are distributed according
to their network output z(® [see Eq. (1)]. For each top-
quark mass there are two distributions, one for the 2500
true signal events and one for the 2500 true background
events. A strict midpoint rule is employed here so that an
event with output z(3 > 0.5 (z® < 0.5) is interpreted
by the neural network as signal (background). Correct
signal classifications, therefore, are regarded as only those
true signal events to the right of one-half. One may no-
tice the decided lack of events in the first and last bins
of neural network output for m; = 100 GeV. This dearth
of events is due to the fact that, for m,; close to the W
mass, the signal and background events are so similar
that the neural network identifies few events that are so
clearly signal-like or backgroundlike that they trigger the
extrema values of output (3. As the top-quark mass
increases and the signal and background events become
more dissimilar, these first and last bins gradually fill.
One also notices that, as the top-quark mass increases
with respect to the W mass, the identification accuracy
improves, since the top quark decay products then have
larger transverse momentum than in the case of the back-
ground. The overall neural network performance, mea-
sured in terms of total correct event classifications, is
summarized in Table II.

Figure 1 is shown to illustrate clearly the neural net-
work performance in absolute terms, but what is more
important, of course, is how the neural network performs
in an experimental situation, that is, a situation in which
the testing set of events is presented to the network in a
proportion normalized by their respective cross sections.
Once the weights w;; are fixed, however, the network re-
sponse to any given event is fixed, so we multiply the

Signal and background cross sections with acceptance cuts (a)-(d) (¢3:8), with

conventional severe set of cuts (a)—(g) (afe’f), as described in the text, and with cut on last three

bins of neural network output (o).

s s 5
me o'fcc Uﬁ:c a'_a;_c_ afev UBB;V Us;v o'l?;b UlB:;b 013'!3
Oacc Osev Oj3b

(GeV) (pb) (pb) (pb) (pb) (pb) (pb)
100 13.3 17.2 0.77 6.2 3.2 1.9 4.3 1.2 3.6
120 6.6 17.2 0.38 3.9 3.2 1.2 2.5 0.6 4.2
140 3.2 17.2 0.19 2.1 3.2 0.65 1.0 0.2 5.0
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FIG. 1. Distribution of neural network output for test sets

composed of equal numbers of signal and background events.
For (a) m¢ = 100 GeV, (b) m: = 120 GeV, and (c) m; = 140
GeV.

number of signal and background events in each bin of
Fig. 1 by their respective cross sections and divide by
the total number of events of that type. The results are
shown in Fig. 2 wherein the background distribution and
the sum of signal and background distributions are nor-
malized according to the number of events expected per
year at the Tevatron, assuming an integrated luminosity
of 100 pb~!/yr.

To evaluate the performance of the neural network, we
compare the results in Table II with the Bayes decision
rule (BDR), which is known [9] to minimize the average
probability of error. In our case, the efficiency of the
BDR for signal (background) recognition corresponds to
the integration of the signal (background) probability dis-
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FIG. 2. Distribution of neural network output for the
same events of Fig. 1, but for which the number of events
is normalized according to the respective cross sections, and
corresponds to the number expected per year assuming a lu-
minosity £ = 100 pb~!/yr. In (a) is shown separately the
background events and the sum of m; = 100 GeV signal-plus-
background events, in (b), the same for m¢ = 120 GeV, and
in (c), for same for m; = 140 GeV.

tibutions X5 (Xg) over the phase space where s > ¥p
(g > Xg). In the last row of Table II we present the re-
sults of a numerical integration done by discretizing the
10-dimensional space of the kinematical variables used
by the neural network as input. We have not tried to es-
timate the errors on the BDR results in Table II, which
are certainly large. Nevertheless, one can see that neural
network performance mimics the trend, at least, of the
estimate of the BDR in that it increases with increasing

TABLE II. Neural network performance on test set of equal number of signal and background
events.
me 100 GeV 120 GeV 140 GeV
Correct signal U8~ 58.6 % 1% =595% B2 — 525 %
classifications
Correct background 1970 = 79.7 % 238 =903 % B =96.0%
classifications
Correct total 51 =69.0% 38T = 74.7 % 0 =740 %
classifications
Bayesian limit 70% 78% 80%
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values of top-quark mass.

In order to obtain a final event sample that is most
rich in signal events, we make a final cut upon the data
of Fig. 2 by collecting those events in the last three bins of
network output near one, i.e., (3 > 0.7. These bins con-
tain the events most likely, to the trained eye of the neu-
ral network, to be most signal-like, and where one indeed
finds the highest concentration of true signal events and
the fewest background. In columns 7-9 of Table I we list
the effective cross sections o3, for signal and background
and the signal/background ratio that one obtains by cut-
ting on the last three bins of neural network output. We
compare these to the cross sections oge, corresponding
to the best set of conventional kinematical cuts shown in
columns 4-6 of Table I. These cuts are used to limit the
presence of W-plus-multijets background [6] and will be
known as the “severe cuts” in what follows. This set of
cuts consists of all of our “acceptance cuts” listed above,
and in addition include that: (e) the sum of Er for each
event exceeds 210 GeV, (f) the invariant mass m(jajs) of
any two jets a and b satisfy |m(ja.js) — Mw| <15 GeV,
and (g) the transverse mass of the lepton and missing
pr, mr(l,pr), satisfy 25 GeV< mr(l,pr) <100 GeV.
The rates for ogv also were obtained from PYTHIA and
the normalization has been altered in the same way de-
scribed above as for gacc.

The cut on the last three bins of neural network output
is found to be more efficient than the set of “severe cuts”
as the ratio of signal/background that one obtains from
the neural network is more favorable than the severe cuts
case by a factor of 1.9 for m; =100 GeV, 3.5 for m; =120
GeV, and the neural network is 7.7 more effective for
m; =140 GeV. There is a certain trade-off at play here
in the favor of the neural network in that, as the cross
section for the signal falls with increasing top-quark mass,
the neural network efficiency grows, whereas the ratio of
signal/background for the severe cuts only suffers by the
falling cross section for increasing top-quark mass.

In an effort to demonstrate top-quark mass reconstruc-
tion, we have plotted (but do not show here) the invariant
mass of the three leading jets for signal and background
events with Njet > 3 and 4 subject to both the conven-
tional set of cuts as well as subject to the acceptance
plus neural network cut. Rather than obtaining a sharp
peak at m; as in the parton-level calculations of Ref. [6],
we obtained a substantially broader distribution that did
not adequately reflect the top-quark mass, at least for the
range of masses which are considered here. This is due to
a number of effects: (i) PYTHIA includes multiple parton
radiations, which adds extra hard jets from the initial
state, and broadens the jets from real W decay, (i) the
associated b jet can be misidentified or can be energeti-
cally too soft, and (#3) we have included the previously
referred to hadronic energy smearing.

Finally it must be determined how well the neural net-
work can succeed in identifying the top-quark signal un-
der realistic experimental conditions in which the top-
quark mass is not reliably known. For this purpose we
train the neural network on the same 6:14 mix of signal
and background events passing the “acceptance cuts” for
my = 120 GeV as before and fix the weights, but then
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TABLE III. Neural network performance on test sets com-
posed of signal events for m; = 100 and 140 GeV using the
weights of training on m; = 120 GeV signal.

me 100 GeV 140 GeV
Correct signal UL =39.9% 108 = 74.6 %
classifications
Correct background 229 = 90.2 % 2295 =90.2 %
classifications
Correct total % =644 % %1, =822%
classifications

test the neural network on a test set of 5000 m; = 100
GeV signal-plus-background events, as well as on a test
set of m; = 140 GeV signal and background events. The
results are summarized in Table III. Upon comparing
with the results of Table II, we find that the overall net-
work performance is degraded by no more than 5% for
the m; = 100 GeV events, while overall network per-
formance actually increases for the m; = 140 GeV case.
This is not a surprising result when one recalls that the
m; = 140 weights were designed to identify background
events with the greatest efficiency (because training took
place on a 3:17 mix of signal and background events),
and were therefore the poorest at identifying the signal.
It can then be expected that the signal identification will
be dramatically increased with the use of the m;, = 120
weights, and so boost the overall performance measure.
To illustrate these cross-testing results more clearly in
an experimental situation, we plot in Fig. 3 the neural
network output for the two cases above such that the

300 T " T T T ] ]
:_ _____ Net trained on tt(120) E
250 — ! —
200 - Seoees ; : —
- F-—--- | - ! \ ]
2 - lwoo) S ]
o 150 — i e 1 tr=cz-g —
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" L . L ]
< T Lo 11(140) b
g L ]
= 50 — -]
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0 Co v 0 i FI S S | l JI S S l PR Sttt
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Net Output

FIG. 3. Distribution of neural network output for test sets
of m: = 100 GeV (dashed line) and m; = 140 GeV (dotted
line) using the weights obtained by training on the m; = 120
GeV events. Numbers of signal and background events are
normalized according to respective cross sections and corre-
spond to the number expected per year assuming £ = 100
pb~!/yr. For comparison we also show the background dis-
tribution (solid line) and the results for the m; = 120 test set
(dot-dash line).
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number of signal and background events are normalized
according to their respective cross sections. We show the
network output distribution for signal-plus-background
events for m; = 100 and 140 GeV, as well as the back-
ground events alone. For comparison we also include the
signal-plus-background distribution for m; = 120 GeV,
i.e., the test set which has events of the same top-quark
mass as the training set. We show only the distribution
in network output z(® > 0.2 in order to cut out the
large background peak and to see more clearly the net-
work response to the various signals. For all top-quark
mass values one sees a clear increase in occupation of the
bins for z® > 0.6 over the case for which there are only
background events. We propose that, by comparing such
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distributions with experimental data, one may not only
confirm the existence of top-quark events in the event
sample, but also extract a value for the top-quark mass.
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