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The first “constant of nature” to be identified, Newton’s constant of universal gravitation G, is
presently the least accurately known. The currently accepted value (6.67259+0.00085)X 107!
m>kg~!s™? has an uncertainty of 128 parts per million (ppm), whereas most other fundamental con-
stants are known to less than 1 ppm. Moreover, the inverse-square law and the equivalence principle are
not well validated at distances of the order of meters. We propose measurements within an orbiting sa-
tellite which would improve the accuracy of G by two orders of magnitude and also place new upper lim-
its on the field-strength parameter a of any Yukawa-type force, assuming a null result. Preliminary
analysis indicates that a test of the time variation of G may also be possible. Our proposed tests would
place new limits on a=as(qs/p),(gs/p), for characteristic lengths A between 30 cm and 30 m and for
A> 1000 km. In terms of the mass m, of a vector boson presumed to mediate such a Yukawa-type force,
the proposed experiment would place new limits on a for 7X107° eV <m,c?<7X 1077 ¢V and for
m,c2<2X 107 1% eV. Two distinct tests of the inverse-square law, one employing interactions at inter-
mediate distances and having a peak sensitivity if A is a few meters (i.e., m,c2~10"7 V), and the other
employing interactions at longer distances and having a peak sensitivity for A~R g, (myc?~3X1071
eV), would both place limits of 107> to 107° on a. These interactions also provide tests of the
equivalence principle (EGtvos’ experiment). The intermediate-distance interaction would test the
equivalence principle to 5 parts in 107 for A>5 m (m,c?<4X 1078 eV), while the longer-distance in-
teraction would test the equivalence principle to 4 parts in 10" for A> Rg,n (mpc?2<3X 10714 eV),
Specifically, we propose to observe the motion of a small mass during the encounter phase of a
“horseshoe” orbit—that is, in the vicinity of its closest approach to a large mass in a nearly identical or-
bit. The essential aspect of the interaction of the two bodies during the encounter is an exchange of en-
ergy, and we call the proposed method the “satellite energy exchange” (SEE) method. Successful appli-
cation of the SEE method to gravity measurements will depend on the particular experimental design,
including the configurations of the test bodies, the characteristics of the systems for maneuvering the test
bodies and the satellite, and the choice of orbital parameters, which are described below. We are not
aware of any existing or proposed method which approaches the accuracy of the SEE method.

PACS number(s): 04.80.+z, 04.90. +e, 06.20.Jr
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L. INTRODUCTION

Much of the difficulty in gravitational measurements
arises from the extreme weakness of the gravitational
force between the test bodies compared to other forces
acting on the bodies [1-4], such as electromagnetic
effects and instrumental friction. Space is attractive for
gravitation measurements because it has the potential to
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be relatively “clean” and free of the influences which
necessarily cloud the interpretation of terrestrial experi-
ments. In this respect we follow the lead of other investi-
gators who have proposed measuring G in space [5]. The
satellite energy exchange (SEE) method would measure
the gravitational interaction between two test bodies by
placing them in nearly identical Earth orbits and treating
their interaction by orbital perturbation techniques, which
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historically have enjoyed unsurpassed accuracy. A me-
tallic capsule enclosing the test bodies would shield them
from other forces, such as atmospheric drag and solar ra-
diation pressure, ensuring that their mutual gravitational
attraction is much larger than any other effects. Inter-
ferometry would allow very accurate measurements of
the motion of the test bodies and, hence, of the gravita-
tional force between them. The accuracy of the G deter-
mination by the SEE method is expected to be limited by
the accuracy with which the mass of the larger test body
can be related to the standard kilogram.

The SEE interaction itself is a novel choice of test-body
dynamics, and it is critical for exploiting the obvious in-
herent advantages of the space environment. Moreover,
our proposed experimental method goes to great lengths
to ensure that the capsule will be thermally and mechani-
cally quiet, with particular care to avoid capsule distor-
tion by minimizing variations in solar heat loading and to
avoid capsule vibrations by smooth applications of forces
and torques when adjusting capsule position and attitude.
The experimental method and error estimates are de-
scribed in Secs. IV-VL

Several considerations favor a new measurement of G
at this time. Most obvious is the desire simply to im-
prove the determination of what is perhaps the most fun-
damental of all constants. The masses of the Earth and
other bodies in the solar system are also necessarily un-
known to the same uncertainty as G. Moreover, the stat-
ed error in G of 128 ppm may be optimistic, since three
recent measurements claiming small errors differ among
themselves by several hundred parts per million [1-3,6].
The Committee on Data for Science and Technology
(CODATA) task group relied solely on the Luther and
Towler measurements in 1986, citing unknown or inade-
quately evaluated systematics in the other experiments
[1]. For an excellent discussion of the status of the deter-
mination of G, see Gillies [4].

More seriously, even the inverse-square law and the
equivalence principle have come under scrutiny in the
wake of the recent flurry of experimental activity in
search of a possible “fifth force” [7-10], which in turn
followed a brief period of interest in possible non-
Newtonian effects at very short range [11]. Although ini-
tial reports of short-range deviations were soon discount-
ed [11] and most of the purported fifth-force observations
also can now be accounted for by extreme sensitivity to
models [12—-14], the recent activity has provided a re-
minder that verification of Newtonian gravity necessarily
takes the form of upper limits on possible violations.
These investigations have cast the problem of validating
the inverse-square law in terms of the possible size of an
additional Yukawa-type force which might remain un-
detected, given present experimental accuracy. The po-
tential, including a possible non-Newtonian term, may be
written as

Up(r)=—(mm,G/r)(1+ae """, (1)

where a is the field-strength parameter and A is the
characteristic interaction length. The investigations of
possible short-range deviations generally followed Fujii’s
conjecture [11] that a is 1 and then sought to determine

upper limits on A. In contrast, fifth-force investigations
[7-10] have treated a as a free parameter, reflecting ex-
changes based on baryon and lepton numbers (or possibly
hypercharge), and have generally sought either to esti-
mate both a and A (equivalently, m,c?) or to place upper
limits on a, given assumed values of A. It is now conven-
tional to reexpress a as the product of the presumed
fifth-force “charges” and either a dimensionless coupling
constant as or a coupling strength gs; specifically
a=as(gs/pli(gs/p), or  a==x(g5/4m)(gs)i(gs),/
(Gm m,), where pu denotes mass in amu [15,16]. With
the latter form, Eq. (1) is

Ulz(r)= —mlsz/r
+(g2/4m)(gs),(gs),(1/r)e "7/ . (1a)

The form of the “charge” g5 is predicted to depend on
whether the presumed mediating boson is vector or scalar
[16,17]. In either case the quantities (g5/u); are expect-
ed to be of order unity for most elements (however, if the
mediator is a vector boson, then for some elements the
baryon and lepton contributions to g5 may approximately
cancel each other, depending on the value of an unknown
mixing angle, 65).

In this paper we use the more phenomenological form
Eq. (1), with its parameter a, rather than Eq. (1a), with g2
(or equivalently as). The former equation allows a more
general interpretation, which we believe is preferable for
planning a long-range experiment, given the current state
of rapid flux of fifth-force theories.

The present upper limit on a depends on A (m,c?) in
the sense that accumulated experimental data place
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FIG. 1. Upper limit on the field-strength parameter a as a
function of the interaction length A based on accumulated ex-
perimental data (1-o). It is assumed that the mediator is a vec-
tor boson and the fifth-force charge is the baryon number (for
variants see Ref. [16]). Dotted curves are based on tests of the
inverse-square law. (This figure is adapted from de Rujula [18]
and Adelberger [16].) Four new curves would be contributed by
the proposed experiment: 1. SEE-r % Test of the inverse-
square law using shepherd-particle interaction. 2. SEE-
Perigee-r “2: Test of the inverse-square law using Earth-test-
body interaction. 3. SEE-EP: Test of the equivalence principle
using shepherd-particle interaction. 4. SEE-Kepler-EP: Test
of the equivalence principle using Earth-test-body interaction.
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stricter limits at some distances (masses) than at others
[18,19]. The limits are generally much better at astro-
nomical distances than at typical laboratory distances
and are most poorly known at distances on the order of
meters (masses ~ 1077 eV/c?). Figure 1 illustrates the
present limits on a: the four dark curves marked “SEE-
r~%” “SEE-EP,” and “SEE-Perigee-r "2’ and “SEE-
Kepler-EP” indicate the expected results of our proposed
tests.

The interaction between the two test bodies in a SEE
encounter will test both for violations of the inverse-
square law and for composition-dependent differences
(EOtvos’ experiment), which may also be interpreted as
violations of the equivalence principle. Assuming a null
result, each test will place a bound on |a/, given any as-
sumed value of the characteristic length A. For A~1m
(m,c?~2X1077 eV), the present upper limit on « is an
uncomfortably large 1073. The interaction between the
two test bodies would be most sensitive to violations of
the inverse-square law if A is a few meters, since this is
the typical separation of the test bodies; it would be cap-
able of detecting a as small as 107° to 107¢ for 50
cm <A <50 m (curve “SEE-r ~2”). This test would place
new upper limits on a if the characteristic length A is
anywhere in the interval 30 cm<A <30 m (7X107°
eV<m,c?<7X10”7 eV). Moreover, for 30 m<A<1
km, this test will also provide the best limit on a inferred
from the inverse-square law rather than the equivalence
principle.

The interaction between the two test bodies would be
sensitive to any composition-dependent differences in «a
(equivalence-principle violations) for all values of A
greater than the test-body separation (curve ‘“SEE-EP”).
It would detect composition-dependent differences in a
(not a per se) as small as 5X1077 for A>5 m
(myc?<4X1078 eV). The corresponding limit placed on
|a| is about 3 orders of magnitude weaker [20] (however,
a bound on a inferred from an equivalence-principle test
is fairly model dependent, being sensitive to the particu-
lar assumptions about g5 and the form of the interaction).
Thus, the limit [Aa|<5X10”7 corresponds to
|a| < ~5X107% This is less stringent than Adelberger’s
bound at intermediate distances (see Fig. 1).

Completely separate tests are provided by the interac-
tion of the test bodies with the Earth rather than with
each other. The precession of perigee of the two test
masses in their Earth orbits can be accurately measured if
their orbits are slightly different. A test for inverse-
square violation based on perigee precession would mar-
ginally improve the limits on a if A~1000 km
(m,c*~2X10"13 eV), with a limit of 107> to 107 or less
on a for 1000 km<A<100000 km (curve “SEE-
Perigee-r ~2”). This test is expected to be less restrictive
than Adelberger’s results for A> 1000 km or than the
“Moon-LAGEOS” results for A>5000 km. Neverthe-
less, this test is interesting as a confirmation of these ear-
lier results.

A very sensitive test of the equivalence principle will
also result from the interaction of the Earth with the test
bodies, since the apparent constant GMp,, as deter-
mined from Kepler’s third law would reflect

composition-dependent differences in a. For all values of
A greater than one Earth radius (m,c2<3X10~'* eV)
this effect will test the equivalence principle to within 4
parts in 10"; that is, |Aa|<4X10™" for s >Rpg,m
(hence |a| < ~4X1071% curve “SEE-Kepler-EP” in Fig.
1). Please refer to “Note added in proof” below.

For A > 1 astronomical unit (AU), our estimate of this
bound is comparable with the results of the Dicke and
Braginsky experiments [21], and for Rg,,, <A<1 AU it
is comparable to Adelberger’s new bound on a [16]. An
intriguing new equivalence-principle proposal [22], which
uses a Braginsky-Dicke pendulum [21] and employs wa-
ter as the attractor, expects a bound on Aca that would be
somewhat more stringent than ours at short distances.
However, the bounds from our equivalence-principle tests
will not be comparable with those expected from STEP
(satellite test of the equivalence principle), the elegant
new experiment proposed by the Stanford group [23].

Interest in the possibility of a time-varying G was ini-
tiated by Dirac’s large-numbers hypothesis (LNH) [24],
which suggested that the rate of change should be
G/G~—(age of the Universe) '~—7X10""/yr.
Several recent theories also require a changing G and
make specific predictions of G /G. Moreover, such a test
may be one of very few ways of testing for extra dimen-
sions [25]. The experimental situation is somewhat mud-
dled. Various attempts to determine G by indirect
means, involving imaginative analyses of such diverse
phenomena as ancient eclipse records, nucleosynthesis,
and binary pulsars, have yielded a puzzling collection of
(1) stringent upper limits on |G/G| (as small as
1.7X10"B/yr or even 5X107'7/yr) and (2) various
nonzero estimates of G /G (typically from —1072/yr to
—1079/yr) [26]. This apparent inconsistency suggests
the desirability of a direct measurement under controlled
conditions. Preliminary analysis suggests that a measure-
ment of G by Kepler’s third law using the SEE satellite
may be capable of discriminating among the various
theories.

In short, we propose six measurements or tests with
the SEE satellite: (1) a measurement of G at distances on
the order of meters; (2) a test of the inverse-square law at
distances on the order of meters (curve SEE-r "2 in Fig.
1); (3) a test of the inverse-square law at distances on the
order of an Earth radius (curve SEE-Perigee-r 2 in Fig.
1); (4) a test of the equivalence principle at distances on
the order of meters (curve SEE-EP in Fig. 1); (5) a test of
the equivalence principle at distances on the order of an
Earth radius (curve SEE-Kepler-EP in Fig. 1); (6) a mea-
surement of G at distances on the order of one Earth ra-
dius.

The results of four of these tests would represent
significant advances beyond current knowledge. The
tests of the inverse-square law at one Earth radius (the
third test) and of the equivalence principle at a few me-
ters (the fourth test) are of interest mostly as
confirmations of previous experiments with equal or
better precision. (A possible seventh test, measuring G at
distances on the order of meters, will be unfeasible unless
distance resolution can be improved by 2 orders of mag-
nitude.)
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II. BASIC PRINCIPLES OF THE
SATELLITE ENERGY EXCHANGE (SEE) METHOD

The SEE method exploits a little-known special case of
the restricted three-body problem, namely, the
horseshoe-orbit phenomenon. This phenomenon was
predicted by Darwin in 1897 in a remarkable treatise on
periodically perturbed orbits [27] but largely neglected
until its application to planetary rings and the newly
discovered co-orbiting satellites of Saturn in the late
1970’s and early 1980’s.

The principle of a SEE encounter may be understood
by considering two satellites in identical circular orbits
around the Earth, one behind the other. If the gravita-
tional attraction between the satellites were zero, they
would continue forever in the same circular orbit
(neglecting drag, gravitational anomalies, etc.) with the
same spacing. However, the mutual gravitational attrac-
tion will decrease the energy of the leader, causing it to
spiral inward, and increase the energy of the trailing sa-
tellite, causing it to spiral outward, and the two satellites
may move apart. In his 1897 paper Darwin outlined the
conditions for such an apparent repulsive gravitational in-
teraction, paradoxical though it may seem, and classified
the various possible orbital perturbations on a small body
due to a more massive co-orbiting body.

More recently Dermott and Murray [28] and Yoder
et al. [29], among others, have applied Darwin’s analysis
to the shepherding of the rings of the major planets and
have extended it to the gravitational interaction of satel-
lites which have comparable masses. Dermott and Mur-
ray find that the horseshoe-orbit phenomenon can explain
apparent anomalies in the orbits of the recently
discovered Saturnian satellites 1980S1 and 1980S3 (here-
after simply “S1” and ““S3”’), which are in nearly identical
circular orbits. The energy exchange results from the fol-
lowing relative movements of the two satellites: From
the vantage point of the more massive S1, the smaller S3
appears to be moving forward very slowly whenever it is
in a slightly lower (and therefore ‘faster’) orbit than S1.
If S3 is approaching S1 from behind, then S3 would even-
tually overtake S1, but because S3 gains energy during
the encounter, it rises to a higher (“slower”) orbit than
S1, whereupon S3 begins to fall behind. S3 continues to
recede until it encounters S1 again after falling behind
nearly one complete relative revolution. This time S3 of
course enters the encounter at a higher orbit than S1, and
the energy loss to S1 during this encounter sends S3 back
into a lower orbit, whereupon it resumes relative pro-
grade motion, thus completing the cycle. Darwin noted
that the pattern which would be traced by the predicted
motion of the smaller body relative to the larger body
during such a sequence of encounters resembles the out-
line of a circular horseshoe [27] a term which persists in
the modern literature.

Librations of the larger body must also be taken into
account (see Fig. 2) if the masses of the two satellites are
comparable (which is in fact the case with S1 and S3) or if
extreme precision is required, as will be the case in using
the SEE method to measure G and test Newtonian gravi-
tation. In any case, it is always the leading body which
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FIG. 2. Partly schematic diagram of the orbital configuration
of the co-orbital satellites of Saturn, 1980S1 and 1980S3 (after
Dermott and Murray [28]). Note that the satellites recede from
each other after each encounter.

loses energy in such an exchange and descends into a
lower and ““faster” orbit, while the trailing body gains en-
ergy in the exchange and climbs into a higher and slower
orbit, and the result is the paradoxical appearance of a
repulsive gravitational interaction. The basic reason for
this phenomenon is the virial theorem: The energy ex-
changed during an encounter cannot be converted into
kinetic energy because the average ratio of kinetic and
potential energy must be KE/PE =—1 if the force is
pure inverse-square without perturbations, which is
essentially true in the proximity of a planet. Thus, any
process which gradually decreases (increases) the total en-
ergy of an orbiting body by some amount will increase
(decrease) its kinetic energy by approximately the same
amount.

It should not be assumed that encounters between sa-
tellites in nearly identical orbits will necessarily result in
horseshoe orbits (or other periodic perturbations). It is
easy to imagine situations in which the gravitational in-
teraction will result in either a capture, scattering, or a
gravitationally bound pair. Darwin’s treatise and much
of the recent literature are concerned with determining
the boundaries of these various cases. Among the more
interesting cases are the “tadpole” orbits, which are libra-
tions about one of the Lagrange points L4 or L5 and are
named for their shape [27].

III. MECHANICS OF PROPOSED SEE ENCOUNTERS

To make gravitational measurements using a horseshoe
orbit, we propose to monitor the position and velocity of
a “particle” very accurately as it first approaches and
then recedes from a large “‘shepherd” mass during a sa-
tellite energy exchange (SEE). This approximates the en-
counter phase of a horseshoe orbit.

For illustrative purposes the mass of the particle may
be taken as infinitesimal and the orbit of the shepherd
may be taken as circular. The Newtonian Lagrangian of
the interaction then reduces to (for a treatment of eccen-
tric shepherd orbits, see Dermott and Murray [28])
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FIG. 3. Geometry of variables in SEE encounter.

L= m(#24+r6?)+MzmG /r+MmG /s )
and therefore the equations of motion of the particle are

F—rfl=—MyG/r*—(MG /s*q 3)
and

r6+2:0=—(MG /s> , )

where s is the separation of the test bodies and m, M, and
M are the masses of the particle, the shepherd, and the
Earth. The geometry is shown in Fig. 3. The rectangular
coordinates (£,7) are defined by

£=Rsin(6—0O),
n=r—R cos(6—06) , (5)
s?=E4+n*=|r—R|?.

Note that Egs. (3) and (4) reduce to the classical two-body
problem if M =0 or s~ . The equations of motion of
the shepherd are simply R =const and © =wjt.

In the usual space paralance, £ and 7 are essentially the
along-track and radial components of the shepherd’s po-
sition relative to the particle. The reason that the coordi-
nate axes are based on the particle rather than the
shepherd or the center of mass of the two test bodies, as
might be expected, is the resulting simplicity of Egs. (3)
and (4).

Figure 4 shows our results from computer modeling of
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FIG. 4. Some possible trajectories of a particle of negligible
mass in a SEE encounter with a 500-kg shepherd, relative to a
coordinate system moving with the shepherd and rotating with
its orbital motion. The particle approaches the shepherd and
then recedes from it. Dots indicate 10000-sec intervals. Note
that the vertical scale is magnified X5 for clarity.

Eqgs. (3) and (4) for encounters at selected distances of
closest approach, s,. In these simulations, the eccentrici-
ty of the particle orbit was chosen to be asymptotically
zero as the separation of the two bodies approaches
infinity. For a 500-kg shepherd, the encounter paths are
very narrow: the difference in the (Earth-centered) radii
of the two bodies is asymptotically Ar <27.4 cm for all
5o>3 m. The encounter paths are also nearly U shaped:
they have about 70% of their ultimate width where
s =2sy. Thus, the geometry of an encounter is virtually
one dimensional from the viewpoint of the shepherd.

As expected, the time required for the particle to
traverse any portion of the encounter path scales essen-
tially as (MG)™ 2, which provides the basis for measur-
ing G. Figure 4 shows that the duration of an encounter
out to s =20 m is a few days for typical values of s,.
Note that for encounters of a given maximum length, the
durations are longer for intermediate values of s, than for
large or small sy. Specifically, the encounter duration
reaches a maximum when s, is ~61% of the maximum
separation, a fact with important implications for accura-
cy.

The encounter duration is strongly independent of the
gravitational attraction of the Earth, and it varies only
slightly with the orbital period of the shepherd: Our
modeling shows that a hypothetical eightfold increase in
the mass of the Earth (holding G and the shepherd’s
period constant) would change the duration for a 20-m
encounter by only a few parts in 10% Similarly, a 1%
change in the period of the shepherd (holding G and the
Earth’s mass constant) would change the encounter dura-
tion by a few parts in 10°. Clearly, these effects will have
negligible impact on the experimental error, since the
mass of the Earth is known to <2 parts in 10%, and the
orbital period will be known to <1 part in 10%. Note the
symmetry in the radial component of position, in agree-
ment with results of Dermott and Murray [28]. We find
that the symmetry is within ~3X10"° m for s,>3 m
(we plot Ar rather than 7 because the curvature of the
orbit spoils the symmetry in 7).

Since G may be determined from a portion of the en-
counter path, any deviation from the inverse-square law
would manifest itself as an apparent variation of G with s.
This is the basis for testing the inverse-square law at in-
termediate distances. For a simple two-point comparison
at distances s ~s; and s ~s,, the upper bound placed on
a by a null result would be (after de Rujula [18])

lal <e[(1+s,/A)exp(—s,/A)
—(1+s,/A)exp(—s,/A)] 7!, (6)

where € is the sensitivity with which MG can be mea-
sured on each portion of the encounter path. For two
given separations s, and s,, the maximum of the
bracketed quantity in Eq. (6) occurs at
A=0.5(s; —s;)/In(s, /s ), and the maximum is 0.830 if
we let s,/s; =8. (It is of order unity provided s, is at
least several times s,). Letting s;=2 m and s,=16 m
and assuming e=10"%, we find that the smallest upper
bound on a occurs at A~3.36 m and is |a]| <1.2X107¢,
as reflected in Fig. 1 by the curve SEE-r 2
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In contrast with inverse-square law tests, a null result
for an equivalence-principle test would place an upper
limit on the difference Aa between values of a for two
different particle compositions. Comparing the force
[found by differentiating Eq. (1)] of the shepherd on two
particles of different composition at the same separation s
provides a test of any difference in their coupling to the
shepherd:

Aa=a,—a,=e[(1+s/Aexp(—s/A)]"". (7)

The resulting limit is virtually constant for all values of
the characteristic interaction length exceeding the typical
separation of the test bodies (curve SEE-EP in Fig. 1).
This constant behavior reflects the fact that the Yukawa
potential [Eq. (1)] is asymptotically Ul(r)=
—(MG /r)(1+a) when A>>r.

If the particle approaches the shepherd along a path
that does not correspond to an asymptotically zero-
eccentricity orbit, and if the orbital conditions also result
in a SEE encounter with the shepherd, then the particle’s
motion during the SEE encounter is roughly a superposi-
tion of (1) the motion of a particle with asymptotically
zero eccentricity and (2) the oscillating difference
(Ar(t),A6(t)) between unperturbed elliptical and circular
orbits. The path resembles a cycloid but with oblong
loops, as shown in Fig. 5. It is typically prolate near
closest approach and may be either prolate or curtate for
large s, depending on the specifics of the encounter.

These cycloidal oscillations (Ar(t),A0(t)) are the basis
for testing the inverse-square law at characteristic dis-
tances A on the order of one Earth radius. This may be
done straightforwardly by comparing the apsidal and
anomalistic periods of the shepherd. The principle of this
method may be seen by treating the shepherd’s motion as
due to a central force including a small (central) pertur-
bation. It can be shown that in this case the orbital equa-
tion u =u(0), where u =1/r, may be expressed as a
cosine Fourier series in y 0:

u(@)=uy+ A,cosy0+ A,cos2yf+ - - - | (8)

where the parameter ¥, which describes the perigee pre-
cession rate, may be measured as the ratio of the anomal-
istic (360° revolution) and apsidal (perigee-to-perigee)
periods:

Y= Tanon /Taps 9)
and is related to the perturbing potential, to lowest order,
by

7/:='\//(1 —_Cih /%iu)‘u =1/a > (10)
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FIG. 5. A particle trajectory for nonzero asymptotic eccen-
tricity. The cycloidal loops of the particle indicate its apsidal
period. Vertical scale not exaggerated, unlike Fig. 4.

where h is the right side of the general orbital differential
equation for the central-force problem [30]:

d*u/d®+u=—1/u®)mL*f(1/u)
=h(u). (11)

For the Newtonian potential, 4 (u) is constant. With a
Yukawa perturbation (Eq. 1), we have

dh/dul, -, ,,=al(1/uh)exp(—1/uh)], — 1 4
=al(a/A)exp(—a/A)] . (12)

Thus, given any assumed value of A, a measurement of
the perigee precession rate [Eq. (9)] places an upper
bound on «a [Egs. (10) and (12)]; namely,

la| < {1=(Tppon /Tops* (@ /A exp(—a/A)] "1 . (13)

The quantity in square brackets reaches its maximum
(0.541) when a /A=2. Thus, the most sensitive value of
A is A~3900 km, if the satellite’s altitude is chosen
~ 1500 km (see below). It would not be possible to mea-
sure the apsidal period of an isolated satellite in a low-
eccentricity orbit (such as the shepherd alone) to
sufficient accuracy. However, with fwo bodies in slightly
different orbits this is possible, since the cycloidal varia-
tion of their relative position is closely related to their ap-
sidal periods. It must be emphasized that this could be
done essentially by an empirical curve-fitting process and
without knowledge of the gravitational fields of the
shepherd and the capsule.

During a typical SEE encounter, the number of orbital
revolutions (and, hence, of cycloids) is 30 to 40 (assuming
a 2-hour orbital period). The accuracy with which the
cycloidal period can be determined will be limited chiefly
by the distance accuracy y and the relative velocities of
the particles. The oscillatory contribution to the relative
position (£,7) will be nearly simple harmonic motion.
Hence the peak velocity contribution from the oscillation
will be (—wé&, .o ®Mmax). The largest feasible cycloid to
fit inside the capsule (see below) is ~80 cm long and ~40
cm high, for which the maximum oscillatory velocities
are ~(350, 175) pum/sec. Assuming the horizontal
distance accuracy Y is y=0.25 pum, it follows that
the apsidal period 7T may be measured to
~X /(&) ~7.1X10 7% sec ~1.0X1077 T. Thus y
can be determined to within 1 part in 107 [Eq. (8)], dh /du
can be determined within *2X10~7 [Eq. (10)],
and a may be determined within dh/du
[(a/A)exp(—a/A)] ! [Eq. (12)]. When A is most sen-
sitive, the quantity in the brackets is 0.541, and therefore
the bound on « is |a] <3.7X 1077, which is reflected in
Fig. 1 by the curve “SEE-Perigee-r 2.

Nonspherical terms in the Earth’s potential cause peri-
gee precession at a rate 2 or 3 orders of magnitude larger
than the contribution from the Yukawa perturbation if
la] ~107° It will nevertheless be possible to separate
any Yukawa contribution from the much larger total pre-
cession rate because the contribution due to the Earth’s
potential is known to better than 1 part in 10°. Perigee
precession may not be the only way to infer a from the
cycloids. It will be possible to determine the relative ve-



46 PROPOSED NEW DETERMINATION OF THE GRAVITATIONAL . .. 495

locities of the shepherd and the particle to within a few
parts in 10'° of their orbital velocity. This may also pro-
vide an extremely sensitive test of Kepler’s second law.
Note that the high-precision information in this case is in
tangential (rather than radial) velocity and position,
which is essentially the particle-shepherd range as a func-
tion of time.

The relative motion of the shepherd and particle also
provides a sensitive test of the equivalence principle (re-
gardless of the asymptotic eccentricity of the particle): a
measurement of the difference in the apparent value of
GMg,., as experienced by the two bodies, and hence of
a, may be obtained from Kepler’s third law, treating the
J

small shepherd-particle interaction as a perturbation. If
we ignore the shepherd-particle interaction and use Eq.
(1) to describe the interaction of the Earth with either test
body, then Kepler’s third law becomes

473 /(GM g, TH)=1+a[(1+r/Aexp(—r/A)] .
(14)

Any composition-dependent difference Aa between the
two test bodies would manifest itself as a slight difference
in their orbital radii if they had identical periods. From
Eq. (14), this difference would be

Aa=3Ar/r{47*r3/(GMg, . T2} [(1+r/A)exp(—r/A)]7" . (15)
Earth

The error in Ar will be about 1 um, so Ar/r will be
known to ~1.3X 10713 (the accuracy of Aa is not limit-
ed by the error in period, since AT /T is known to
<107'*). The resulting bound on a is shown by curve
SEE-Kepler-EP in Fig. 1. Here we assume again
|Aa| ~1073|a|. Note that the quantity in square brack-
ets in Eq. (15) captures nearly all the dependence of Aa
on r and A, since the quantity in curly brackets is virtual-
ly unity for all » /A, as seen from Eq. (14). Equations (6),
(7), (13), and (15) all use the assumption that the attract-
ing mass (the shepherd or the earth) is concentrated at a
point. This assumption understates any Yukawa force
and therefore results in a conservative statement of the
bounds on a. At intermediate distances this is of little
consequence (the “SEE-r "% and “SEE-EP” curves in
Fig. 1), but at distances on the order of one Earth radius
the left side of the true a-vs-A curve is less steep than in-
dicated by the “SEE-Perigee-r ~2”” and “SEE-Kepler-EP”
curves in Fig. 1.

Finally, if the orbits of the particle and shepherd are
not mutually coplanar, an additional oscillation results
which obviously is roughly horizontal, across track, and
periodic with the satellite.

Given the available precision, a number of systematic
effects will be large enough that it will be necessary to
take account of them. For example, differential accelera-
tions of the two test bodies in the Earth’s nonspherical
potential field must be accounted for. As a second exam-
ple, when the satellite is approaching or receding from
the Moon, the two test bodies will experience a slight
difference in acceleration, which alternates in sign with
essentially the period of the satellite. This effect will in-
troduce a small oscillation in the separation of the test
bodies with amplitude ~5 pm if the test bodies are 10 m
apart. Although these effects and the cycloidal oscilla-
tions are of similar magnitude, they will be easy to
separate by differences in phase and amplitude. For ex-
ample, the phase of the cycloids may be chosen at will for
each encounter, and the differential acceleration due to
the Moon will essentially vanish every two weeks if the
satellite’s orbit is nearly polar.

These results emphasize two points: The test bodies

—

are fundamentally in Earth orbits, which are only slightly
perturbed by each other, and the SEE encounter is a re-
markably sensitive way of measuring perturbations.

IV. EXPERIMENTAL CONSIDERATIONS

The interacting masses need to be enclosed inside a
conducting shell, called the “capsule,” to protect them
from atmospheric drag, radiation pressure from both the
Sun and the Earth, and electric and magnetic fields, all
of which would be at least comparable to the gravitation-
al attraction between the masses. The capsule would be
equipped with a system of optical lasers and inter-
ferometric sensors to monitor its own size and shape and
the positions of the shepherd and particle. The proposed
configuration is shown in Fig. 6 and Table I below.

The shepherd “floats” near the axis of the cylinder at
various predetermined positions between the middle and
one end of the capsule. The particle is “launched” from
the opposite end with the necessary speed and direction
to effect preplanned SEE encounters with the shepherd.
A disturbance-compensation system maneuvers the cap-
sule to prevent it from touching either body and essen-
tially follows the orbit of the shepherd. Such systems
have been in wuse since 1971, when the original
“DISCOS” system was deployed on the Transit TRIAD
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FIG. 6. Diagram of the capsule containing the “shepherd,”
“particle,” and instrumention. The large rings on the ends can-
cel the internal gravitational field of the cylinder itself and of
the instrumentation (vertical scale magnified X 1.5 for clarity).
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TABLE 1. Size and composition of components.

Mass Composition Dimensions
Shepherd 500 kg Heavy metal ~40 cm diameter
Particle 100 g Various ~2 cm diameter
Capsule cylinder 800 kg Metal or composite ~20 m longX1 m diam
Compensator ring a ~200 kg ea Stainless steel ~4 m radius
Compensator ring b ~75 kg ea Stainless steel ~1 m radius
Instrumentation ~20 kg Mixed ~0.2 cu meters total
Thrusters and fuel ~50 kg Mixed NA

satellite [31,32]. Fine control of attitude would be ac-
complished by torques from the Earth’s magnetic field on
small currents in fixed external coils, such as Ithaco’s
“Torqrods™.”

The axis of the capsule cylinder is kept essentially
“horizontal” and parallel to the orbital velocities of the
two bodies throughout the encounter, thus enclosing the
long narrow U-shaped SEE encounter paths. The dis-
tance s of the particle from the shepherd would typically
be between 8 and 16 m at the start and conclusion of each
encounter, while the distance at closest approach s
could be chosen anywhere from about 2 m up to 15 m.

The gravitational field due to an infinite uniform
cylinder is zero internally, and for a long but finite
cylinder such as the proposed capsule, the field is small
except near the ends. We have shown that compensator
rings, such as those shown in Fig. 6 on the ends of the
cylinder, can virtually neutralize these end effects over
most of the cylinder volume [33]. Throughout the cen-
tral 16 meters of the cylinder, the total field of the cap-
sule (cylinder, rings, instrumentation, and fuel) can be
made less than 1% of the field due to the shepherd at a
distance of 10 m. The optimum sizes of the compensator
rings depend on the masses and locations of the in-
strumentation and fuel. We have also developed methods
to calculate the required mass distribution on the surface
of a closed right circular cylinder which will make it a
gravitational analogue of the Faraday cage, resulting in
vanishing internal field. Related work has been reported
by other investigators [34].

The shepherd would be made of dense, homogeneous
metal and would have nearly zero magnetic susceptibili-
ty. Particles would be made of various materials to test
the possibility of composition-dependent effects. The
mass of the shepherd is chosen large enough that the
durations of 20-m encounters will be on the order of a
few days and small enough that the U-shaped encounter
paths will be narrow enough to fit easily into the cylinder.
The mass of the particle is chosen to be small enough for
ease of handling but large enough that the radiation-
pressure force from the tracking lasers will be negligible
compared to the gravitational force due to the shepherd.

The shepherd and particles might be spherical, but
various considerations argue for alternative shapes. For
example, cylinders are attractive candidates for the
“large” mass in G experiments because of fabrication ac-
curacy [35]. Moreover, a Cook-Marussi arrangement of
stacked cylinders has vanishing nonspherical moments to
high order [36], thus essentially combining the fabrica-

tion accuracy of cylinders with the ideal symmetry of a
sphere. The shepherd and the particle may have either
corner-cube reflectors or reflective coatings to reflect the
tracking laser beams. Alternatively, the particle itself
may be in the shape of an open octant corner reflector.

The tracking laser beams should have very low power
(~0.01 W) and be arranged as opposing pairs so that
their radiation-pressure force on the particle will be small
compared to the gravitational force of the shepherd. Use
of such low power may necessitate phaselock detection of
the photodetector signal. This would allow reducing the
signal bandwidth to the order of 1 Hz, which will be low
enough to provide adequate S /N ratio for this low beam
power. A 1-Hz bandwidth in signal tracking should be
more than enough to follow the dynamics of the test par-
ticle. Such a narrow bandwidth will impose a capture
phase, involving a sweep-and-lock search. Submillimeter
microwave methods are also highly developed now and
should be considered [37]. A supplemental system for
coarse ambiguity resolution is also planned to add redun-
dancy to the distance measurements and eliminate gross
errors; candidate methodologies include video, photo-
grammetry, and shadow detection.

The motion of the particle at the beginning and end of
each encounter might be controlled simply by mechanical
devices. Alternatively, eddy currents induced by coils at
various locations in the capsule could be used to steer the
particle into the desired orbits [38]. Short milliamp
pulses at the end of an encounter would be sufficient to
stop the particle and drop it into a lower orbit, thus ini-
tiating another encounter. The spins of both test bodies
could be controlled by the torques from the tracking
lasers.

The choice of orbital characteristics is very important.
Chief among the considerations which will determine it
are the altitude should be high to minimize drag; the alti-
tude should be low to minimize high-energy particle flux
from the Van Allen belts which may cause spurious elec-
tronic effects and component degradation; the orbit
should be in continuous sunlight, both to minimize cap-
sule temperature variation and to avoid “jerks” from
discontinuities in solar radiation pressure when entering
or leaving the earth’s shadow; and, moreover, the orbital
plane may need to be very nearly normal to the Earth-Sun
line in order to further reduce temperature variation.
This will be a consideration only if thermal distortion of
the capsule is found to vary significantly as a function of
the direction of the incident solar radiation.

These requirements conflict to some extent, so some



46 PROPOSED NEW DETERMINATION OF THE GRAVITATIONAL ... 497

I T T i ‘
| - -

86 I 7 %3 ’ﬁ\ >
5 )
© 84 - -1
o~
€ | :
S MAX R = 1.522 Rg; ]
5 g2 b 105 i=115.5% .
S 8.
a8 L
N~ i
]
T 80 ]
E
8

78 - MIN R = 1.218 Rg; ]

i=101.4°
F i=101 b
76 | 1 1 |
1000 1500 2000 2500 3000 3500

ALTITUDE (km)

FIG. 7. Circular-orbit integrated flux (COIF) of high energy
(>34 MeV) protons for continuous-sunlight orbits. To be in
continuous sunlight, orbits must have altitudes between 1390
and 3330 km and inclinations between 101.4° and 115.5°. The
3330-km orbit has about six times the high-energy flux of the
1390-km orbit (from Eq. (16), including Eq. (17), and Fig. 9 of
Appendix II of Hess [41]).

tradeoffs will be necessary. It is fairly easy to satisfy the
requirement for continuous sunlight, by using a “sun-
synchronous” orbit which has its nodes approximately on
the terminator and is at a suitable altitude. The oblate-
ness of the Earth causes the nodes to precess at a rate
which depends principally on the inclination and altitude
of the orbit [39]. It is possible to make the nodes precess
360°/yr (21 ~0.9855°/day), which is the Sun-synchronous
condition, by a suitable choice of the relation between the
orbital radius R and the inclination i. For a circular orbit
the relation for Sun synchronicity is

cosi=kR33 (16)

where k =[3J01/(GMz /R ;)/Q]"'~—0.09891 if R
is in units of Earth radii. For the orbit to be in continu-
ous sunlight, a further necessary condition is

Rcos¥>1, (17)

where W is the angle of incidence of the Earth-Sun line on
the orbital plane. This inequality can be satisfied for
Sun-synchronous orbits only with values of R in the
range 1.218 <R <1.522. That is, the permissible alti-
tudes for continuous-sunlight orbits are between ~ 1390
and ~ 3330 km (the radius of the Earth is taken as 6378
km). The respective inclinations from Eq. (16), are
i~101.4° and i ~ 115.5° [40]

Figure 7 shows the high-energy proton flux for circular
orbits at all permissible continuous-sunlight altitudes. It
shows that the circular orbit integrated flux (COIF) of
high-energy (>34 MeV) protons varies from
~5.2X107/cm? day for the lowest continuous-sunlight
orbit (1390 km altitude, 101.4° inclination) to
~3.3X10%/cm? day for the highest continuous-sunlight
orbit (3330 km altitude, 115.5° inclination). These fluxes
are well below the maximum possible proton COIF
which a satellite can experience, namely, ~ 1.6 X 10°/cm?
day, which occurs in an equatorial orbit (i =0) at 3400
km altitude [41].

In the low end of the permissible altitude range, the in-
clinations of continuous-sunlight orbits are nearly polar,
which ipso facto would keep the orbit roughly normal to
the Earth-Sun line year round. Moreover, for six months
of the year this requirement may be met remarkably well.
For example, the inclination of a 1500-km orbit is 102.0°,
which differs only 12° from polar. This is fortuitously
about half the obliquity of the ecliptic (~23.5°). It fol-
lows that ¥ < 12° for six months: clearly ¥~ 12.0° at the
equinoxes, and ¥~ 11.5° (23.5-12.0) at one solstice (say,
summer), and ¥ passes through zero about April 22 and
August 22. At the other solstice ¥~35.5° (23.5+12.0).
The solar radiation impinging on the capsule will vary
approximately as the sine of the angle between its axis
and the Earth-Sun line. Therefore, if the capsule axis is
oriented along its orbital velocity vector, the incident so-
lar radiation then will oscillate with a period half the or-
bital period and with amplitude ~0.5(1—cos ¥). Thus,
for six months this amplitude would be less than 1.1%
for a 1500-km continuous-sunlight orbit, while the max-
imum amplitude, which of course occurs at the other sol-
stice, would be ~9.3%.

To keep the capsule oriented with its axis horizontal
and in the orbital plane, it will be necessary to continual-
ly apply small torques with the external coils. In essence,
the rotational angular momentum must be kept nearly
aligned with the orbital angular momentum, which is
continually changing due to the torque from the Earth’s
obliquity.

Note that the along-track components of solar radia-
tion force will generally be small in a continuous-sunlight
orbit (because the capsule’s orbital velocity is roughly
perpendicular to the incoming solar radiation), and it will
average to nearly zero over one orbit. The main result of
the Sun’s radiation pressure is to displace the capsule’s
orbital plane about 8 cm from the Earth’s center of mass.
Moreover, the along-track component of the force due to
Earth radiation is negligible, since the orbital track
roughly coincides with the terminator except at high lati-
tudes.

A completely different choice of orbital parameters
may be preferable if analysis shows that spurious elec-
tronic effects from high-energy Van Allen radiation are a
very serious problem at the low detection levels needed
for the tracking lasers, but that fluctuations in thermal
distortion of the capsule are not a problem. This would
mean going either much lower or much higher to avoid
Van Allen radiation: To reduce the flux of high-energy
protons to <5X10%/cm? day (one-tenth the COIF in a
1390-km continuous-sunlight orbit), the altitude must be
either <700 km (R =1.11) or >10000 km (R =2.57),
assuming a polar orbit [41]. However, continuous-
sunlight orbits are not possible below 1390 km or over
3330 km, as shown above [moreover, even Sun-
synchronous orbits are impossible at altitudes over 5975
km (R =1.937), as seen from Eq. (16)]. Therefore, at 700
or 10000 km altitude, the solar radiation incident on the
capsule would vary substantially during each orbital re-
volution due to eclipsing and to variation of the capsule’s
orientation toward the Sun. The nature of this variation
naturally divides the year into four ‘“‘seasons”: during
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two opposite “seasons” the satellite is eclipsing every or-
bit; this is when the Sun is close to the plane of the
satellite’s orbit. In the other two “seasons” the satellite is
in continuous sunlight, but the radiation pressure oscil-
lates twice per orbital revolution with amplitude
~0.5(1—cos¥). Near the middle of each of these
seasons ¥ goes through zero, and it is small in the vicini-
ty of the null (clearly, ¥ ~n°, where n is the number of
days before or after the null).

Several general considerations apply to virtually any
orbit which might be considered. The vacuum is so hard
that drag on the test bodies within the capsule will be
negligible at their relative speeds (on the order of 0.1
mm/sec). The mean time between molecular collisions
within the capsule would be on the order of an hour at al-
titude ~2000 km [42,43]. Drag is so low at these alti-
tudes that thruster life is no issue. In fact, for a spherical
satellite at orbital velocities, drag is about equal to radia-
tion pressure at 500 km altitude [44], and it is 3 orders of
magnitude less at 1500 km altitude [43]. Because this ra-
tio is so large, drag on the capsule can be overcome sim-
ply by adjusting its attitude so that it ““sails” on solar ra-
diation pressure. A yaw of about 10~ * radian will be
sufficient to completely offset the average circular-orbit
integrated drag on our capsule (nose deflected ~1 mm
sunward from the ortbital plane; tail deflected ~1 mm
away from the Sun). Note, however, that drag varies an
order of magnitude due to solar-cycle variations [43], and
therefore the required yaw must be adjusted empirically
in orbit.

The motivation for “sailing” is not to conserve thruster
fuel, but rather to produce a smooth, jerk-free capsule
motion [although fringe measurements should not in
principle be vitiated by firing the DISCOS thrusters, this
would probably introduce very-low-frequency (<1 Hz)
oscillations to the capsule, and prudence dictates that
SEE encounters should be as “‘clean” as possible]. More-
over, the attitude-control coils can trim the capsule orien-
tation to produce the required sail thrust with essentially
no jerking. Finally, the thrust should be calculated on a
whole-orbit-average basis, which requires a ‘“smart”
DISCOS brain capable of planning several orbits in ad-
vance, rather than a conventional servo-feedback system.

V. SOURCES OF ERROR

At the scale of this experiment, time resolution is
effectively unlimited and will therefore contribute negligi-
ble error.

Distance resolution of ~0.05 optical wavelength, or
0.03 um, is expected (A~633 nm). For a 16-m en-
counter, this gives a distance resolution of 2 parts in 10°.
Optical heterodyning systems with -1 fringe (and hence
distance resolution of ;i wavelength or ~0.002 um) are
now commercially available [45], but we have assumed an
order of magnitude derating because of our stringent re-
quirement for low tracking-laser power. Moreover, to
achieve our assumed resolution (0.03 um) we would add
phaselock detection capability.

Conventional wisdom might suggest that the error in
measuring the separation at closest approach s, would

limit the accuracy with which G can be determined.
However, a salient and fortuitous aspect of the SEE
method is that s, is a noncritical parameter. This is be-
cause an extremum (maximum) occurs in the encounter
duration as a function of s;, holding the maximum sepa-
ration constant. The extremum occurs when s, is ~61%
of the maximum separation during the encounter (provid-
ed the asymptotic eccentricity is small). The consequence
of this extremum is that the separation measurements are
noncritical when s is in the immediate vicinity of s,. In
fact, an unthinkable error of a millimeter in s, would
affect a determination of G by only a few parts in 108.

Possible sources of systematic error which must be
evaluated include interference-fringe counting ambigui-
ties, shepherd mass, shepherd mass inhomogeneities,
shepherd fabrication errors, capsule warping, mass ac-
counting of the capsule (including instrumentation, insu-
lation, fuel, etc.), micrometeorite impacts on the capsule,
laser radiation pressure on the particle, capsule orienta-
tion, and optical-path errors related to the positions of
reflectors attached to the test bodies and the capsule.
Several possible electromagnetic error sources must also
be evaluated, including the magnetic part of the Lorentz
force and Coulomb interaction of the test bodies in the
event that they acquire minute charges from ionization
by cosmic radiation or the tracking lasers, magnetic
dipole-dipole interaction of the two test bodies, and mag-
netic dipole interaction with the external magnetic field.

Ambiguities in fringes are unlikely to occur, due to the
use of multiple tracking lasers beaming from different
directions and angles. Moreover, breaks in the fringe
count would have little consequence, because it is not
necessary to have unbroken data along the entire en-
counter path. Finally it is likely that data-reduction
methods incorporating the dynamic relations (vis-a-vis
strictly kinematics) can reconstruct a broken encounter
with high precision.

The mass of the particle need not be very accurately
known because it is small compared to the shepherd mass
and essentially cancels out of the calculations.

The mass of the shepherd can be measured to 3 parts in
107 by the large-mass comparator of the Physikalisch-
Technische Bundesanstalt (PTB) in Braunschweig [46].
This will probably be the largest error in the determina-
tion of G (although it of course will have no effect on the
tests of the inverse-square law, the equivalence principle,
or G/G).

The accuracy of the SEE method may focus attention
on the problem of defining (or realizing) the kilogram. It
is one of only two physical standards still based on ma-
terial objects rather than atomic properties. Moreover,
mass comparisons, including the recent PTB work, are
made in air, and are therefore subject to uncertainties
from buoyancy, surface deposits, and unexplained
sources [46]. Our experiment will be performed in vacuo
(like all determinations of G since Braun’s work at the
turn of the century [47,48]) and are therefore also subject
to outgassing uncertainties [49]. Such matters have been
largely moot until now, however worrisome they may
have been to metrologists, since all previous macroscopic
experiments that relied on mass were limited by errors
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other than mass determination. SEE changes all that.

In laboratory-scale determinations of G, mass-
distribution anomalies in the ‘large” mass are generally
an important component of the error budget [50], be-
cause the extreme weakness of the gravitational force re-
quires that the test bodies be very close together. The
SEE method largely obviates this problem through the
large separation of the test bodies. To show this, consid-
er a worst-case assumption that relative density
anomalies of +1X 1073 occur [50] in the shepherd in two
opposite spherical regions of 10-cm radius (half the
shepherd’s radius). The result is a mass dipole of £0.6 g
separated by 20 cm. In the same vein, a worst-case as-
sumption for shepherd fabrication errors of a Cook-
Marussi stack might be that the cylinders at opposite
poles of the stack differ in length by 2 um, which would
result in a mass dipole of +0.3 g separated by 40 cm.
The proportional change in the gravitational force of the
shepherd due to a mass-anomaly dipole is
2(8M /M) X (d /r) on the axis of the dipole, where d is
the separation of the dipole elements. Thus the propor-
tional change in the force due to either of the worst-case
assumptions above would be 5X1077 at 1 m, or
~1X 1077 at the larger separations which are typical of
SEE encounters.

Moreover, with the SEE method these moments can be
measured in situ through a series of very close encounters
(<2 m) as the shepherd assumes various orientations to
the encounter path. This is quite analogous to deter-
mination of the Earth’s potential field through satellite
geodesy, and it will allow fine-tuning of the shepherd’s
field at the larger separations which are typical of SEE
encounters. At these larger separations, the residual un-
certainties in the moments will contribute errors of less
than 1X 1073 to the gravitational field of the shepherd.

By similar means the gravitational field of the capsule
(cylinder, compensator rings, instrumentation, and fuel)
will also be gradually mapped by the cumulative data
from all SEE encounters. Nominal masses and mass dis-
tributions will of course be known to high precision a
priori, and a Fourier-Bessel series may be used to
represent departures from nominal. Thus, mapping the
field of the capsule consists of determining the expansion
coefficients. Available distance and time resolution sug-
gest that mass departures of ~0.01 g can be identified in
situ, thus reducing the field uncertainties to the same or-
der of magnitude as the uncertainty due to mass
anomalies of the shepherd. Note that the objective of
this procedure is only to find the mass distribution of the
capsule; the mass itself essentially cancels out of the error
analysis because the capsule is configured to have nearly
zero internal field. Note finally that a necessary condi-
tion for this mapping is that the shepherd be located seri-
ally at several widely spaced positions in the capsule,
which will make it possible to separate the effects of
shepherd mass anomalies and capsule mass departures.

Micrometeorite impacts are not expected to be a prob-
lem. The impulse from a large meteorite, 1 mm diameter
(a “shooting star”), would alter the capsule velocity about
100 pm/sec (assuming density of iron and relative veloci-
ty at impact of 50 km/sec), which in turn would alter the

capsule orbit about 20 cm. Meteorites of this size strike a
square-meter area at intervals of 120 million years [51].
At the other extreme, very small meteorites, which cause
capsule acceleration fluctuations some 7 orders of magni-
tude below those due to solar radiation pressure, will
strike the capsule at intervals of ~100 sec [44]. In any
case the impacts will impart impulses only to the capsule,
not the test bodies. The impulses should not upset the
tracking system because the step functions to the capsule
motion will be in velocity, not position. In short, mi-
crometeorites can be neglected, even during heavy
meteor showers such as Perseids and Geminids.

Thermal effects, especially capsule warping due to
differential solar heating, must be kept to a minimum.
The main concern is transients in the mass distribution of
the capsule if these transients distort it into a varying
“banana” shape. A sizable constant warp or even a small
well-behaved periodic warp is of little concern. The cap-
sule will be three-axis stabilized, with one side always fac-
ing the Sun, more or less. If the chosen orbit is a low-
altitude continuous-sunlight orbit, the amplitude of the
oscillation of incident solar radiation will be < 1% for six
months and will peak at ~10% at the “other” solstice, as
shown above. It follows from the Stefan-Boltzmann law
that, without insulation, the capsule temperature would
oscillate <0.25% (0.5 K if the capsule temperature is
~200 K) during the favorable six months and ten times
as much at the “other solstice” (assumes that thermal
time constants are short compared to the orbital period).
Insulation can reduce this oscillation at least an order of
magnitude [52]. If the linear coefficient of thermal ex-
pansion is 1X 107, then the length of the capsule will
therefore oscillate less than 1X 10~ ¢ m (two optical wave-
lengths) twice per orbit during the favorable six months.
Insulation is also expected to reduce the front-back tem-
perature difference of the capsule to a few degrees and its
fluctuation to <<0.1 degree [52].

The above discussion assumes that the capsule axis is
kept essentially parallel to its orbital velocity (that is, it is
tumbled once per orbit about an axis parallel to its
orbital angular momentum) in order to accommodate
the long narrow SEE encounter paths. An alternative
strategy would be to use this configuration only during
the ““favorable” six months, and to tumble the capsule
about an axis parallel to the Earth-Sun line during the
“unfavorable” six months, keeping the capsule axis per-
pendicular to this line. Although this strategy would en-
tail the loss of some experimental time, it would achieve
better year-round thermal stability by avoiding cooling
during the unfavorable six months (when the daily aver-
age of incident solar radiation would fall significantly due
to the cosV term if the capsule were tumbled about its or-
bital angular momentum).

Sheathing the cylinder in radiation barriers is probably
the only practical way to provide the necessary insula-
tion. Radiation barriers are 2 orders of magnitude more
effective than conduction barriers in a convection-free en-
vironment [52]. However, conventional “multilayer” in-
sulation (silvered vinyl interleaved with bridal cloth) is
not acceptable because the mass distribution must be
known to high precision. Using a random-walk treat-
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ment of bulging and flexing in a conventional multilayer
insulation blanket, we estimate that this movement might
degrade precision in the G measurement to worse than 1
ppm (assuming the blanket has a total mass of 12 kg and
its subject to irregular ~*1 mm radial movements with
a coherence width of ~10 cm). It should be practical to
construct a semirigid barrier system consisting of a num-
ber of large thin reflective sheets which form a sleeve
around the cylinder and are spaced very precisely with
respect to it. Each sheet would be tied rigidly at one
point but allowed to slide a small amount elsewhere as it
expands and contracts independently of the cylinder.

Radiation pressure from a tracking-laser beam of
power P results in a force of 2P /c on the particle, assum-
ing total reflection. For an 0.01-microwatt beam this is
6.7%X10" 7 N, and, for a 100-g particle, this force is
2X107° times the gravitational force of the shepherd at a
distance of 10 m. It will be necessary to have on-board
capability for periodic calibration of the photodetectors
and/or tracking lasers. If this can be done to within a
few percent, the resulting error in G will be less than 1
part in 10”. Moreover, the force itself can be minimized
by using pairs of beams from approximately opposite
directions for monitoring the particle position, so that
their pressures nearly cancel.

For most of our experiments, capsule orientation can
be determined satisfactorily by Sun and horizon sensors.
Horizon sensors are accurate to ~ 1 milliradian on an in-
stantaneous basis and ~0.1 milliradian on a full-orbit in-
tegrated basis with gyroscopic interpolation [53], while
Sun sensors can be as accurate as 0.024 milliradian (5
arcsec) on an instantaneous basis [54]. Star-sighting
methods will probably be necessary for the equivalence-
principle test based on the interaction of the Earth with
the test bodies [Eq. (15)]. In order to compare the orbital
radii of the two test bodies to within 1 um, this test re-
quires post facto pitch determination within ~0.1 mi-
croradian (0.02 arcsec). This requirement is an order of
magnitude less stringent than the HIPPARCOS design
parameters [55]. Note, finally, that capsule orientation
need not be controlled to the same accuracy to which it
must be known.

Optical path errors may result from small movements
(say, <1 um) in the elements used to project, reflect, and
detect the tracking-laser beams. For example, the nomi-
nal positions of the reflectors on the test bodies will not
be exact. Fitting methods, mostly prelaunch in a labora-
tory setting, would be used to locate them to high accura-
cy. However, thermal transients in the shepherd or the
particles, if any, would cause distortion. The eddy
currents used to steer the particle may produce
significant heating. The cooling characteristics of the
shepherd also bear close investigation.

Electromagnetic effects are expected to be negligible.
The surrounding capsule, being a good conductor, pro-
vides a high degree of protection by neutralizing the
internal fields with the distribution of charge on its outer
surface and by reflecting any external electromagnetic ra-
diation. The magnetic susceptibilities of the test bodies
will be nearly zero, and photoionization can impart only
very minute charges to the test bodies, even in the high-

vacuum conditions existing at the proposed altitude of
the experiment. The two following paragraphs show that
electromagnetic forces on the particle will be at least 9
orders of magnitude smaller than the gravitational force
due to the shepherd.

The charge on the test bodies could be zeroed by
grounding them to the capsule occasionally. Photoion-
ization by the tracking lasers can be avoided simply by
using wavelengths longer than ultraviolet (assuming al-
kali and alkaline-earth metals will not be used). Cosmic-
ray showers are capable of imparting charge to the test
bodies, but only if an incomplete shower strikes the body,
since a complete shower has zero net charge. The cross
section for impact of an incomplete shower is roughly
[ (ry+r. )2 —(r,—r,)*]=4mr,r,, where r, and r, are the
radii of the test body and of the comic-ray shower cone at
impact. Assuming that the flux of very high-energy pro-
tons and alphas, capable of producing showers of N =10°
particles, is ~ 1000/m? day and that the shower cone an-
gle is typically 0.02 rad [56] and that the average distance
from shower origin to the test body is 2 m, then roughly
40 000 incomplete showers will strike the shepherd in one
year. Assuming, as a worst case, that the charged parti-
cles are randomly distributed over the cone and that half
of each shower strikes the shepherd, then the charge im-
parted by one shower will be ~+1leV'N, or ~+£80 e.
The random walk resulting from 40000 such showers
would impart ~=+16000 e (~3X10™" C) to the
shepherd in a year. About one-tenth as much charge
would be accumulated by the particle in a year. There-
fore after one year the ratio of the Coulomb force to the
gravitational force between the test bodies is
(1/47ey)(gQ /mMG)~2X 10" 2. This is of course negli-
gible. The force due to induced surface charge on the
capsule wall may be several orders of magnitude larger,
which is still negligible (moreover, this force will usually
be nearly perpendicular to the gravitational force be-
tween the test bodies). As a worst case for the effect of
induced charge, assume that the particle is only 10 cm
from the cylinder side wall, which allows the wall to be
approximated as a plane. By the method of images, the
force is the same as that due to an equal image charge lo-
cated 10 cm outside the cylinder [57]. Taking the charge
on the particle again as ~3X 107! C, the resulting force
will be 2X 107 !% N, which is 9 or 10 orders of magnitude
below the gravitational force between the test bodies
when separated by 10 m.

If a test body has nonzero magnetic susceptibility and
any dipole moment, then it will experience a torque from
the Earth’s magnetic field and a force from the field gra-
dient. The torques are of little concern because they
affect only rotational motion. The maximum radial gra-
dient of the magnetic field occurs at the poles and is
3B/3z~1.2X 107" T/m at the altitude of one-fourth
Earth radius [58]. Assuming that the magnetic suscepti-
bilities can be made less than 107>, then the magnetic
field gradient near the poles will exert a force of
m-3B/3z<9X107'7 N on the shepherd and
<1.8X107% N on the particle. The last number is
smaller by a factor of 5X107!° than the gravitational
force of the shepherd on the particle at a separation of 10
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m, and the average of the magnetic force over one orbit is
much smaller still.

In case further consideration reveals that charge or
magnetization might be substantially larger than indicat-
ed above, then other strategies are possible: Small nee-
dles could be attached to the surfaces of the test bodies to
discharge them (the needles could be in recessed spaces to
avoid breakage in handling) [56]. Moreover, low-
intensity, low-frequency ac fields could be applied by the
steering coils at the beginning and end of each encounter
to check for possible charge accumulation or magnetiza-
tion.

Finally, it should be noted that small, constant charges
on the test bodies would not vitiate the test of the
inverse-square law, since the charge would essentially
mimic a slightly different value of G.

VI. PRELIMINARY ERROR BUDGET

For the determination of G, the mass error of the
shepherd will probably be the single worst systematic er-
ror if it is about 3 parts in 107 as expected. The discus-
sion and calculations above indicate that several other
effects may reach the level of one part in 10’ for the G
determination. G goes as the square of most of the quan-
tities to be measured. The likely overall error for G is
therefore

AG/G~1X1079.

The shepherd mass error makes no contribution to the er-
ror in the test of the inverse-square law at intermediate
distances, as inferred from the interaction of the particle
with the shepherd [Eq. (6)]. Rather, this test depends on
the apparent variation of the product MG with separation
s. That is, the question is essentially how accurately the
relative accelerations of the particle and the shepherd can
be measured. We assume that all other errors (which to-
tal <1 part in 10°) still apply undiminished. Thermal
effects and uncertainties in the capsule gravitational field
are expected to be the limiting errors for this test. Near
the most sensitive value of A, viz. A~3.4 m, the upper
bound on a, as inferred from the interaction of the parti-
cle with the shepherd, will be

lal <1.2Xx107° .

Note that a sensitivity varies greatly with assumed A
(Fig. 1).

The test of the inverse-square law at distances of the
order of an Earth radius, as inferred from perigee preces-
sion [Egs. (8)—(13)] is also unaffected by shepherd mass
errors. Moreover, capsule mass anomalies will also have
very little effect in this test because the cycloids occur at
a wide range of locations throughout the capsule. Every
SEE encounter will have some 30 to 40 cycloids. More
importantly, we can choose at will the stationary points
of the cycloid centroid for a given SEE encounter. Thus,
this test is limited principally by the horizontal distance
accuracy X, which in turn is determined chiefly by
thermal effects and horizontal distance resolution. We
estimate that y is ~2.5X 10”7 m, which is equivalent to
assuming a tenfold degradation of accuracy compared to

resolution. When A~3900 km, its most sensitive value
for this test, the upper bound on a, as inferred from the
interaction of the Earth with the test bodies, will be

lal <4x1077 .

Note again that the bound varies sharply with the as-
sumed value of A.

Information from tangential range rates may also be
useful in placing bounds on A at distances on the order of
one Earth radius. The available precision of ~5X 1071
suggests the possibility of a very sensitive test of Kepler’s
second law, and hence, the inverse-square law.

The equivalence-principle test based on the interaction
of the particle with the shepherd [Eq. (7)] will be relative-
ly immune to systematic errors, provided they remain
constant, since the objective is to compare the forces on
two different bodies in search of a possible difference.
That is, repeatability is the key. In particular, biases in
particle-position determination and errors in the gravita-
tional field due to the capsule will be irrelevant provided
the same trajectory is used by both particles. (In contrast,
the determination of G and the tests of the inverse-square
law require a variety of trajectories to map the potential
fields of the capsule and the shepherd in situ. This is nei-
ther necessary nor desirable when testing the equivalence
principle.) To arrive at an estimate of the sensitivity of
the equivalence-principle test based on the interaction be-
tween the two test bodies [Eq. (7)], we first note that the
shepherd mass makes no contribution, and we then arbi-
trarily assume that, of all the remaining systematic errors
(which total <1X107°), half cannot be eliminated by re-
peatability.  Therefore the upper limit on the
composition-dependent differences in a, for A>5 m,
based on the interaction of the shepherd with various par-
ticles, is, assuming a null result,

|Aal <5%1077
and hence

lal < ~5%x107*.

We believe this estimate is conservative. Again we have
taken |a|~ 10°|Aa| to reflect the packing fraction varia-
tion, assuming the mixing angle is 6 ~m /4, as explained
in Sec. I above. Thus, the limits on a are model depen-
dent, but those on Aa are essentially model independent.
The equivalence-principle test based on the interaction
of the test bodies with the Earth using Kepler’s third law
[Eqg. (15)] entails a simpler and substantially more favor-
able error situation. Here the problem is essentially to
compare the anomalistic periods and orbital radii of the
two test bodies very accurately. The gravitational attrac-
tion of the other test body and of the capsule per se is of
no consequence because it is a small perturbation with
negligible uncertainty. Since the distance between the
bodies is monitored continuously to fractional optical
wavelengths, the difference in periods is also known with
negligible uncertainty (a few parts in 10'*). The error in
the difference in orbital radii Ar is limited by the
capsule-orientation error, which will be known to 0.1
prad. Therefore the difference of orbital radii will be



502 ALVIN J. SANDERS AND W. E. DEEDS 46

known to ~1 um, which is 125 parts in 10'>. Thus the
relative values of the apparent GMg,,,, as determined
from Kepler’s third law [Eq. (15)], are known to ~4 parts
in 10'3. Therefore the upper limit on the composition-
dependent differences in a, for A> Rg,,,, based on the
interaction of the Earth with the shepherd and various
particles, is, assuming a null result,

[Aa| <4x107 13
and hence
lal < ~4Xx10710,

That is, the equivalence principle will be tested to 4 parts
in 10" for A> Rg,.,. Please see “Note added in proof.”

VII. CONCLUSION

The satellite energy exchange (SEE) method promises
major advances in the long-standing measurement prob-
lems of Newtonian gravitation—the determination of G,
the validation of the inverse-square law and of the
equivalence principle, and possibly also a measurement of
G. Three characteristics of the SEE method basically ac-
count for its great accuracy.

(1) The great sensitivity with which orbital perturbations
can be detected. The almost legendary ability of orbital
mechanics to measure small perturbations is well known,
most notably in this century through the precession of
Mercury’s perihelion, and more recently through the ex-
tremely precise satellite geodesy work in the 1960’s and
1970’s, through recent tests of the inverse-square law at
distances of planetary orbits and planetary flybys, and
through ongoing tests of general relativity. The SEE
method is a natural outgrowth of this heritage. It is
based on the assumption that it is better to accept the
known large forces as they are and find ways to measure
minute departures from them, rather than to focus on
artificially constructed small forces and try to suppress
the effects of the large forces. That is, the SEE method
accepts the fact that the two masses are preponderantly
in Earth orbits, and its modus operandi is simply to ob-
serve their perturbation.

(2) The scale of the experiment. The most obvious
benefits of the scale are the excellent distance resolution
and the effectively unlimited time resolution. In addition,
the large distance scale inherently mitigates the effects of
any shepherd mass anomalies, and SEE’s unique ability
to vary the separation of the test masses over a wide
range allows the ideal combination of (a) very close en-
counters to map the field of the shepherd and (b) larger
separations for measuring the interactions of interest.
The distance scale also corresponds neatly with the
intermediate-range gap in A where the limits on a are
poorly known. Finally, the encounter durations are short
enough to allow several hundred SEE encounters during
the life of the satellite, which will reduce random experi-
mental errors by an order of magnitude.

(3) The low-noise level. The inherent potential of space
as a low-noise environment will be realized chiefly by
choosing a capsule orbit which minimizes drag and keeps
solar radiation absorption nearly constant, and by using
jerk-free methods to control the position and attitude of
the capsule during SEE encounters (especially using solar
radiation pressure to “sail” the capsule and using torques
from Earth’s magnetic field to orient it). In testing the
inverse-square law and the equivalence principle, the SEE
method is unique in working at intermediate distances
without being forced to rely on assumptions about the lo-
cation and compositions of the nearby rocks, soil, and
basements, which terrestrial experiments must do. A
final salient advantage of the SEE method is that it uses
no mechanical devices or electric fields to constrain the
test masses, which is of enormous import in measuring a
force so weak as gravity. Rather, the SEE method simply
observes the natural orbital motion.

To capitalize on these three characteristics, an orbital
configuration is necessary which can be confined within a
satellite and which evolves over a fairly long time. The
encounter phase of a horseshoe orbit meets these require-
ments admirably. With it, the relative motion of both bo-
dies can take place within a long narrow cylinder, over a
period of several days. Most importantly, in the SEE
method the interacting bodies can be observed essentially
free of other (nongravitational) forces.

Note added in proof. It may be possible to test the
equivalence principle (EP) to ~1 part in 10", at separa-
tions ~Rg,,, (Test 5) by using a different experimental
configuration during this EP test. This would lower the
curve “SEE-Kepler-EP” (Fig. 1) 2 or 3 orders of magni-
tude. The new configuration entails (1) spinning the cap-
sule about its long axis, (2) maintaining quasi-inertial
orientation of this axis, (3) keeping the shepherd caged at
one end of the capsule, and (4) placing two particles in
slightly different earth orbits near the capsule center of
mass. This configuration is favorable because it improves
the vertical distance resolution and obviates the need for
extremely accurate pitch determination.
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cel the internal gravitational field of the cylinder itself and of
the instrumentation (vertical scale magnified X 1.5 for clarity).
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FIG. 7. Circular-orbit integrated flux (COIF) of high energy
(>34 MeV) protons for continuous-sunlight orbits. To be in
continuous sunlight, orbits must have altitudes between 1390
and 3330 km and inclinations between 101.4° and 115.5°. The
3330-km orbit has about six times the high-energy flux of the
1390-km orbit (from Eq. (16), including Eq. (17), and Fig. 9 of
Appendix IT of Hess [41]).



