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We present a new formulation of pion-nucleon scattering and the soft-pion theorems in the Skyrme
model, where the reduction formula of the S matrix and the currents are described in terms of the origi-
nal canonical fields, which are not yet transformed into the Skyrmion and fluctuation fields in the one-
Skyrmion sector. Not referring to any constraints and gauge-fixing conditions imposed on fluctuation
fields and collective coordinates, we can easily obtain the Born terms with both of the rotational and

translational modes and the soft-pion theorems.
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I. INTRODUCTION

Since the Skyrme model was recognized as a realistic
soliton model of the low-energy pion-nucleon system
based on QCD [1], it has been expected that low-energy
pion-nucleon scattering, as well as static properties of
baryons, is well described in the Skyrme model. The stat-
ic properties of a nucleon have been shown to be repro-
duced within about 30% error in the model [2]. It has
also been shown that higher partial waves of pion-
nucleon scattering are well reproduced by background
scattering amplitudes in the model [3,4].

However, the background scattering amplitudes failed
to describe P- and S-wave scattering [3,4]. The nucleon
and the A isobar constructed as rotational levels of the
Skyrmion cannot explicitly contribute to the P-wave
Born amplitudes, because the Yukawa coupling to the
Skyrmion vanishes owing to the stability condition of the
classical Skyrmion configuration [5-7]. When the
Skyrme Lagrangian is expanded in powers of 1/N,, how-
ever, the nonleading Yukawa coupling survives because
of the mismatching of the rotating Skyrmion with the
equation of motion. The surviving Yukawa coupling in
the Lagrangian is of O(N, */?) in the standard gauge-
fixing condition that the fluctuation fields are orthogonal
to zero-mode wave functions [8]. Such an N, scaling be-
havior of the surviving Yukawa coupling is a serious
shortcoming and is called the Yukawa coupling problem.

Recently, the present authors have solved the Yukawa
coupling problem in the (1 + 1)-dimensional soliton model
[9-11] and in the Skyrme model [12,13] within the stan-
dard collective-coordinate quantization method. The
Born terms are obtained through tedious calculation up
to O(N, %) within the tree approximation of the con-
strained field theory of fluctuation fields and collective
coordinates. The Yukawa couplings defined as the resi-
dues of the Born terms are of O(N!/?), and expressed in
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terms of the classical Skyrmion fields.

We have proved in a previous paper [11] that direct
contributions from the soliton fields to the reduction for-
mula of the § matrix vanish in the tree approximation,
because there occurs a complete cancellation among
them. As indicated in Ref. [11], this means that we can
write the reduction formula in terms of the original
canonical fields which are not yet decomposed into the
soliton and fluctuation field.

In this paper we present a new formulation of pion-
nucleon scattering and the soft-pion theorems in the
Skyrme model, where these are successfully described in
terms of the original canonical fields which appear in the
original Skyrme Lagrangian. In this formulation we can
easily obtain the correct Born terms having both of the
rotational and translational modes without reference to
any constraints and gauge-fixing conditions imposed on
the fluctuation fields and the collective coordinates. This
formulation is based on the consideration that the origi-
nal field can be regarded as an interpolating field for the
pions, which asymptotically plays the same role as the
fluctuation field in the one-Skyrmion sector, as shown in
the (1+ 1)-dimensional model by Steinmann [14]. A ma-
trix element of a product of the original fields sandwiched
between two single-baryon states is, then, reduced to that
of the same product of the soliton fields at the tree level.
Our formulation is also crucial to the study of the soft
pion theorems in the Skyrme model.

Since the Skyrme model is described in terms of the
spontaneously broken chiral-invariant Lagrangian, the
soft pion theorems are naturally expected to hold within
the model. Adkins er al. [2] showed that the
Goldberger-Treiman (GT) relation [15] holds for the clas-
sical Skyrmion fields, while the axial-vector currents
made of the classical Skyrmion fields do not satisfy the
current algebra [16]. Furthermore, it is not clear whether
or not the GT relation should be modified if we take into
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account the fluctuation fields. The Adler-Weisberger
(AW) relation [17] has been expected to give the fact that
g 4> 1 owing to the A contribution, while g, <1 in the
Skyrme model [2] when the masses of the nucleon and A
are fitted to the empirical values. The Tomozawa-
Weinberg (TW) relation in the Skyrme model was given
merely as a plane-wave approximation to the fluctuation
fields ignoring any constraints [18]. Thus, the study of
the soft pion theorems in the Skyrme model seems
insufficient.

Noting that the vector and axial-vector currents writ-
ten in terms of the original fields satisfy the current alge-
bra, and that the equation to describe the partially con-
serving or the conserving axial-vector current is
equivalent to the Lagrange equation to the original fields,
we show that the GT relation holds as the relation be-
tween the classical Skyrmion fields even in the situation
where the fluctuating pions are included. The AW rela-
tion also holds in the Skyrme model, but it is not a sum
rule to the axial-vector coupling constant g 4, but a sum
rule to the forward scattering amplitude from which the
nucleon and A poles are subtracted. This shows that the
Skyrme model with g , <1 is compatible with the AW re-
lation even if there is the A contribution. It is also shown
that the TW relation is obtained from the AW relation
and the structure of the forward scattering amplitude.

In the next section, using the (1+ 1)-dimensional soli-
ton model, we demonstrate that the elastic scattering am-
plitude is easily obtained by the reduction formula writ-
ten in terms of the original field. The Skyrme model with
both of the rotational and translational modes is dis-
cussed in Sec. II1, and the dispersion relation of the for-
ward scattering amplitude is given in Sec. IV. Axial-
vector and vector currents and their hadronic matrix ele-
ments are given in Sec. V and Sec. VI is devoted to the
formulation of the soft pion theorems in the Skyrme
model. The conclusions and discussion are given in the
last section. Some technical points are given in Appen-
dixes.

II. MESON-SOLITON SCATTERING
IN THE (1+ 1)-DIMENSIONAL MODEL

The starting Lagrangian is given as
L= [dx{1d(x,12—1d'(x,1)

—im2®(x,t)?-U[®]}, 2.1

where ®'=9® /dx and ®=38® /3r. The original canoni-
cal field ®(x,t) was decomposed into the soliton and fluc-
tuation fields in the constrained system of the fluctuation
fields and the collective coordinates in previous papers:

D(x,t)=¢(x —R(2))+x(x,t), 2.2)

where R (1) is the center of the soliton and y(x,?) is the
fluctuation field in the laboratory frame. We note here
that the original field ®(x,t) behaves asymptotically the
same as Y(x,?), and it is an interpolating field for the
mesons in the one-soliton sector [14]. The one-soliton
subspace of the Hilbert space on which the original field
acts, is then taken to be the same Fock space spanned by
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the in and out states composed of the mesons of the fluc-
tuation field and the one soliton. When an operator writ-
ten in terms of the original fields is sandwiched between
two single-soliton states, the original fields are reduced to
the soliton fields, ¢,(x —R), in the tree approximation:

(p'|®(x,t)lp)={p'lp,(x —R())|p)
:fiilei(p—P')y—i(EP~Ep,)t¢S(x ), 23
2

where an eigenvector of R(T), ly,t), and
(y,tlp)=(1/V2mexplipy —iE,t) are used, and
E,=M + p2/2M, with M, being the classical soliton
mass. This is the same as the ansatz used in 1970s
[19-21]. ]

The momentum field Il(x,z)=0L /9®(x,?) conjugate
to ® was also decomposed into the pure soliton part, the
fluctuation momentum w(x, ?) conjugate to x(x,?), and the
mixed part of the collective coordinates and 7’s:

1
M,

M(x,t)=— {¢:(x —R(2)),P(1)}

+mixed terms+m(x,¢t) , (2.4)

where P(t) is the soliton momentum operator conjugate
to R(t). Note here that the pure soliton part, the first
term of Eq. (2.4), is gauge invariant, but the remaining
terms are gauge dependent in the same way as the rela-
tion between ¢, and Y. In this paper we do not use such
decompositions at all, but treat the original fields as a
whole.

The original fields ®(x,7) and II(y,?) satisfy the free
canonical commutation relation in the tree approxima-
tion without any renormalization effects:

[@(x,2),II(y,t)]=ib(x—y) . (2.5)
The canonical commutation relation is also derived from
the commutation relations [y, ], [x,P], and [R,P] in the
constrained system and Egs. (2.2) and (2.4). The Hamil-
tonian written in terms of the original fields is given as

2
_ 1| 1 | 3®(x,t)
H= [dx S |0+ | =2 ]
+%m2®2(x,t) +U[®] |, (2.6)

from which the Hamiltonian H[y,m;R,P] in the con-
strained system is derived by using the fluctuation fields
and the collective coordinates [11,21].

Now, we calculate the source term of ®(x,?) to obtain
the S matrix. It is given as

H(x,t)=i’[H,[H,®(x,1)]]+(—3%*/3x2+m?)®(x,1)
=—U'[D(x,1)] 2.7

through the canonical commutation relation (2.5), where
U'[®]=0U /3®P. We can write the S matrix for elastic
scattering as
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Sp=8p+i2 [dxdr [dx'dt'f(x",t")fi(x,1){{p'| T[Fx',t')F(x, )] +8(t =t )[D(x’,1"), Hx,0][p )} . (2.8)

If U’ is expanded in powers of ¥, #=—U’'[®(x,t)] does not contain momentum fields 7 or P, in contrast with the
source of y, which is composed of complicated terms with the collective coordinates and momentum fields except for
the O(M?) term, — U"'[¢, ]x(x,t). (M, plays the same role as N, as an expansion parameter.)

The equal-time commutator is given as

[D(x',1),Fx,t)]=i8(x"—x)U [®(x,1)],

(2.9)

since ®(x’,t)=1II(x",7). This potential is sandwiched between two single-soliton states {p’| and |p ). The contribution
from the equal-time commutator is the same as the potential term of background scattering of O(M?) after the integra-

tion over x and x’, since

<pl|Uu[q)]|p>=fg_frei(pr')}"i(Ep‘Ep,)lUyl[¢S(x _y)] .

(2.10)

Next, we calculate the contribution from the single-soliton intermediate states in the time-ordered product term: We

can write the matrix element of & as

(p"|Hx,0lp)=(p"|=U'[¢(x—R)]lp)

[ - .
—fEexp{—z(p —ply+i(E, —E,)t

p

=fé%’_-exp{ —i(p"—ply+i(E, —E)t}J(x—y),

where we used the equation to ¢,(x),
—U'[¢,]=(—d?*/dx*+m?*)p,=J (x), the right-hand
side of which is just the definition of the classical source
term. Here note that ® and @ are not equal to ¢, and ¢,,
respectively, because the time derivatives of ®, deter-
mined by the commutators between ® and H[®], are not
equal to the commutators between ¢, and H[y,m;R,P].
Thus, the whole contribution from the single-soliton in-
termediate states is written as

TH(kT (k) T ()T * (k") ’ 012
E,ox—E,~w, E, —E,+to

with
J o= [dx e™J(x), (2.13)

which is just the same Born terms as obtained by tedious
calculation in Ref. [11]. Contributions from other inter-
mediate states form the unitarity cut of the amplitude so
as to satisfy the unitarity.

Thus, starting with the original field and its source
term, we have reached the same S matrix for elastic
scattering as given in terms of the fluctuation fields alone
in the one-soliton sector. We have not explicitly used any
gauge fixing conditions on Y and 7 to get the S matrix,
but we have used only the gauge-invariant soliton solu-
tion and its source function which appear as the matrix
elements of ® and & sandwiched between the two single-
soliton states. This means that the scattering amplitude
obtained on the basis of the standard gauge-fixing condi-
tions is gauge invariant. We also note that if we start
with the reduction formula written in terms of the origi-
nal canonical fields, we must not decompose the original
fields into the soliton and the fluctuation fields before we
reach matrix elements sandwiched between two single-
soliton states: If we do so, we encounter the cancellation

JH—U'lgs(x—»)]}

(2.11)

f

of the soliton part, and the remaining terms are reduced
to the results calculated in terms of the fluctuation fields
and the collective coordinates, as in Ref. [11].

III. PION-NUCLEON SCATTERING
IN THE SKYRME MODEL

In this paper we define the original canonical pion field
®,(x) through the SU(2) field U(x) as

U(x)=%[<l>0(x)+ira<l>a(x)] , (3.1
where x =(x° x), and ®y(x) is related to ®,(x) as
Pix)=f1—F di(x) . (3.2)

The Skyrme Lagrangian is written in terms of the origi-
nal pion fields as

L=%fd3x ®,K,,&, —V[®, VO], (3.3)
with
VI®, V)= [[d'x(3,0,G,y3, @, ~mifLM[D)]

(3.4)

where K, and G, are the metric kernels:

1
Kab[q)] =X + W[Xabajq)cXcdajq)d
~X,.8,0.X,y8,0,], (3.5
1
Gab[q)]:Xab + W[Xabajq)cXcdajd)d

—Xacajd)chdajq)d] (36)
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with k=ef, and
q’a q)b

Xab=8ab+ (I)(z)

) 3.7

and the pion mass term is related to @ as

_— | |
S
The metric kernels K, and G, are reduced to §,, for the
weak field limit; that is, a “curved space” becomes flat

asymptotically.
In previous papers, $, was decomposed as

D, (x)=¢%(x—X(x")+x,(x),

M[P]=2 (3.8)

(3.9

where X is the center of the Skyrmion, ¢§ the Skyrmion
configuration of O(N}/?) centered at X, X, the laboratory
fluctuation field of O(N?) around the Skyrmion. The
Skyrmion solution is given as the static solution

5 5V 5V
& )V =—YV 7V =—ai +
=(—V*+ml)p%(x)+ U%ds,Vds]=0,
(3.10)

where the form of the potential term U is not explicitly
given here. The solution in the usual ansatz is written as

¢%(x)=f sinF(r)R,X; and ¢2(x)=f cosF(r), (3.11)

where F(r) is the profile function and X;=x;/r, and R,
is the orthogonal rotation matrix.
From the Skyrme Lagrangian, the momentum fields
conjugate to @, are given as
oL

I, (x)=—

——— =K, P, (x) .
b, (x) P

(3.12)
The momentum field II, can also be transformed into the
components transverse and parallel to the zero-mode
wave functions in the constrained field theory, but the
decomposition depends on gauge fixing conditions:

I (x) =N x—X;L,P)+m,(x),
+mixed terms of y and collective coordinates ,
(3.13)

where the mixed terms and the transverse component 7,
are gauge dependent, and I, (P,) is the intrinsic isospin
(linear momentum) operator of the Skyrmion, which is
conjugate to the rotational angle around the kth axis (the
kth component of the center of the skyrmion X;). The
pure Skyrmion part 1, which is of O(N_ /2, is written
as

1
Mx-XLP)=> 3 (Ks,, ¥ Ii}

1
2M,

+

S (Ks, ¥ Pr) (3.14)
k
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with the zero-mode wave function ¢% for the rotational
mode and 9%, for the translational mode, which are given
as

VY =€ 3(x—X) , (3.15)
s __ 0 .,
zk—“szqis(x-X) . (3.16)

In the above K5 =K [¢5,V; ], Ag and M are the mo-

ment of inertia and the mass of the Skyrmion, respective-
ly. The commutation relations between the collective
coordinates in the constrained system are:

[XI,PJ]=I‘8,] )
[P;, P;]=terms of O(mY) ,
[Ryi I 1=iggp Ry »

[;,1;]= —ig;p I +terms of O(my) , (3.17)
where the O(my) terms come from the constraints im-
posed on the fluctuation fields and the collective coordi-
nates. (See Ref. [12] for the expressions of them in the ro-
tational mode.) If these commutators are sandwiched be-
tween two single-baryon states, the O(my) terms vanish
at the tree level. In this sense we may call P and I the
momentum and isospin operators of the baryon, respec-
tively.

The commutation relation between ®, and II, is the
unrenormalized canonical one at the tree level:

[<I)a(x),Hb(y)]S(xo—yo)———i8ab6‘4)(x—y) . (3.18)
This commutation relation is also derived from the com-
mutation relations among x,, 7, and the collective coor-
dinates in the constrained system. The Hamiltonian is
simply written as

H=%fd3x{HaKa‘b‘Hb}+‘V[¢,V<I>] , (3.19)

which reduces to the Hamiltonian of the constrained sys-
tem by using (3.9) and (3.13). In the above, we ignored
the ordering problem of II, and K, ! in the kinetic term,
which produces a quantum correction of O(#?).

The original field ®,(x) is regarded as the interpolat-
ing field for the pions as in the (1+ 1)-dimensional model,
because asymptotically, ¢$(x—X(¢)) fades out, and
®,(x) reduces to x,(x). The one-baryon subspace of the
Hilbert space, on which the original field operators act, is
taken as the same Fock space spanned by the in and out
states for the fluctuation fields in the constrained system.
The matrix element of a product of the original fields
sandwiched between two single-baryon states is, then, re-
duced to that of the same product of the Skyrmion fields
in the tree approximation as in the (1+ 1)-dimensional
soliton model.

Thus we write the S matrix for pion-nucleon elastic
scattering by using the standard reduction formula in
terms of the source terms &, ®, and ®:
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—iwed(t'—1)[ P, (x"),Fx)]IN(p)} ,

where f(x)=
term of @, is defined as

AKIHISA HAYASHI, SAKAE SAITO, AND MASAYUKI UEHARA 46

NFUx))+8(t—1)[ D,y (x), FUx)]
(3.20)

[(27m)*2w, ]~ /%exp( —ikx ) with kx =w,t —k-x is the asymptotic wave function of the pion. The source

F(x)=iH,[H,®,(x)]]+(—V*+m2)d, (x) . (3.21)
Calculating the commutator, we have

FUx)=—K ;' 61D,V +(— V2 +m2)®, (x)+ T [Kpo 'Hogp +H oo Koa' =Koy Heap My (3.22)
where # =8K,;' /8®,, 6 is the variation of V by ®,, but terms with higher powers of # coming from the ordering

problem are ignored.

In order to get the Born terms of pion-nucleon elastic scattering, we need the matrix element of & sandwiched be-

tween two single-baryon states. We can ignore the second line IIJ -
O(N,;3/?) at the tree level, which is higher than that of the first line by O(N

ten as

- JIT in Eq. (3.22), because its matrix element is of
2. The matrix element of & is then writ-

(B(p")|#x)|N(p))=(B(p")| —Ka—bl@b[q>,v<p]+( —V24+m2)®,|N(p))

Y TR S N_ B
=e1(p p"’)x x(Ep Ep..)tf
Qr )3
i(p—p")-x—i(EN—-EB,)
=¢e p

since 6°[¢s, Vés]=0, and |B) denotes the nucleon or
the A state, and we used the eigenstate |y,z) of X(t).
The last factor is the Fourier transform of the classical
source term J&(x)=(—V2+m2)¢%(x). In the above we
define £ g as

Ig(Iz+1) 2
=M+ 22 "4 P
2M 2M

—MB+—P——+O(N 2),

3.24

which is an eigenvalue of the Skyrmion part of the Ham-
iltonian H[y,m;X,I,P] in the constrained system, where
Iy is the magnitude of the isospin of the baryon B. The
term of O(N, ?) is discarded.

Thus, we have the Born terms which contain both of
the rotational and the translational modes:

(B|Tok)IN)Y(BIT&K)IN)
B Ep+k E;,V—
(BIJS K)IN)(BITe(—k")IN)
E —Eg-l-a)k

(3.25)

Note that the Yukawa coupling { B|J¢(k)|N ) defined as
the residue of the Born term is of O(N/}’?), as seen from
Eq. (3.23) with ¢% being of O(N}/?).

The equal-time commutator between & and & in the
reduction formula is written as

[, (p), FUx)]8(x°—y0)

_, 84°
M 5,

+[Kyy'(y), #%x) M,

=—iK (x)8%x—y)

(x)8(x°—yp0) . (3.26)

(B|(—

B —~
Y B|Tap"—PINY ,

—V2+ml)ps(x—y)|N e P TP x7Y)

(3.23)

[

In contrast with the (1+ 1)-dimensional model, another
equal-time commutator between ® and & appears, be-
cause & involves the momentum field: It is given as

84()

(4)
8Hb( 8 (x—y).

[®@,(p),FUx)]8(x°—y°)= (3.27)

These equal-time commutators are sandwiched between
two single-baryon states in the S matrix. Both of the
II[ - - - JII terms in the first term and the second term in
Eq. (3.26) are higher order than the leading term of
O(N? by O(N. %), and the commutator of Eq. (3.27) is
higher order by O(N, '), when they are sandwiched be-
tween two single-baryon states. We, therefore, discard
them in this paper.
The source term & is finally rewritten as

FUx)=—UD,VO]+K (K, —8,)6[D, VD],
(3.28)

where we used 6°=(—V?’+m?)d,+UD,VP]. By

defining
o — _ 0
Ua= 3D,
_8u* 86¢
Sq’d a (Kbc 8bc)8(pd

—terms proportional to &°, (3.29)

we can write the contribution from the equal-time com-
mutators to the scattering amplitude as

— [d3 " TKINN K US4 (YN (3.30)
which we denote as —(N'|U,IN), where
Kspi=Kpg'[$s5,Vs] and UG, =U%[¢5, V5] with
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6“[¢5]1=0.

It is easy to see that Uy , is the same potential term as
the one appearing in the equation to the normal-mode
amplitudes:

Ko+t (=Vi+m,=—Us X4 » (3.31)

[ (¥, 0,90, 1= Kgpe [ (y,0),Xa (%, )N — U )

=K 5 U SX—Y) = F R (0 US4k (X) = 3V (DU Wik (x)
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which is obtained by expanding both sides of the equation
@, +(—V?>+m2)P, =& in powers of y, and by taking
linear terms. The left-hand side is the source of y, of
O(N?), which we write as J°, and we calculate the
equal-time commutator

(3.32)

where only O(NY?) terms are taken, and the commutation relation [7,,Y,] is calculated in the conventional gauge-fixing
condition. The second and third terms contribute to the Born terms as well as higher-order terms, and the first is the

potential term in the constrained field theory [21].

Thus, we reach the following expression of the scattering amplitude:

(B|Tox")|N")(B|TE(k)|N) N (B|T&—K)|IN)(B|T2(—k)IN)

T4, =—(N'|U,,IN) +
v ’ 2 Ej—Ef —oy

+ unitarity —cut terms .

IV. FORWARD SCATTERING AMPLITUDE

For the purpose of the following sections, we write ex-
plicitly the forward scattering amplitude in the laborato-
ry system, where momenta are given as

p'=p=0, p’=p°=M,, and k,’1=k# . 4.1)

In order to have a dispersion relation for the forward
scattering amplitude, we redefine the scattering ampli-
tude as

Fao))=i [ dy e™K,(plo)[®,(»),d%0)]lp) , 4.2)

where K, =8”/3y,dy*+m? is the Klein-Gordon opera-
tor, and o, is the laboratory energy of a pion. This
definition is essentially the same as 7% in the preceding
section, except for the analytic structure for @; <0 [22].

Since we are restricted to the nonrelativistic kinematics
for the baryon, we have redundant poles which are absent
in the relativistic kinematics: The denominator of the
direct nucleon-pole term is written as

1

B N
Ep'—k Ep' +wk

(3.33)

f

for forward scattering in the laboratory system, which
develops zeros at w,=MNi‘/M§, +m _>. In order to

avoid the fictitious zero at My +1 M2 +m? we modify
the denominator as

(4.4)

Similarly, we modify the denominator of the crossed nu-
cleon pole as
2

N _ M=
DC - 2MN +Cl)[ .

(4.5)

These denominators are the same as the relativistic kine-
matics, and we put wy=—m2/(2My), hereafter.
Defining o, =M, —My—m?Z /(2M ), we also modify the
denominators of the direct and crossed A poles as

D} =w,Fo, . (4.6)

The forward scattering amplitude in the Skyrme model

D; = (0}—m2—2Myo,) (4.3)  is then written as
!
N Gyve |2 K270 2.a_b
Fb(e,)=—(N'|U,IN)+ | =X kT k7T
ZMN Wy — @) O)N+0)1
Gane | [ K228, —4[7%7°1)  KH28y, + 170, 7])
2 | Gans ba 375 7] ba t3[757%] 1 = ImF*e’) | ImF®o’)
+= +—[Tdo |5 +
9 | 2My, Wp— o wpt o, T Jm, o' —w; o't

4.7

where we have used a relation TbT“=§(28ba —%[Tb, 7?]) and a similar one for S;S;. We have tentatively assumed that
the unsubtracted dispersion integrals converge in Eq. (4.7). Note that the A state is extracted from the dispersion in-
tegral, and that its width is ignored. The imaginary part is given as
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=L 5 (2m%(p, — k)8 —w ) N'|F0)n ) (n|FAOIN)

2 n#A

+(2m)*%(p, +k)8(w' +w; ) N'|F#%0)|n ) {n|F0)

where o'=

INYY,

—My, and the A is not included, because it is extracted as a pole.

The pseudoscalar -pseudoscalar coupling constant is explicitly given as

2
w
GBN,,(kZ)=—ABN2MNfﬂﬁ [ d% j,(ky)sinF(y)

where Ayy=1/V2, Ayy=

function. This is the same as given by many authors [23], but a little different from the definition in Ref. [12

(4.9)

—1/3, j,(z) is the spherical Bessel function of order 1, and F(y) is the Skyrmion profile

], because

the definition of the fields are different from each other, but the two definitions give the same values at w, =0. Here
note that Gpy . is of O(N2’?), but it always appears in the form of Gpy,/2M, in the 7-N scattering amplitude.
Now we decompose the forward scattering amplitude F*® into the isospin even and odd amplitudes:
F*w))=8,,F "(0,)+1[1°,7°]F " (w,) . (4.10)
Each amplitude is written as
2 2
~ ~ Gynr | 20yk Gane za’Ak ImF " (')
FHw)=—AN'|1{T,+T,}IN)+ +— [20'do'—5—22 4.11)
1 z{ ba ab} 2MN &)%V—CD% 2MN sz_wl f wZ_a)%
2 2
G 20,k? Gang 20,k* 2a)
F(o)= NN 1K™ 2 1 Gan ! Ifd ,ImF ™ (') ' 4.12)
2My | oy—o] 9 | 2My wi—w% 0w}

The potential term U,, is symmetric in interchanging a
and b: The equal-time commutator [®,,#°] should be
equivalent to [®,,#?], because the reduction formula
does not depend on the order of operation of the Klein-
Gordon operators. The odd amplitude does not contain

the potential term, therefore. Using the equality
9GEy, =2G3i N, (4.13)

in the Skyrme model, which comes from the values of
Ay in Eq. (4.9), we can rewrite Eq. (4.12) as

2.2 2
G m-—w
LF_(a),)=2 NN~ ;r 2N
(9] 2MN W] — Wy

Gann 2m$r_w2A

9 | 2My ,2 wA

ImF (o)

+— |dow ’—————. 4.14)

f a)z—aﬁ

In the chiral limit the first nucleon pole term vanishes,
because the numerator is proportional to m 2.

We should notice that the Born terms in the odd am-
plitude is of O(N, '), because both of @y and w, are of
O(N_; ") and the leading terms are canceled out, and the
contribution from forward background scattering of
O(N?) to ImF ~ vanishes as proved in Ref. [24]. Thus the
odd amplitude F~ is of O(N.') in the physical region.
On the other hand, the even amplitude is of O(NCO) be-
cause of the potential term of O(N?). The dispersion in-
tegral in F~ is convergent, while the one in F* needs a
subtraction.

[
V. AXIAL-VECTOR AND VECTOR CURRENTS

The axial-vector and vector currents written in terms
of the original canonical fields are given as

VE(x) =€ 4y O K gD, + (D* terms) , (5.1)

AM(x)=— DK, "D, +(D? terms) , (5.2)

where &’ terms exist only in the spatial components,
which we ignore throughout this section. Since the time
components are particularly important, we write them
explicitly:

Vix)=
A0(x)= — L{@y(x),I1

(5.3)
(5.4)

Sabcq)b(x)nc(x)
(X)),

where the symmetrization is done for the axial-vector
current.

From the symmetries of the Skyrme Lagrangian, the
following conservation laws hold:

3,VHx)=0 , (5.5)

3, A Xx)=mLf ®,(x) (5.6)

We call the case that m_ =0 the chiral limit hereafter.
The partial conservation or the conservation law of the
axial vector current is equivalent to the Lagrange equa-
tion to ®,. The linearity of the left-hand side of Eq. (5.6)
in ® is due to the definition of the original pion field ®,
Eq. (3.1). The currents defined above contain the baryon
(Skyrmion) current, pion currents and their mixed
currents.
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It is easy to see that the time-components of the
currents satisfy the SU(2) XSU(2) current algebra in the
form of the current-current commutators

[VAx), V(1) ]18(x—y®) =ig,, VoAx)8W(x —y) ,
[V2x), A2p)18(x°—yO)=ie,,, A%x)6¥(x—y) ,
[A2x), AYY)]8(x°—yO)=ig,, VIAx)8W(x—y) .

(5.7)

Also we can show that the time and one of the space
components of the axial vector current satisfy the com-
mutation relation

[A2x), 4] (1)]18(x°—y®)=ig,, Vix)8¥P(x—y), (5.8

except for the Schwinger term. (See the Appendixes.)

We note that the above current algebra holds only for
the currents written in terms of the original fields. It is
known that the currents made of the skyrmion fields
alone do not satisfy the current algebra, even if the
translational motion is allowed [16].

Now, we consider how to evaluate matrix elements of
the axial-vector currents sandwiched between two ha-
dronic states. The axial vector current A/(x) is a weak
current for the pionic decay such as 7°—pu+%v. This part
of the matrix element of the axial vector current in the
meson sector is given as

(0l 4407 Q)) =if 19,845 f(X) , (5.9

where f(x) is the asymptotic pion wave function as a
solution of the Klein-Gordon equation.

If we take a matrix element of the axial vector current
sandwiched between two hadronic states, (8 out| and
la in), we have to take into account the fact that the
axial-vector current can be converted into a pion propa-
gation. According to the chiral field theory [25-27] we
can extract the pion-pole term from the hadronic matrix
element of the axial-vector current:

.\ —ig* .
(B out| A#(O)Ia in) -m—z?'f,,(ﬁ out|#%0)|a in)

+ (B out| 4X(0)|a in) gireey (5.10)

with g#=pl—ph. The first term is the pion-pole term
and the second one is the direct coupling term which
gives the coupling constant of the axial-vector current to
the (aB) state. The above equation is regarded as an
equation to determine the direct coupling term. When it
is combined with PCAC (partial conservation of axial-
vector current), Eq. (5.6), the Adler consistency condition
is obtained [25]:

f={B out|#%0)|a in) =ig, (B out| 44(0)|a in) giee, »
(5.11)

The same relation holds for the chiral limit, too. In the
chiral limit it is crucial to extract the pion pole term to
get Eq. (5.11): The left-hand side of Eq. (5.10) multiplied
by ig, vanishes by CAC (conservation of axial-vector
current), while the direct coupling term should not. If
the axial-vector current is sandwiched between two
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single-baryon states, 4¥[®] in the left-hand side of Eq.
(5.10) is reduced to the skyrmion current A¥[¢,] in the
tree approximation.

There are no vector particles in our model. The matrix
element of the vector current is only the direct coupling
term:

(B out| V¥(x)|a in) ={B out| VA(x)|a in) girec, - (5.12)

When both states are single-baryon states, V* is reduced
to the current written in terms of the skyrmion fields.

VI. SOFT PION THEOREMS

At first, we put (B out|=(B(p’)| and |a in)=|N(p))
in Egs. (5.10) and (5.11) for the case of the massive pion.
Taking the limit that g, —0 in Eq. (5.10), the pion pole
term vanishes, and then we have

limO(B(p')lAa“IN(p))= 1imo(19(p'>lAguv(p))direct ,
9,~ 9,—

(6.1)

where A4/ in the left-hand side reduces to 4%[¢,]. Using
this relation, we can calculate the axial-vector coupling
constant g ,(0) from {B| A¥[#, 1IN ) at the tree level:

limoiqﬂ(B(p')I AHO)N(P)) girect
a,~

= lim_ <BlgA(0)is-q—T2—|N>+0(N;') 6.2)

9

The O(N,!) term comes from the time component
q°A2[¢,] in Eq. (5.10), which has terms proportional to
q°q and to ¢%p+p’), when we take account of the
translational mode. The contribution from the time com-
ponent is given in the Appendixes. We discard the time
component of the axial-vector current hereafter. The
left-hand side of Eq. (5.11) is reduced to the BN cou-
pling constant Gy at the tree level:

f(B(P)FO)INPp))=f (B¢, (—X)IN(p))

GBN fr( q

) _ .
=g, (BliSATIN) .

(6.3)

Thus, we obtain the Goldberger-Treiman (GT) relation
(15]

-1
S M, =58400). (6.4)

The same relation also holds in the chiral limit, provided
that we note that the direct coupling term is not equal to
(B|A.[¢,1IN) in the chiral limit as seen from Eq. (5.10).
(See the Appendixes.)

The GT relation written in terms of the classical skyr-
mion fields is valid at the tree level if the fluctuation
around the Skyrmion is taken into account.

Now, we proceed to the Ward identity of the axial vec-
tor currents: According to the standard prescription the
Ward identity is written as [27]
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9.9 Fat=i [ d e7q,q,(p'|60y°) 45(»), 41(0)1|p)

—zfdye"”{(p|9 )[D,()D,(0)]|p>+id(y

where D,(y)=mf _®,(y), which is zero in the chiral
limit, of course. Extracting the pion pole terms from F ’:Z
and combining them with the first term in the right-hand
side of Eq. (6.5), we have

_fasz%V(q”q)+[qulth:2t]direct
= —i€peeq, (P'IVH0)|p) —8,,mLf {p'|®y0)]p) ,
(6.6

where the commutation relations (5.8) and (3.18) are
used. The same equation holds in the chiral limit, except
for the last term of the right-hand side.

The spatial component of the vector current vanishes,
and the time component is the isospin matrix in forward
scattering:

(pl¥Vi0)
(pl¥V20)

lp)=0,
p)=[d(N'IVO[4,(p

The first term in the right-hand side of Eq. (6.6) is then
given as

(6.7)
)IN)Y=17¢

1 b _a qO
- = 6.
2[7‘,7’] > (6.8)

The second term is written as
_Sbam;%rf‘rr<p/|q>0[¢s(_X)”p)
:—Sbam,z,ffrfd3y e P"P¥eosF(y) . (6.9)

This is divergent for p'=p. But the same divergence ap-
pears in the meson sector, where F(y)=0. Subtracting

the divergence at F(y)=0 we have a finite result:
o=m2f2 [d’[1—cosF(y)], (6.10)

which is the same sigma term discussed in literature
[2,18]. Thus we have

U b aq®
fﬂ'Fﬂ’N q q [quvFl;,(?]direct_*_E[T ’Ta] 2 _Uaba .

(6.11)

Here we take a limit g—0 under the condition qf‘ =0,
and pick up terms linear in q° from [F}*lyiec- Such
terms come from the nucleon pole diagrams [27]: Calcu-
lating the nucleon pole terms in the Skyrme model we
have

(9,9 F b8 Jaireet = — Lt ]—“—Ogi(0)+o<q2). (6.12)
Thus, we reach the soft pion limit
| P
lim {—F (q,q) (1—g3) (6.13)
q%—0 qo 44 ] 2f2 gA

%g,(p'l[4

)lp) —8(»){p'I[D,(y), 42(0)]Ip)} ,

(6.5)

(), A0

[

for the isospin odd forward scattering amplitude. The
left-hand side is rewritten through Eq. (4.14) under the
condition that m , =0 and o, =q° as follows:

lim |- F~(w1)]
@, —0 | @
G ’ 2 ImF (o')
AN w
= — =27 += do'——nr— . 1
9 | 2ny f 13} 5 (6.14)

Thus, we finally obtain the Adler-Weisberger (AW) rela-
tion [17] as

GANTr
M,

2
2 , ImF (')

4
—_ 2 = —_—
g4) 9 R

1
212

(6.15)

However, if we use the GT relation and the algebraic re-
lation between Gyy, and G,y., Eq. (4.13), we observe
that the gi term is completely canceled by the AN 7 cou-
pling term, and the AW relation in the Skyrme model
reduces to the sum rule

1 _2 . ImF ()
e = [do e (6.16)

Here remember that ImF ~ is of O(N,!) as stated below
Eq. (4.14).

The ratio of Gyy, to Gy, Eq. (4.13), in the Skyrme
model is equal to the ratio in the case of the infinite-N,
limit [28]. We have already shown that the g% term
should be canceled out from the AW relation in the
infinite-N, limit in order that it is consistent with the
large-N, behavior [24,29,30]. Thus, the AW relation in
the Skyrme model is not a sum rule to g 4, but a sum rule
to the dispersion integral even if the A state is taken into
account, in contrast with the standard understanding of
the AW relation.

From Eq. (4.14) we observe that

F (m

(6.17)

=

Zm fd ,ImF (o)
a)2~m2

at the threshold, @;=m .. The right-hand side is approx-

imated as
Foim)=m, |+ [doXE 12D L om2) |, 6.18)
ua 0]
which reduces to
mTT
F (m)=4ma_=—7{1+0(m?)} (6.19)
2

m
by using the AW relation (6.16), where a _ is the isospin-
odd S-wave scattering length. This is just the
Tomozawa-Weinberg (TW) relation in the Skyrme model.
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It should be noticed that in order to obtain the TW rela-
tion we have not referred to any special interaction Ham-
iltonian such as e, XX, Vo[#,1/f2, but have used the
sum rule to the dispersion integral of the forward scatter-
ing amplitude.

VII. CONCLUSIONS AND DISCUSSION

We have shown in this paper that the pion-nucleon
elastic scattering amplitude in the Skyrme model is suc-
cessfully formulated by the reduction formula described
in terms of the original canonical fields in the Skyrme la-
grangian. In this formulation it is not explicitly required
to refer to any constraints and gauge-fixing conditions
imposed on the fluctuation fields and the collective coor-
dinates. A matrix element of a product of the original
fields sandwiched between two single-soliton (single-
baryon) states is reduced to the matrix element of the sol-
iton (Skyrmion) fields with appropriate collective coordi-
nates in the tree approximation. The original field is re-
garded as the interpolating field playing the same role as
the fluctuation field in the one-soliton sector, and then
the one-soliton subspace of the Hilbert space on which
the original fields act is taken to be the same one spanned
by the in and out states for the fluctuation fields. Our
prescription to elastic scattering amplitude is applicable
to other processes such as 7N —mA, mA—mA, and pho-
toproduction of a pion.

While our formulation does not refer to any gauge-
fixing conditions, previous works to obtain the Born
terms based on the constrained field theories of the col-
lective coordinates and the fluctuation fields are gauge
dependent. In the theory of the conventional gauge-
fixing conditions [12,13], where both of the fluctuation
fields y, and w7, are to be orthogonal to the rotational
and translational zero modes, the Yukawa interaction
Hamiltonian surviving from the stability condition of the
Skyrmion is of O(N, /%), and one needs to calculate
higher-order seagull terms up to O(Nc“z) in addition to
the zero-mode pole term of O(N?) in order to get the
proper Born terms in the tree approximation. In the
theory of the nonrigid gauge-fixing condition [31] the sur-
viving Yukawa interaction Hamiltonian is of O(N, /%),
since the orthogonality of x, to the zero modes is not re-
quired. Combining with the zero-mode pole term one
gets the gauge-invariant Born terms, but one has to cal-
culate the loop corrections at the same time. Thus, in the
formulation with the use of the collective coordinates and
the fluctuation fields we have to calculate complicated
higher-order terms or loop corrections in order to get the
gauge-invariant Born terms from the gauge-dependent in-
teraction Hamiltonian. There is another approach [32]:
In this approach one calculates the matrix element of the
surviving interaction lagrangian linear in Y, in the
plane-wave approximation and adds its Born terms with
the intermediate A states to the background scattering
amplitude. In this way one obtains the correct P-wave
Born terms, but all the constraints imposed on the fluc-
tuating fields and the collective coordinates are simply ig-
nored. Contrasting with this, our approach is free from
the constraints, because the fields we treat are the origi-
nal fields satisfying canonical commutation relations.
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We have also shown that the soft pion theorems are
satisfactorily formulated in the Skyrme model in the situ-
ation where the fluctuating pions are included. The
Adler-Weisberger relation in the Skyrme model is, how-
ever, not the sum rule to the axial-vector coupling con-
stant, but the sum rule to the scattering amplitude of
O(N. "), in contrast with the standard understanding of
the AW relation. The fact that g , may be less than unity
in the Skyrme model is, therefore, compatible with the
AW relation.

As to the even scattering length the threshold value of
the amplitude is written as

1 . 1 v
F+(m7r)=_FU+ zhmz'}.T[quva]direct , (1.1
T q =m_J 7
q—0

where the nucleon pole terms in the direct coupling term
vanish at the threshold, but the isoeven direct coupling
term as a whole remains finite at the physical threshold
[33]. The small value of the even scattering length a
would be due to the cancellation between the two terms,
but we did not attempt to evaluate a , in this paper.

We have often noted that our formulas are valid at the
tree level. The Yukawa coupling defined as the residue of
the Born term is of O(N/!/?), but this does not mean that
effective one-pion interactions are always of O(N!’?).
For example, consider a one-loop self-energy of a baryon:
If the one-pion interaction is of O(Ncl/ 2) the one-loop
self-energy is of O(N,) and may have a different value de-
pending on a spin and isospin value. If this is the case,
the mass difference between A and N is of O(N,). This
destroys the N, ! expansion scheme in the soliton model.

The one-loop correction may be written as

' B|H'|p,k){p,k|H’'|B
MM, oy =(BIE1B)— 3 lE'5+Z,<pA} B)
p.k p x— Mp

’

(7.2)

where H' is the interaction Hamiltonian. The first term
denotes possible one-loop corrections in the first-order
perturbation theory, and H' in the second-order pertur-
bation is sandwiched between two states with different
pion numbers, where the pion states should not be the
asymptotic ones. Therefore, if H' is written in terms of @
and II, its matrix elements cannot be written in terms of
¢, and II;, but should be recalculated within the con-
strained system of the fluctuation fields and collective
coordinates. The lowest-order one-loop correction comes
from a seagull term of O(N.?). AM, loop is of
O(N_ %)X O(#) at most, while the ordering correction in
the kinetic term is of O(N, )X O(#?). Thus, the mass
difference between A and N remains in O(N,.}).

We have given the Born terms with the translational
mode as well as the rotational mode of the collective
coordinates. The P wave nature of the Born terms is,
however, not altered even if we take into account of the
translational mode. In the case of the Dirac particle the
Born terms contain diagrams with pair creation and an-
nihilation, which give the S wave nature in addition to
the P wave nature. Thus, the soliton model is essentially
non-relativistic for the soliton, similar to quark models of
the nucleon.
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APPENDIX A: COMMUTATOR BETWEEN THE TIME AND SPATIAL AXIAL-VECTOR CURRENTS

[49(y), AL(x)]=1{D(y),[IT,(y), PK, 3P (x)]}
1
2

®
(D,

+ L{Dy(y), Do x)[ T,

+ L{Dy(y), Do X)K 4o (x)]

where we omit ¢ in the argument, and each line is numbered:

(1)=i®,K, 3P, (x)8(y—x) .

9K ,.(x)
od,(x)

.1
—i=

(2)=—iy Sly—x)+

‘tbo( y), Py(x)

3(3,P,(x

each term of which is reduced to

(2),= —i[®, K, 3D (x)—K,, P(x)+ K ®;(x)])8(y —x),

(A4)
where ®'= —¢,3'®, = P;d'®, and
k;'[’, = —12— {Xabaiq)cXcdajq)d +Xacajq)Cdeai(Dd
K
2X,.0'® X, P, ) (A5)
with X,, =8, +(®,P,) /P,
(2),= iy DK LI=X)
ox’
— iR ®;(x)8(y —x)— i=— [DA(x)KS,8(y—x)] ,
dy;

(A6)
where we used 938(y—x)/0x;=—0d8(y—x)/dy;. This
cancels the third term in (2);:

(3)= —iDyly) By x)K - 2Y =) (A7)
ox;

which cancels the second term in (2),. Finally we get
(y,1), 45(x,1)]

=i{®,K, 0P (x,1)

[45
—®,K, 3D, (x,1)}8(y—x) ,

(A8)
except for the Schwinger term

i(3/3y;)[8(y —x)PY(x)(K 8, —Kgp)] -
APPENDIX B: AXIAL-VECTOR COUPLING CONSTANTS

Putting r; =x; — X;, we have

K, =Ry iRy;[g (r1P?;+8g7(r sk, (B1)
where
1 2 s? 1 |s? "
gL=— 1+?7‘ s gT—1+F -2—+F (B2)

aKaC(x)

(y), [T, (y), ®y(x) 1K, 0'® (x)] (1)
K, (x)]0'® . (x)}
Hb(y),aiQC(x)]} ,

46
(2)
(3) (A1)
(A2)
9;6(y—x) ai¢c(x)l, (A3)
I
with ¢ =cosF(r), s=sinF(r), and F'=dF(r)/dr. The
axial-vector current is written as
A{16,1= — Ry (8 f 7 gr(n)+#7, 2 F'g (1] . (BY)

Since the pion-pole term vanishes in the limit ¢'—0 for
the massive-pion case, g 4,(0) is written as

a

gAS'T

=lim [d’re'"(B|Al[4,(D]N) , (B
q—0
which gives
g4(0)=—8mApyf2 [drr?|c?Fg,
, sc
Y CZFgL-TgT
(BS)

By using the equation of motion to F(r), we can rewrite
the above definition as
g4(0)=

8T
=SS Apym [dr s (B6)

while the coupling constant Gy, in Eq. (4.9) is given as

GBNTT(O) 47Tf7 2 3
M, =73 mnfdrrs.

(B7)

Thus, the GT relation results.
In the chiral limit the BN coupling constant is writ-
ten as

My (B8)

= —‘47Tf1TABNB ’
where F(r)—B /r? as r— . If we use Eq. (B6) under

=0 naively, we get a value smaller than the above
constant by a factor 2/3. The pion-pole contribution to
the direct coupling term is

lim 4 f (BlJ6,)INY=—4mfiAp2ST, (BY)
q—0 q2 3

where g3 is neglected as it is of O(N.2). This gives the
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required factor. The result g ,=—8mf2AzyB is the
same as given by Adkins et al.[2].
The time-component of O(N)) is written as

S
AS[%]:—EX‘RKS‘,MZ,I;] -

™

ICKSabd’?j’Pj} ’

2M,
(B10)
which is rewritten as
§101=—Fleser(1/20, Ry )= 53 [ AST6. P, -
(B11)

Thus,
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(B(p')|ig° 43[4, 1IN(p))
=iS-q—T—fA(q)+,-s. [L‘t& LfA(q)
2 2 2
+iS-qT2 (p?—pHh,(q), (B12)
where
N Ji(qr) scg
fA(q)=f3,(MB—MN)q°fd3r—‘r———l ,
q r
1
fA(q)=7sq°[gA(q)] ,
0 f Gpn.q)
—_9q _Jr OBnd
h4(q) M, mitq 2My (B13)
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