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Self-dual Chem-Simons solitons in (2+ 1)-dimensional Einstein gravity

D. Cangemi
Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics,

Massachusetts Institute of Technology, Cambridge, hfassachusetts 02l39

Choonkyu Lee
Department ofPhysics and Center for Theoretical Physics, Seoul National University, Seoul, 15l 742, -Korea

(Received 22 April 1992)

%'e consider a generalization of the Abelian Higgs model in curved space, by adding a Chem-Simons
term. The static equations are self-dual provided we choose a suitable potential. The solutions give a
self-dual Maxwell-Chem-Simons soliton that possesses a mass and a spin.
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Einstein gravity in 2+ 1 dimensions has attracted
much attention recently, not only as a theoretical labora-
tory for studying effects of quantized gravity but also due
to its direct physical relevance in cosmic-string dynamics
[1]. The (2+1)-dimensional Einstein gravity is trivial in
the absence of matter, while introducing point [2,3] or
line [4] sources alters the global geometry of space-time
in the following way. The metric describing N point par-
ticles located at r, (i =1, . . . , N), with mass M; and spins

J;, is known to have the form [5]
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where D„=B„ie—A„; P is a complex scalar field and S a
real one. For a related curved-space self-dual system, it is
then natural to consider the action
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The spatial geometry is thus multiconical, and with
nonzero J, one finds a time helical structure [2].

As has been known for some time, the nonsingular
counterparts for spinless multiparticle systems are pro-
vided by static multivortex solutions of the curved-space
Abelian Higgs model in the self-dual limit [6]. One ex-
pects a regular configuration of nonzero spin as a result
of introducing a Chem-Simons term. Linet [7] intro-
duced a non-self-dual model including this term. With
some assumptions he shows that the asymptotic geometry
is analogous to that of a spinning particle. Recently, Val-
tancoli [8] considered a curved-space self-dual model tak-
ing the Chem-Simons term as the entire gauge field ac-
tion. We shall present here a model including both the
Maxwell and the Chem-Simons terms and show how it
leads to self-dual equations. The Higgs model and the
pure Chem-Simons model correspond to special limiting
cases of our treatment.

In fiat space it is known [9] that, with both Maxwell
and Chem-Simons terms, the simplest self-dual system is
described by the action

I„„=fd'x [ ,'F„„F""+„'ae"" F—„—A2—~D„p—~.

where the precise form of the scalar potential V(P, S) is
still to be determined. Our interest is in time-
independent solitonlike configurations satisfying corre-
sponding matter field equations and Einstein's equations
(R" ,'g" R =2mG—T—""),and. we here want specifically a
model for which the governing equations for the solitons
can be reduced to first-order self-dual (or Bogomol'nyi-
type) equations.

We may assume the general stationary metric

ds = X(dt+—K,dx')'+y;, dx'dx' (i j =1,2),
viz. ,

(4)

2 = 2 = 2goo= —N, go, = —N K, , gfJ PiJ N KiKJ
(5)

g = —1/N +y'JK, K-, g '= —y'JK, g'J=y'J .

Here, N ~0; E; and y, - are functions of r=(x ', x ) only.
The spatial metric y, will be used to move indices.

Instead of A,- we find it convenient to use the fields

A, =A,-
—K, AO,

so that A '=y'JA =g'"A„. Then, denoting

(1/&y)e' t), 3 =8, (I/&y)e'Jt), K =H, and D,
=0;—ie A,-, we obtain the following static action from the
action (3) with time-independent fields:
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Here R is the Rieei scalar associated with the metric y;-.
The equation of motion coming from an N variation gives
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satisfy.
The static field equation related to the K,. variation of

the action (7) can readily be integrated to yield
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C being an integration constant. Then, making use of the
identity
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This is one of Einstein's equations. In what follows we
will take as an ansatz that

N(r)=1 .

This means putting N =1 in the action (7) and keeping
Eq. (8) as an extra constraint that our solutions must

t

X(D,4+i&re, k r""D.4)
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(note that E;~ =E in our convention), we observe that the
action (7), up to surface terms, can be rearranged into the
form
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Then the field equation related to the A,. variation will
effectively take the form

B =2m GzAO( A 0+C)

+(1 4rrGA o')[~Ao+e(—lgl' —U')], (14)

with v interpreted as the associated integration constant.
We have already incorporated this equation in the action
(12) in a manifest way.

Equation (10) is manifestly incorporated in this form, and
see below for the role for an arbitrary constant U . [Note
that all v -dependent terms on the right-hand side of Eq.
(12) cancel, except for the surface term + ev fd x &yB.]
Now, as a natural extension of the flat-space self-duality
equations [9], let us suppose that the following equations
hold:

On the other hand, it follows that the only nontrivial
equation obtained from the P, S, and Ao variations is
(here V is the two-dimensional covariant derivative)

VVS —'V(&s'=0
BS

(16)

which, as an equation for Ap, describes Gauss' law. We
can now state that if the scalar potential of a given sys-

We still have to consider the field equations related to
the y;~, P, S, and A 0 variations of the action (12), and for
these the first, second, and last terms in the right-hand
side of the action can be ignored thanks to Eqs. (10},(13),
and (14). The equations from the y;1 variation then
forces the remaining terms in the action (12) to vanish lo-
cally when A p

= +S; this forces the scalar potential for a
consistent self-dual system to take the sixth-order form

v(P, s)= ,'(el/i +ks —ev } +—e s lPl

2mG[ ,'Ir(S —C)+(e—lPl ——eu )S]
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tern is the one given in Eq. (15), any static configuration
satisfying the conditions (8)—(10), (13), (14), and (16), the
desired curved-space generalization of the flat-space self-
duality equations, provides a solution to the full coupled
field equations. Also notice that Eqs. (10) and (14) are
equivalent to the relations

to set A o =S =K, =0 and our system trivially reduces to
the model considered in Ref. [6]. The scalar potential be-

comes siinply V(P)= —,'e (lgl —u ), and we here have

the self-duality equations
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while Eq. (8) can be simplified (thanks to other equations
in the set) as

R =+eu B+»CH+ —V'V; Igl +—V'V;S
4+G 2 ' 2
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el/„l +»S„—eu =0, S„+C=O,
while Eq. (16) requires, in addition,

(19)

(20)

Actually, the integration constant C above is subject to
a physical constraint: at spatial infinity, the fields (S,P)
should approach some constant values (S„,P „) and H
and B should tend to zero (since their integrated values
correspond to physical observables to be discussed
below). Then we have, from Eq. (17),

Ao=+S=+—(Ipl —v ) .
K

(25)

Then one finds that the appropriate matter action and
self-duality equations read

KIM= f d'x e"" F—„„Ai & gg—""(D—„P)'D,P

Only topological solitons are possible with K=O. More
interesting will be the limit K~ ~ for fixed K/e . In this
limit, the kinetic term for S and the Maxwell term be-
come negligible, and up to order-(1/») corrections one
can identify

Thus the allowed values for C are

0, with lg„l =u and S„=O,
C=' 24 2—e v /», with I $„I

=0 and S„=eu /» .
(21)
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With C =0 we have the broken vacuum and topological
soliton solutions, while with C = —e v /K we have the
unbroken vacuum and nontopological solitons only.
[But, if we turned off gravity (i.e., set G =0), both would,
of course, lead to a theory in which broken and unbroken
vacua are degenerate [9].] Regardless of whether C =0
or C = —e u /», the total energy [2,10] of the given soli-
ton is
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where we have used Eq. (18) and the relation Ao= +S.
As in the flat-space case, the magnetic flux of a topologi-
cal soliton must be quantized, i.e., 4=+(2m/e)n (n is a.
positive integer), while the 4 value of a nontopological
soliton is not. These solitons also have a nonzero angular
momentum, as determined by the formula [2,10]

J= fd r&yH
2~G

d r y —KS +C+2S +KS —ev (23)

Note that this definition is consistent with the asymptotic
form K, (r) ——GJe, x/Irl [cf. Eqs."(1)and (4}],and for
G =0 it reduces to the usual flat-space angular momen-
tum appropriate to the topological (C =0) or nontopolog-
ical (C = —e u /» ) soliton case.

We here mention some limiting cases. When the
Chem-Simons coupling K is equal to zero, it is consistent

where C =0 for the broken-phase case (topological soli-
ton solutions only) and C = —e u /» for the unbroken-
phase case (nontopological soliton solutions only). Note
that we have now an eight-order potential. The total en-

ergy is still given by Eq. (22), while the angular momen-
tum formula simplifies as

fd r&y (lyl —u }+ C

The action (26), with C set to zero, was first obtained by
Valtancoli [8]. (But this paper contains a few sign mis-
takes. )

To analyze the curved-space self-duality equations,
particularly convenient is the conformal coordinate sys-
tem in which y, =p(r)6, and so

(29)

where 6 is the flat-space Laplacian. Moreover, to re-
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move the arbitrariness in K; associated with the time
reparametrization t~t'=t+A(r), we adopt the gauge
condition expI —2mG[IP(r)l +S(r) ]],

tI)(r) = exp[+A (r) ]f(z) (z =—x+t'y),

ly(r)l'

(33a)

V;K'=0 . (30)
(33b)

In the conformal coordinates, this condition is equivalent
to 0,K, =0, and therefore we may write

K; =E~ld, U(r), V7 H = b, U—(r)

Similarly, we may express the vector potential A, as

A = ——e"t) A(r), &y8= —~(r) .
1 — —— 1

i ~ Ij e

(31)

(32)

Using these in Eqs. (13a) and (18), and choosing in partic-
ular the value C =0, we can solve the equations for P(r)
and p(r) to obtain

I

p(r)8(r) = + b, ln
I
f(z)l'

(34)

Now, if we use Eqs. (33b) and (34) in Eq. (14), we are left
with the equation

where f (z) can be any finite polynomial in z. The zeros
of the function f (z), located arbitrarily in space, can be
identified with the positions of the vortices [comparable
to the "particle" position r; in the metric (1)]. Here note
that Eqs. (32) and (33a) allow us to write

277GU

If(z&l'
exp[ 2nG(—IqbI +S )][(1 4nGS —)(eIPI +ttS —eu )+2mGttS ], (35)

which is valid away from the zeros of I/I . In this way we can reduce the whole problem to the analysis of the two cou-
pled equations involving lgl and S, i.e., Eqs. (35) and (16). Once lgl and S are determined, E; and A, follow from Eq.
(17). In the it~ ac limit mentioned earlier [i.e., for the system described by the action (26)], they become just one non-
trivial equation:

If(z) I'
4 4 4

exp( —2~GI@l') ', l@l'(IWI' —U'& —4~G', (lgl' —U'&'

But, even for the latter case, some numerical analysis appears to be necessary for more detailed information. For dis-
cussions on the asymptotic behaviors of the solutions [which are consistent with the point-particle metric (1)], see Ref.
[8].

Finally, we would like to add some comments on the stability of our system. A specific concern here is that, since our
scalar potential (15) is unbounded from below (for G )0), the vacua assumed in Eq. (21) will be at most local minima
classically. But it must be noted that, in the presence of gravity, the definition of energy depends on the asymptotic be-
haviors of the metric, and so there is no simple way to compare the energies of two different vacua. Furthermore, self-
dual systems are generally believed to be the bosonic sector of some extended supersymmetric theories [11,12], and we
naturally expect our present system to be related to a certain extended supergravity theory. In the latter framework,
the vacuum stability is likely to follow automatically [10].

This work was undertaken when one of us (C.L.) was visiting the Center for Theoretical Physics, MIT (as a part of
the NSF-KOSEF Exchange Program), and he wishes to thank the members of the Center for hospitality. We thank R.
Jackiw for helpful comments. This work was supported in part by funds provided by the U.S. Department of Energy
(D.O.E.) under Contract No DE-AC02-76ER03069, the Ministry of Education, and the Science and Engineering Foun-
dation of Korea (C.L.), and the Swiss National Science Foundation (D.C.).

[1]A. Vilenkiu, Phys. Rev. D 23, 852 (1981);J. Gott, Astro-
phys. J. 288, 422 (1985).

[2] S. Deser, R. Jackiw, and G. 't Hooft, Ann. Phys. (N.Y.)
152, 220 (1984); A. Staruszkiewicz, Acta Phys. Pol. 24,
734 (1963); J. Gott and M. Alpert, Gen. Relativ. Gravit.
16, 243 (1984); S. Giddings, J. Abbot, and K. Kuchar,
ibid. 16, 751 (1984).

[3] For a recent review, see R. Jackiw, in Sixth Marcell Gross-
man Meeting on General Relativity, Proceedings, Kyoto,
Japan, 1991, edited by H. Sato (World Scientific, Singa-
pore, 1992).

[4] S. Deser and R. Jackiw, Ann. Phys. (N.Y.) 192, 352 (1989);
G. Grignani and C. Lee, ibid. 196, 386 (1989);G. Clement,

ibid. 201, 241 (1990).
[5] G. Clement, Int. J. Theor. Phys. 24, 267 (1985).
[6] B. Linet, Gen. Relativ. Gravit. 20, 451 (1988); A. Comtet

and G. W. Gibbons, Nucl. Phys. B299, 719 (1988).
[7] B. Linet, Gen. Relativ. Gravit. 22, 469 (1990).
[8] P. Valtancoli, Int. J. Mod. Phys. A 7, 4335 (1992).
[9] C. Lee, K. Lee, aiid H. Min, Phys. Lett. B 252, 79 (1990).

[10]M. Henneaux, Phys. Rev. D 29, 2766 (1984).
[11]E. Witten aud D. Olive, Phys. Lett. 78B, 97 (1978); P.

DiVecchia and S. Ferrara, Nucl. Phys. B130,93 (1977).
[12]C. Lee, K. Lee, and E. Weiuberg, Phys. Lett. B 243, 105

(1990); B.-H. Lee, C. Lee, and H. Min, Phys. Rev. D 45,
4588 (1992).


