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Large-order perturbation theory for the electromagnetic current-current
correlation function
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The constraints imposed by asymptotic freedom and analyticity on the large-order behavior of
perturbation theory for the electromagnetic current-current correlation function are examined. By
suitably applying the renormalization group, the coefficients of the asymptotic expansion in the
deep Euclidean region may be expressed explicitly in terms of the perturbative coefficients of the
Minkowski space discontinuity (the A ratio in e+e scattering). This relation yields a "generic" pre-
diction for the large-order behavior of the Euclidean perturbation series and suggests the presence of
nonperturbative 1jq correction in the Euclidian correlation function. No such "generic" prediction
can be made for the physically measurable R ratio. A novel functional method is developed to obtain
these results.
PACS number(s): 12.38.Bx, 11.10.Jj, 12.20.Ds, 13.65.+i

I. INTRODUCTION

The renormalization group relates changes in the value
of the renormalization point to equivalent changes in the
values of renormalized couplings. For any dimensionless
physical quantity depending on a single momentum vari-
able, P(q), the renormalization group may be used to
reexpress a perturbative expansion with a fixed coupling
gz(pz) and momentum-dependent coefficients,

as an asymptotic expansion in powers of a running cou-
pling g (q ) with fixed (purely numerical) coefficients,

(1 2)

In this form, one is using the renormalization group to
relate changes in the magnitude of q to changes in the
value of the running coupling.

The renormalization group can also be used to express
a change in the phase of qz as an equivalent change
in the complex value of the running coupling. Conse-
quently, when combined with analyticity, the renormal-
ization group may be used to relate a Euclidean space
perturbation series [in powers of gz(qz), with qz real and
positive] to the corresponding Minkowski space pertur-
bation series [in powers of g~( —q~)].

In this paper, using only the renormalization group and
analyticity, we examine the precise relation between the

'We use the symbol to denote an asymptotic series in the
precise sense employed by mathematicians: f(z) P f„z"
if, for any N, f (z) —Q f„z"= O(z +') as z ~ 0.

Euclidean space asymptotic expansion of the electromag-
netic current-current correlation function (the "disper-
sive part") and the corresponding asymptotic behavior of
its Minkowski space discontinuity, which is the R ratio in
e+e annihilation (the "absorptive part"). We find that
the exact relation between these expansions takes an ex-
tremely simple form when expressed in terms of a natural
generalization of the Borel transform of the perturbative
series. The implications of this relation on the possible
large-order behavior of perturbation theory are discussed.
In particular, we find that the perturbative coefficients
of the Euclidean correlation function and the Minkowski
discontinuity need not show the same behavior at large
orders. The renormalization group and analyticity con-
straints alone are not sufficient to uniquely determine the
large-order behavior of perturbation theory, in contradic-
tion to a recent claim by West [1]. Moreover, as discussed
in detail in Appendix A, the asymptotic forms presented
by West are inconsistent with the renormalization group
and do not obey the exact relation between the dispersive
and absorptive parts which we derive.

Our general renormalization group relation implies
that the Borel transform of the Euclidean perturbation
series will exhibit an infinite set of regularly spaced sin-
gularities. These include the infrared and ultraviolet
"renormalon" singularities found from the examination of
individual Feynman diagrams [2—5]. However, for /CD
the renormalization group analysis also suggests the pres-
ence of one further singularity which does not correspond
to an expected renormalon singularity. As we shall dis-
cuss, this extra singularity may be interpreted as indi-
cating the presence of nonperturbative 1/q corrections
in the Euclidean correlation function. Such corrections
will have significant implications (which we do not ex-
plore) for phenomenological applications of the operator-
product expansion such as @CD sum rules and heavy-
quark expansions. This new Borel transform singular-
ity must be present unless the perturbative coefficients
of the R ratio conspire to produce an exact cancella-
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tion in a (modified) Borel transform of the absorptive
series. Whether or not this cancellation might occur is
not known; however, as we discuss in Appendix E, no
hint of this cancellation is seen using the known terms in
the expansion of the R ratio.

In an earlier paper [7], the special case of a theory
with a one-term P function was examined. In this paper,
we show how to extend the analysis of [7] to the case of
a general P function, and we examine the applications
of these results at greater length. A detailed summary
and discussion of our results appears in the next section.
This starts with a review of the perturbative expansion of
the electromagnetic current-current correlation function,
a brief summary of the one-term P function results in [7],
and a discussion of the choice of renormalization scheme
which will be most convenient for the general case. We
introduce a "modified" Borel transform and summarize
its properties and its connection with the ordinary Borel
transform. Our results on the relation between Euclidean
and Minkowski space asymptotic behavior are then pre-
sented, followed by a discussion of the implications of this
relation on the possible large-order behavior of the per-
turbative series. The connection between our work and
previous renormalon results is described, followed by a
review of the relation between Borel transform singular-
ities and the operator-product expansion. Finally, we
discuss the significance of our "extra" renormalon sin-
gularity and its implications concerning nonperturbative
1/qz corrections in the Euclidean correlation function.

The actual derivation of our results follows this lengthy
summary. By using a functional approach, we find a
very simple form for the exact solution to the renormal-
ization group equations relating the perturbative coeffi-
cients. This (slightly abstract) approach exploits famil-
iar quantum-mechanical techniques. In this setting, the
modified Borel transformation emerges naturally as the
representation of the series in a convenient overcomplete
basis, just as the usual Borel transform corresponds to
the standard coherent state representation of the series.

Appendix B examines the effect of a coupling redefi-
nition on a Borel transform. This appendix shows that
the position and nature of the leading singularities of
a Borel transform are not changed by any "reasonable"
coupling redefinition. Some details concerning the mod-
ified Borel transforms are relegated to Appendix C. Al-
ternative methods (more traditional but less convenient)
for deriving the results presented in the text are sketched
in Appendix D. The calculations of the perturbative co-
efFicients of the current-correlation function are scattered
throughout the literature. These results are collected and

Note added. After this paper was submitted for publica-
tion, we became aware of related work previously presented
in the lectures of Bjorken [6] at the 1989 Cargese school.
Bjorken investigated the relationship between the dispersive
and absorptive parts of the current-correlation function using
a one-term P function and found the basic result of paper
[7] described in Sec. II A below, including the simple Borel
transform relation (2.13).

summarized in our notation in Appendix E to enable any
comparison with the asymptotic results of this paper that
the reader may wish to make.

II. SUMMARY OF RESULTS AND
DISCUSSION

The electromagnetic current-current correlation func-
tion

K"'(q) = i f(d~z) e '~' (0~X(j"(z)j"(0))~0}

= (g""q —q"q") K(—qz) (2.1)

involves a single scalar function K(t) which is analytic in
the entire t = —qz plane save for a cut along the positive
real axis. The discontinuity across this cut is related to
the high-energy limit of the total e+e hadronic cross
section if one neglects the Ze exchange contribution. In
terms of the R ratio, defined as the ratio of the total
cross section for e+e -+ hadrons to that for e+e
muon pairs, we have

R(s) = 12m Im K(s + i0+) . (2.2)

In an asymptotically free theory such as /CD, renor-
malized perturbation theory, plus the renormalization
group, may be used to compute the asymptotic behavior
of K(t) as ~t~ ~ oo. The discontinuity ImK(s+ i0+)
has an asymptotic expansion3 in powers of the running
coupling gz(s),

ImK(s+ i0+) ) a„g "(s), (2.3)

while the asymptotic behavior along the negative real t-
axis (corresponding to the Euclidean space correlation
function) is given by

K(t) ~(p, )+c gg (—t) '+co lng (—t)

+) c„g "(—t). (2.4)

The origin of the nonanalytic I/gz and lngz terms is re-
viewed in Sec. III. Only the constant term e(p ) depends
on the renormalization point )a; the perturbative coeffi-
cients (c ), co, c„)and (a„) are pure numbers, indepen-
dent of pz and all mass parameters. All mass-dependent
terms, such as rn /t, vanish faster as ]t] ~ oo than any
power of the running coupling, and hence they may be
neglected. We will refer to the coefficients (a„) in the
expansion of the discontinuity as the "absorptive" coefB-
cients, and the coefficients (c r, co, c„jin the Euclidean
expansion as the "dispersive" coefficients.

We assume that K(t) does not contain unexpected, patho-
logical terms such as exp(i'/A2) which, away from the pos-
itive real axis, make no contribution to the asymptotic expan-
sion (2.4).
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The absorptive and dispersive coefficients are not in-
dependent; one may express the absorptive coefficients in
terms of dispersive coefficients, or vice versa. The precise
relation between the coefficients depends on the behavior
of the running coupling as determined by the P function

p( 2( 2)) 2dg (P)
dp

(2.5)

P(g ) bp—g —bi g —bz g
2 4 6 8 (2.6)

A. One-term P function results

with the explicit form governed by the coefficients of its
perturbative expansion,

[n/2I
nI

!(
x(~bo)'" 'a -2!,+i, (2.i4)

= ai/(~bp). Here [x] denotes the integer part
of x, and B„are the Bernoulli numbers. Note that the
dispersive coefficient at a given order is determined by the
absorptive coefficient at one higher-order plus absorptive
coefficients at lower orders.

The existence of zeros in the sin(xbpz) denominator in
the relation between Borel transforms (2.13) implies that
the Borel transform of the dispersive coefficients C(z)
must have singularities at integer multiples of 1/bo unless
the absorptive transform A(z) has compensating zeros.
These singularities constrain the possible large-order be-
havior of the dispersive perturbative coefficients [7]. T»s
is discussed in greater generality below.

In the earlier paper [7], the special case of a one-term
P function,

P(g') = bo g',- (2.7)

(2 8)

and

C(z) —= cp+ ) " z".. I' n+1 (2 9)

was studied. The results are remarkably simple when
expressed in terms of the Borel transforms of the pertur-
bative coefficients, defined as

B. General P functions and renormalization schemes

In the body of this paper, we show that the preceding
one-term P function results do have a natural general-
ization to the case of a general P function. The exact
form of the results depends on the coefficients (2.6) of
the P function which in turn depend on the scheme used
for defining the renormalized coupling. As is well known
and will be reviewed at the beginning of Sec. V, the first
two coefficients in the expansion of the P function are
independent of the choice of scheme, while all higher co-
efficients may be arbitrarily adjusted by a redefinition of
the renormalized coupling [2, 8]. We shall find it conve-
nient to choose a definition of the renormalized coupling
for which the inverse P function contains only two terms:

As shown in [7], these satisfy

A(z) = sin(vrbpz) C(z) . (2.10)
or

1 1 A+
P(g') bpg' bpg'

' (2.15)

Expanding both sides of this result in powers of z gener-
ates explicit expressions for the absorptive coefficients as
linear combinations of the dispersive coefficients,

P(g ) = —b!)g / (1 —Ag ),
where

A:—bi/bp .

(2.16)

(2.17)

(-)"(2n-1)'
b zan+i,

(2k+1)! (2n —2k —2)!
With this choice, the solution of the renormalization
group equation (2.5) is particularly simple:

and

(2.11)

(-)" (2n)'
b
.~+i,

(2k+1)! (2 —2k —1)!

( )
( b )z +i

2n+1
(2.12)

or

q2 = A2 (g2(q ))"~ ' exp
bog'(q')

(2.19)

9' k9'(9')) 909'(9') 909'(9') ) '

(2.18)

For n = 0, Eq. (2.11) is replaced by ap = 7rbpc-
Note that the absorptive coefficient at any given order is
determined by the dispersive coefficients at lower orders.

Conversely, expanding

where

C(z) = A(z)/ sin(vrbpz)

yields the inverse relations

(2.i3)
From the definition (2.8), one sees that A(z) does have a

zero at the origin. Hence z = 0 is not a singularity of C(z).
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(2.20)

is the physical, renormalization-group-invariant mass
scale of the theory.

This choice of the P function will also greatly reduce
the algebra in our work. Another simple alternative is to
choose a different coupling gz whose P function has only
two terms [2]:

P(y ):—y. dg2/dp = boy—
4 (1 + Ay ) . (2.21)

A(z) = e "' A(z), C(z) = e "'C(z) . (2.22)

Thus our results employing the inverse two-term P func-
tion may be easily converted to the other case where the
P function itself has only two terms.

C. Modi6ed Sorel transforms

Remarkably, the simple relation (2.10) between Borel
transforms with a one-term P function does generalize to
a two-term (inverse) P function provided that one con-
siders a suitably "modified" Borel transform. As shown
in Sec. V, one is naturally led to introduce the following
definition. Given an asymptotic series

f(z) ).f z" (2.23)

As will be shown at the beginning of Sec. V, the two
schemes are related by a shift in the inverse coupling,
g

2 = g
z —A. Moreover, as shown in Appendix B (and

by an independent argument in Sec. V), such a redefini-
tion only changes the Borel transforms in the two schemes
by a simple exponential factor:

and the contour circles the origin. The residue of the
integrand in Eq. (2.25) generates the appropriate linear
combination of derivatives.

The modified Borel transform is related to the ordinary
Borel transform

F(z)—:) —", z"
n=O

through the integral relation

(2.27)

where the contour wraps about the cut connecting the
branch points of the integrand at y = 0 and y = z and
excludes any singularities of P(y). This result follows
directly from Eqs. (2.25) and (2.26) by using the gen-
eralized binomial theorem. An alternative derivation is
given in Sec. V [cf. Eq. (5.42)]. It will be shown in
Sec. V [Eq. (5.35)] that the inverse of this relation also
has a simple form

g

&( ) = A dy (1 —y/ )"' 'F(y).
Q

(2.29)

The integral relation (2.28) shows that the domain of an-
alyticity of the ordinary Borel transform includes that
of the modified Borel transforms [since singularities in
F(z) only develop when the contour is pinched between
the branch point at z and a singularity of E(z)]. In Ap-
pendix C it is shown that a basic effect of the transforma-
tion (2.28) or its inverse (2.29) is to shift the exponents
of algebraic singularities. If the modified transform has
the singular behavior

the modified Borel transform is defined as
&( ) - [1-( /R)]-, (2.30)

) I'(1+Az)

; I'(n+1+Az) (2.24)

f = g . x (1/z) 5'(z),

where y„(y) is the nth-order polynomial

(2.25)

„I'(n+A/y)
X (y) =4,o+ny

F(1 A/ ), (2.26)

Just like the ordinary Borel transform, this modified
transform may be viewed as a generating function for
the coefficients (f„).Provided that the coefficients (f„)
grow no faster than n! k" (for some constant k), E(z)
is analytic in a neighborhood of the origin. The coeffi-
cients (f„)may be extracted from the derivatives of the
transform P(z) evaluated at the origin. Because of the
presence of the shiR by Az in the argument of the I' func-
tions, a given coefficient f„ is not simply proportional to
the nth derivative of P. Instead, f„ is given by a linear
combination of the first n derivatives of E(z) evaluated
at the origin. In Sec. V [cf. Eq. (5.46)) we derive the
contour integral representation

then the standard Borel transform has the singular be-
havior

F(.) [1 (./R)]--- '("'")
F(n) F(1+AR)

(2.31)

as z -+ R, and conversely. The subleading, nonanalytic
terms in this correspondence are suppressed by a relative
factor of [1—(z/R)] in[1—(z/R)].

Just as for the usual Borel transform, the location and
nature of the singularities of E(z) closest to the origin
determine the leading asymptotic behavior of the coeffi-
cients (f„).If the modified transform E(z) has a radius
of convergence larger than K, then a trivial bound of the

Actuslly, F(z) is analytic in s larger domain than X(z)
since the overall factor of 1'(1 + Az) in the definition of the
modified Borel transform (2.24) causes P(z) to have simple
poles at z = n/A, n = 1,—2, . . .. These poles are removed
by the integral transform (2.28) which yields the standard
transform F(z). The overall factor of I'(1+ Az) could, of
course, be omitted in the definition of the modified transform,
but it will prove convenient not to do so.
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integral (2.25) using the asymptotic form of the I' func-
tion shows that the large-order growth of the coefficients
(f„) is bounded by

~f„~ & C n! Z-"n!"! (2.32)

(2.33)

for some constant C. If the nearest singularity to the
origin has the form (2.30), then the generalized binomial
expansion of the corresponding Borel transform (2.31)
shows that the coefficients (f„)have the large-order be-
havior

haved as z ~ oo, then the inverse transform (2.35) or
(2.37) defines a unique "sum" of the asymptotic series
which satisfies certain boundedness and analyticity con-
ditions [9]. If the Borel transform has a singularity at
some point zo on the positive real axis, then difFerent
contour prescriptions for the integrals (2.35) or (2.37) will
produce "sums" of the asymptotic series Q„f„y"which
differ by exponentially small terms of order exp( —zo/y).
This will be discussed in more detail below.

D. General /9 function results

Let A(z) denote the modified Borel transform of the
absorptive coefficients (n a„):

with corrections suppressed by inn/n, or, using the
asymptotic behavior of the I' function,

A(z) = ) na„z".I'(1+Az)

; I' n+1+Az (2.41)

~t g—n ~a+AR —1

r(~) r(1+Ax) (2.34)

Given the Borel transform of an asymptotic series, one
may generate a function whose asymptotic expansion co-
incides with the original series by performing a Laplace
transform

Similarly, let C(z) denote the modified transform of the
dispersive coefficients (n c„)with a suitably chosen con-
stant piece:

C(z) = (co —Ac i) + ) nc„z".r(1+Az). I' n+1+Az

1f(y):—— dz e '~" F(z),
u 0

since expanding I" (z) yields

(2.35)
(2.42)

In Sec. V we show that these transforms obey the same
simple relation as in the one-term P-function case:

f(y)-) . f y".
n=0

(2.36)

In terms of the modified Borel transform, the same con-
struction reads

f (y)
—= —(1—Ay) dz e '~" E(z) .

—.y, (z/y)"'
0 + Z

(2.37)

This is derived in Appendix C. If fo vanishes, then the
function

f(y) =— dy'f(y')/y'- ).f y"/n
0 n=1

(2.38)

has a slightly simpler form. Inserting Eq. (2.37) into the
integral in Eq. (2.38) and using

A(z) = sin(vrboz) C(z) . (2.43)

xI"-,'„. (2.44)

Here the (I"
& j are combinatorial factors defined by the

generating function

I'(n+ 1+x)
I'(ni + 1 + x)

(2.45)

When Eq. (2.25) is used to extract the original absorp-
tive coefficients from this relation, one finds thats

r
"g'j

~b 2A:+1

(2k+ 1)i 0,2k) ( )k o An —2k —1 ln-1
A:=0

(2t +1)!

yields

.„ ( / )"'
r(1+Az)

(2.39)

(2.40)

Alternatively, applying Eq. (2.25) to

C(z) = A(z)/ sin(vrboz)

yields the inverse relations

(2.46)

This will be the appropriate "inverse" to use if E(z) is
the modified Borel transform of a series (ng„) where
each coefficient is scaled by n, since in this case f(y)

i g„y" . This form will be used below.
If the (ordinary or modified) Borel transform is ana-

lytic in a neighborhood of the real axis and is well be-

Amusingly, the explicit relation (2.44) between the absorp-
tive and dispersive coefEcients, and its inverse (2.47), were de-

rived before the appropriate definition of the modified Borel
transform satisfying (2.43) was found. Direct (but tedious)
methods for obtaining these results are described in Appendix
D.
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n —1 2a~+i —A ~ g-, g- I( —)&zA, I, b,2) iA~ ~ zi,+ip i

m=1 k=1
(2.47)

together with cp = (ai —Aap)/(mbp) and c i—ap/(vrbp). These results are derived in Sec. V. It is easy
to verify that they reduce to the previous results (2.11),
(2.12), and (2.14) for the case of the one-term P function
when the limit A ~ 0 is taken. Note that, just as in
the case of the one-term P function, the relations (2.44)
and (2.47) have a "triangular structure": The right-hand
side of Eq. (2.44) involves coefBcients of lower order; the
right-hand side of Eq. (2.47) involves a coefBcient of one
higher-order plus coefficients of lower order.

the behavior A(z) Ay (1 ~ bpz) i &+ I'(I+py)
bpz ~ +1. Dividing by sin(nbpz) gives the behavior
of the modified dispersive transform, C(z) pA~ (I p
boz) ~+ I'(I+py)/7r. Thus the dispersive coefficients
will grow like

bn&A/, b&&yy~ A ( b )n &
—A/bp+p

ir (1+p ) I'(1+A/b ) 7r (I+p ) I'(1—A/bo)

E. Large-order behavior of the dispersive coefBcients (2.50)

The existence of zeros in the sin(m. bpz) denominator
in the relation between the modified Borel transforms
(2.46) implies that C(z) will have singularities at all non-
zero integer values of bp z unless A(z) has compensating
zeros. Hence, one of the following possibilities for the
large-order behavior must occur.

(1) If A(z) has a radius of convergence greater than
1/bp [so that the absorptive coefficients fa„j grow slower
than n! K" for some K ( 1/bp], then C(z) will have sim-
ple poles at z = +1/bp. If the residues Ay = A(+I/bp)
are not both zero, Eqs. (2.30) and (2.34) (for n = 1) show
that the dispersive coefficients will have large-order be-
havior which is completely determined by these residues:

b~„~/bo A ( b )~&-~/bo

~ r(1+A/b. ) ~ r(1-A/b, )

(2.48)

Ls @~00.
(3) If A(z) has a radius of convergence less than 1/bp,

so will C(z). In this case, the dispersive coefficients will
have the same large-order behavior (within an overall
constant factor) as the absorptive coefBcients, with both
growing faster than bP n! as n -+ oo.

These conditions on the possible large-order behavior
are independent of the specific dynamics of the asymptot-
ically free theory and follow solely from the existence of
renormalized perturbation theory. Each of the possible
behaviors above is fully consistent with the constraints
of analyticity and the renormalization group, contradict-
ing the claim of unique large-order behavior asserted in
[1]. [The asymptotic behavior given in this reference also
does not obey the constraint given in point (3) above, as
shown in Appendix A. ] However, in view of Eqs. (2.48)
and (2.50) and the asymptotic form of the I' function,
large-order behavior of the form

as n ~ oo.
(2) If A(z) has a radius of convergence equal to 1/bp,

so will C(z). If the singularity nearest to the origin lies
on the real axis, then the dispersive coefficients will grow
faster than the absorptive coefficients by a single power
of n. r For example, if the absorptive coefficients behave
for large n as

(2.51)c„C+bp F(n+ p+) —C (—bp)" I'(n —p )

for the dispersive coefBcients is, in some measure, a
generic possibility. This behavior (for some values of C~
and py) will occur unless either (i) the absorptive trans-
form A(z) is singular within bp]z] & 1 [in which case both
absorptive and dispersive coefficients grow more rapidly
than (2.51)],or (ii) the absorptive transform has zeros at
both z = +1/bp and a radius of convergence greater than
1/bp [in which case the coefficients grow more slowly than
(2.51)].

In a different renormalization scheme, for which the
inverse P function does not have the simple two-term
form (2.15), the exact relation between the dispersive
and absorptive modified transforms will not have the sim-
ple form C(z) = A(z)/sin(7rbpz). However, as shown in
Appendix B, a coupling redefinition corresponding to a
change in renormalization scheme cannot change the lo-
cation or nature of any singularities in a Borel transform
which are within the radius of convergence of the Borel
transform of redefined beta function. Thus, the above
constraints on the possible large-order behavior of the
dispersive coefficients holds without modification in any

for some constants Ay and py ) —1, then from
Eq. (2.34) the modified Borel transform A(z) will have

If A(z) has both a nonzero value and a branch point at
boz = +1 with a vanishing discontinuity at the branch point
[e.g. , A(z) A++ (1—bpz), with n ) 0], then the dominant
singularity in C(z) is a simple pole at bp = +I, and the large-
order behavior of the dispersive coefficients is governed by
Eq. (2.48). In this case, the dispersive coeKcients grow faster
than the absorptive coefficients by more than one power of n.

s S" n"~b'+'+ X (—S )"n "~"+')-
I'(1+A/b ) I'(1—A/bp)

(2.49)
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renormalization scheme in which the P function coeffi-
cients grow slower than n'. K~ for some K & bo.

C'(q) = (q') ' D'(q'/~' g'() ')) (2.55)

F. Renormalons and operator-product expansions

(2.52)

where (0;j denotes the appropriate set of local opera-
tors. The Fourier transform of the vacuum expectation
value of this expansion gives

&(-q') - ).C'(q) (o]0'10) (2.53)

where
p, v

C'(q) —=
3,, d xe "*C„'„(x). (2.54)

The coefficient functions for the scalar operators (0,)
with nonvanishing vacuum expectation values have the
form

Explicit studies of perturbation theory in QCD show
the following [2—5].

(i) The ultraviolet behavior of individual multiloop di-
agrams can generate contributions behaving as c~+q
(—bo/k) m!, for k = 1, 2, . . . , leading to singularities
in the Borel transform C(z) at the points z = k/b—o
on the negative real axis. Near the first singularity [4],
C(z) (hoz+1) +~, where p is related to the anoma-
lous dimension of local operators of dimension six. These
contributions are referred to as ultraviolet renormalons.

(ii) The infrared behavior of multiloop diagrams can
generate contributions behaving as c~+i ~ (bo/k) m!,
for lr = 2, 3, . . . , corresponding to singularities in C(z) at
the points z = k/br) on the positive real axis. Near the
first singularity [5], C(z) (bp z—2) ) ', ol' equiv-
alently [using (2.29)] the modified transform C(z) has a
simple pole, with a subleading logarithmic branch cut. s

These contributions are referred to as infrared renor
matons.

(iii) Instanton —anti-instanton pairs generate singulari-
ties in the Borel transform on the positive real axis (start-
ing at z = 167r2) to the right of the leading infrared
renormalon singularity.

(iv) No other sources of singularities in the Borel trans-
form are known.

The presence of infrared renormalon singularities on
the positive real axis is directly related to the existence of
nonperturbative vacuum expectation values of composite
operators [11]. The operator-product expansion of two
electromagnetic currents reads

i T(2~(g+ 2x) 2„(JJ —2x)) ) C„' (x) 0, (&),

where the d, are the physical dimensions of the operators
0, and the D' are dimensionless functions which have a
perturbative expansion in powers of g (p, ). For QCD,
the lowest dimension gauge-invariant composite opera-
tors with nonvanishing vacuum expectation values are
the unit operator 1, with dimension d = 0, [F" F„]and
[m Qg], both of dimension d = 4, followed by various op-
erators of dimension 6, 8, . . . . The entire asymptotic
expansion of the Euclidean correlation function (2.4) is
contained in the coefficient function of the unit opera-
tor. The dimensionless functions which are not associ-
ated with the unit operator obey a homogeneous renor-
malization group equation

g'(a')
=exp — g D' 1, g q . 2.57

g'() ')

By using the expansion (2.6) for the P function and writ-
ing P'(g ) = Poi gz + Pii g + one finds that

2 (p2)
d 2 V*(g') Wo l„g'(q')

P(g') bo g'(~') (2.58)

where the ellipsis stands for a power series in g (q )
minus the same series in g (p ). The terms involving

g~(p, 2) may be absorbed by making a suitable multiplica-
tive redefinition of the renormalized operator 0, to yield
a renormalization group invariant which is independent
of p2. The vacuum expectation value of this invariant
produces a dimensionless numerical constant times Ad',

where A is the renormalization-group-invariant mass pa-
rameter defined in Eq. (2.20). The power series in g (q )
can be absorbed into a redefinition of the coefficient func-
tion D'(1, g~(q2)). Thus, a given term in the operator-
product expansion produces a contribution to the current
correlation function of the form

(A2 ) d, /2
~*( q') - I, I

-[g'(q')]"'"D*(g'(q')) (2 59)

where D'(g (q2)) admits an asymptotic expansion in

(2.56)

where the p' are the anomalous dimensions of the op-
erators 0, . The renormalization group may be used to
transfer the momentum dependence into the running cou-
pling:

D*(q'/) ' g'(~'))

Minimal subtraction schemes, in which the P function is be-
lieved not to contain "renormalon' singularities, should sat-
isfy this condition. See, for example, Refs. [3] and [10].

Thjs entajh) a branch point in A(z) with a vanishing dis-

continuity as discussed in the previous footnote.

Chiral symmetry requires that nonchirally invariant oper-

ators like [Q@] be accompanied by a factor of the quark mass.

Hence, only even dimension composite operators appear in

the expansion.
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powers of g (q ). Expressing q2/A~ in terms of the run-
ning coupling defined by the two-term inverse P function
[Eq. (2.18)] shows that these contributions give essential
singularities at the origin in the g (q ) plane. The lead-
ing behavior at gz(q2) = 0 for each term in the operator-
product expansion is given by

Igi( 2) 2( 2) /'Y —"~'/2)/&
g q exp

b

(2.60)

where D' = D'(0) is a constant.
The contribution from a composite operator is inher-

ently scheme dependent; one can always redefine the op-

erator by adding a constant multiple of the unit opera-

tor. This changes the vacuum expectation value of the
operator, at the cost of moving (part of) the nonpertur-
bative contribution (2.60) into the coefficient function of
the unit operator. Consequently, in any method to "re-
sum" the perturbation series, one should expect to find
ambiguities of precisely the form (2.60). Infrared renor-
malon singularities in the Borel transform are precisely
the reflection of these ambiguities. As mentioned ear-
lier, each singularity on the positive real axis generates
a nonperturbative ambiguity in the inverse Borel trans-
form. It is instructive to work out a specific example.
We consider the case where the modified Borel trans-
form C(z) has a branch point at tioz = d near which

C(z) ~ (d —bsz)~ i Asingu. larity of this form in the
inverse transform (2.40) creates an ambiguity resulting
from difFerent possible choices for routing the contour
about the branch cut which starts at z = d/bo The.
discontinuity across this cut gives a measure of this am-
biguous contribution. Retaining only the leading term
near g~(qz) = 0 we obtain

butions to the inverse Borel transform, then this would
have to be interpreted as an unexpected nonperturbative
correction to the coefficient function of the unit oper-
ator in the operator-product expansion. This would

be a major problem for phenomenological applications
of the operator-product expansion (e.g. , @CD sum rules

[12]) which are based on the assumption that there ex-
ists a range of moments where nonperturbative ([E ])/q

([rngg))/q4 contributions are significant and cor-

rectly parametrize the leading nonperturbative effects,
while simultaneously all coefficient functions may be well

approximated by the first term or two of their perturba-
tive expansions. No convincing argument demonstrating
either the presence or absence of such 1/q~ corrections is
known to the authors. i~

III. RENORMALIZATION GROUP
AND ANALYTICITY

K(t) ) k„(t/p2, rn2/p, ) g2(p, ) (3 2)

We turn at last to the details of our work, beginning
with a review of the renormalization group equation for
the current-current correlation function and the origin of
the large momentum asymptotic expansion (2.4). Using
a mass-independent renormalization scheme, the dimen-
sionless function K(t) depends on the renormalization
point p2, the renormalized coupling g2(pz), and any mass
parameters m(pz) in the form

K(~) = K(t/I ' g'(~') ~'(I ')/v') (3 1)

The function K(t) has a perturbative expansion in pow-
ers of gz(p2):

DK(—q ) const x dzexp —
2 z g (q )

d/bp g'(q')
x (boz —d)

const'x g (g )
" 'exg —

~ 2 ).bog2 qz

(2.61)

This is precisely the structure of a nonperturbative
operator-product contribution (2.60) if we identify d =
d;/2 and (T = p(')/bo.

With one exception, the singularities in the modified
transform C(z) generated by the zeros of the sin(m. bpz)
denominator in Eq. (2.46) are at precisely those loca-
tions which correspond to ultraviolet and infrared renor-
malons. The exception is the zero at boz = 1. A singular-
ity at this location will generate a nonperturbative ambi-
guity of order 1/qz in the inverse Borel transform which,
because there is no gauge-invariant local scalar operator
of dimension 2, cannot be attributed to any physical vac-
uum expectation value. The absence of this singularity
is possible only if the modified absorptive Borel trans-
form A(z) has a zero at hoz = 1. This constraint has
not been previously noted. Alternatively, if a singular-
ity at boz = 1 does exist, leading to O(Az/qz) contri-

Since all momentum dependence is hidden in the coeffi-
cients k, this expansion is not directly useful for exam-
ining the large momentum behavior of K(&). However,

Eq. (3.1) implies that a variation in t is equivalent to
a variation in p,

z combined with a suitable compensat-
ing change in the coupling g (p, ) and mass rn(p )
dependence of K(t) on the renormalization point p, is
described by the inhomogeneous renormalization group
equation

In massless @CD, any 1/q correction must have s nonper-
turbative origin. However, with nonvanishing quark masses in
the Lagrangian, O(m /q ) terms, calculable in perturbation
theory, also appear in the operator-product expansion.

~~ Conceivably, similar 1/q nonperturbstive contributions

might appear in many other correlation functions. Such con-

tributions may already have been seen in Wilson loop ex-

pectation values, where available numerical data suggests the
presence of corrections proportional to the area of the loop in

the limit of small loops (i.e., for loops large compared to the
lattice spacing but small compared to 1/A) [13].
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&'d 2 K(t/I' g'(I') m'(~')/ ') = ~'& 2+l3(g')& 2+~(g')m'& 2 K(t/~', g' m'/~') = D(g') (3.3)

where the P function P(g2) describes the p dependence
of the renormalized coupling,

t 'd, g'(~') = P(g'(u'))2d 2 2 (3.4)

and the anomalous dimension b(g2) characterizes the
variation of the running mass:

2 (~2)

2D(g ) dp 1 1

&(g2) bo g'(~2) g'( —t)

+/ ——
2 /In

(di dobi ) g'( —t)
&bo bo ) g'(p')+, (3.12)

D(g ) dp+dig +d2g
P(g )- bog —-big —",2 4 6

6(g ) bpg +Big +

(3.6)
(3.7)

(3.8)

with bp 0 0 in an asymptotically free theory such as
@CD.

We will first consider the current-correlation function
K(t) in the Euclidean region where t is real an—d posi-
tive. To solve the renormalization group equation (3.3),
one first introduces a running coupling g2( —t) defined by

p d 2 m (p ) ™(&) b(g (p )). (3 5)

Because the electromagnetic currents are conserved they
acquire no anomalous dimension. However, since the
product of two current operators is singular, one subtrac-
tion proportional to the unit operator is required for the
proper definition of the time-ordered product in Eq. (2.1);
the inhomogeneous term D(g2) characterizes the depen-
dence of this subtraction term on the renormalization
scale. The functions D(g ), P(g ), and b(g ) have per-
turbative expansions of the form

K(t) r(tt ) + c i g2( —t) '+ cp lng2( —t)

+).c g (—t) (3.13)

as quoted earlier in Eq. (2.4). The coefficients
(c i, cp, c„) are independent of y.

2 and all renormalized
masses. The mass independence follows since K(t) is fi-

nite in the massless limit and m2( —t)/t vanishes fasteris
than any power of g2( —t) as t ~ oo. All remaining p,

dependence is contained in the momentum-independent
term r(p2). The presence of the 1/g2( —t) and lng2( —t)
terms in this result may, at Erst glance, appear odd.
However, since the expansion of Eq. (3.9) gives

where the ellipsis stands for a power series in g (—t) mi-
nus the same series in g2(p2). All the terms involving
g2(p2) may be absorbed in a single p2-dependent param-
eter r(p, ). The series in g2( —t) combines with the per-
turbative expansion (3.2) of K(—1,g2( —t), rn2( —t)/( —t))
to yield a modified expansion in powers of g ( t) H—enc.e
K(t) has a large-t asymptotic expansion of the form

—:ln
(

(, ) &(g') &~')
(3.9) 1 = 1 (—t) b, g'( —t)+b + g ~ ~

g2( t) g2(p2) (p2 ) bp g2(~2)

The coupling g (—t) is independent of the renormaliza-
tion point p, but obeys Eq. (3.4) with p2 replaced by t. —
Having defined the running coupling, we may now define
the momentum-dependent mass parameter

'(-~)
rn (—t) =m (p )exp dg2 — = 2 2

(- )

g'(i ')
(3.io)

K(tip' g'(p') m'(p')/~')

With these definitions in hand, the general solution of the
full renormalization group equation (3.3) may be written
as

(3.14)

the 1/g2( —t) term is precisely what is required to gen-
erate the in(q2/p2) behavior of the free-field correlation
function. Similarly, the lng2( —t) term reflects the pres-

'3Inserting the expansions (3.7) and (3.8) into the definition

(3.10) of the momentum-dependent mass shows that, in the
large t limit where —g (—t) tends to zero,

m (-t) g (-t)j ""m

= K( —1,g'( —t), m'( —t)/( —t))
a(—t) D( 2)g

, („) p(g2)
' (3.ii)

vshere

2 - So)ho 2 &(g ) &O
9 {8 ) 2

m = g(g. ) ep( — dg, +
0

This result may now be expanded in powers of g (—t).
However, the presence of the inhomogeneous term involv-

ing D(g ) alters the perturbative expansion of K(t). To
see this, we note that the expansions (3.6) and (3.7) im-

ply that

xm (y, ),
is independent of the scale mass p, . In @CD 6o ( 0, and thus

m (—t) vanishes as a positive power of the coupling when

t ~ oo. The addition—al suppression by 1/t makes such mass
terms asymptotically insignificant.
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ence of in[in(q~/yz)] terms in the large momentum be-
havior of K(t).

It is worth noting that using diferent renormaliza-
tion prescriptions may result in the addition of a fi-

nite, qz-independent term P(gz(p2)) to the renormal-
ized current-correlation function K(t/p~, gz(p~)), with

P(g (p~)) having a power series expansion

equation for K(t/p~, gz(pz)) can be avoided altogether
if one studies instead the differentiated function i4

t8K(t/p, , g (p ))/8t. Here, to keep the discussion sim-
ple, we consider only the massless case. Since this func-
tion satisfies a homogeneous renormalization group equa-
tion, we may choose p,

~ = —t to obtain a power series
expansion in the running coupling g~(—t):

P(g (p )) ) p„g "(p ) .
n=O

(3.15) t—K(t/pz, g~(pz)) ) k„'gz" (—t) .
8

n=O
(3.18)

Such a change will add a contribution

dP(g (p' ))
( 2( ))

dP(g )
dg~p

(3.16)

to the inhomogeneous term D(gz(p~)) in the renor-
malization group equation (3.3). Since this shift in
D(g2(pz)) has an expansion in powers of g (p, ) starting
at order g4(pz), we learn that, by appropriately choosing
the renormalization scheme, one can remove from D(gz)
all but the first two terms in its perturbative expansion,
and obtain

D(g') = dp + ~ig' (3.17)

The remaining coefficients do and d1 cannot be altered by
this redefinition. It is these terms in the function D(gz)
that produce the 1/g~( —t) and 1ng~( —t) pieces in the
asymptotic expansion (3.13) of the correlation function
K(t).

The inhomogeneous term in the renormalization group
I

Comparing this expansion with the previous results
(3.12) and (3.13) shows that the first two terms of the
differentiated current correlation function [and of the in-
homogeneous term D(gz)] are given by

kp = —dp = bpc

dl = blc i bpcp. (3.20)

Since the correlation function K(t) is analytic through-
out the cut t plane, in addition to the Euclidean
space asymptotic expansion (3.13), we may examine the
asymptotic behavior of K(te's) as t -+ —oo for an arbi-
trary phase 8. The same steps as before yield

The expansion of the original correlation function may
be recovered by integrating over t and using dt/t
dg'( —t)/P(g'( —t)):

K(t/I", g'(p')) - K(1 g'(V'))
s (—t) itg2+, ) k„'g'". (3.19)

e'(—~)
K(te' /p, g (p ), m (y, )/p ) = K( —e', g (—t), m (—t)/( —t)) — d

s (") (3.21)

I

Hence the coefficients (c„(8))satisfy the recursion rela-
tion

i —c„+i(8) = —b„+ic i+b„cp+) mb„c (8).

(3.24)

Our goal is to solve this recursion relation explicitly. This
will enable us to relate the asymptotic behavior in the
Euclidean region where —t is real and positive, to the
corresponding behavior in the Lorentzian domain where
t = s+i0+, with s positive. Taking the imaginary part of
the expansion (3.22) when 8 = —m, and comparing with
the expansion of the discontinuity,

The occurrence of the inhomogeneous term in the renor-
malization group is related to the need for a subtrac-
tion in the Lehmann (dispersion relation) representation
for K(t/p2, g2(p2)). The Lehmann representation for
t 8K(t/p2, g2(p2))/Bt dispenses with this additional subtrac-
tion constant.(3.23)

and the large-t asymptotic expansion in powers of g ( t)—
now produces 8-dependent (but m and p independent)
coefficients:

K(te') - rc(p')+c iibp8+c ig'( —t) '+cp lng'( —t)

+ ) .~(8) g'(-t)" (3.22)
n=1

Here, so as to simplify the later notation, we anticipate
the result that the phase dependence of the g2 indepen-
dent term has the simple linear form c 1 ibo8.

Because variations in the phase of t are equivalent
to variations in 8, the 8 dependence of the coefficients
(~(8)) is controlled by the P function:

(. 8 81
0 =

i
i + t

i
K(te*')——

( 88 8t)

+ - P(g'(-t))
. g'(-t) g'( —t)

-c ibp+) i +n c„(8)g (—-t)".P(g ( t))
88 g~ t—
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ImK(s+ iO+) ) a„g(s) ",
n=p

(3.25)
OO

(zl = (Ole = ) . ,
(nl

n=p
(4.10)

shows that the absorptive coefficients (an) are given by which are (left) eigenvectors of the creation operator:

a„=Im c„(—vr)

for n & 1, while
Gp = —7l6p C

(3.26) (zla' = z(zl.

Thus the coherent state representative, defined as3.27
Ce(z) = (zlCg)

(4.ii)

(4.i2)

IV. BOREL SUMS AND COHERENT STATES
obeys

C, (z) =.-*""C(z). (4.13)

~ d
i—c„+i(8)= nbp c„(8) (4.1)

for n & 1, plus

To illustrate our method in simple terms, we first con-
sider the solution to the recursion relation (3.24) for the
special case of a P function which contains only one term,
P(g ) = bpg —The . recursion relation (3.24) simplifies
to

This coherent state representation

( ) ).nc„(8)
gf

n=1
(4.14)

is precisely the Borel transform of the perturbative coef-
ficients (cp, ncn(8)). For 8 = 0 this is the same trans-
form of the dispersive coefficients introduced earlier in
Eq. (2.9).

The absorptive coefficients may also be assembled to
form an abstract vector,

. d
i ci(—8) = bpcp.
d8

(4 2)

To solve these equations, it is convenient to regard the
coefficients as defining an abstract vector which may be
represented as a state of a simple harmonic oscillator:

IA) = ) In) a„,
n=1 n'

whose coherent state projection
A(z) = (zlA)

(4.i5)

(4.16)

ICe)
—= Io) cp+ ) .I ),c (8)

n=l
(4.3) gives the Borel transform (2.8) of the absorptive coeffi-

cients (n an j:
Here IO) is the usual ground state defined by

alO)
—= 0, (4.4)

A(z) =)," z".
n=1 " (4.i7)

and the basis states

ln) =, Io)
(at )n

(4.5)

Using Eq. (4.13) to rotate from 8 = 0 to 8 = —n. (from
the negative real t axis back to the positive axis) and
taking the imaginary part gives

[a, aij = 1.
Since

(4.6)

are eigenstates of the number operator N = a~a, where
at and a are standard creation and annihilation operators
obeying

A(z) = sin(vrbpz) C(z) . (4.18)

This is the result of [7] quoted in Eq. (2.10). We have
obtained it in a very simple fashion which demonstrates
an interesting and useful connection: The Borel trans-
form is the coherent state representation of the abstract
vector which describes the original perturbative series.

atln) = In+1)v'n+1, (4.7) V. GENERAL P FUNCTION

. d
i—ICg) = bpatlCg),

dI9
(4.8)

which has the immediate solution

the recursion relations (4.1) and (4.2) are equivalent to a
simple operator equation, As was discussed earlier, the first two terms of the

perturbative expansion of the P function are scheme in-
dependent and uniquely determined. On the other hand,
the higher-order terms are scheme dependent. They may
be altered by using different renormalization schemes cor-
responding to coupling redefinitions of the form

ICg) = e '""
IC) (4 9) g = g +d4g +d6g +.-2= 2 4 6 (5.1)

where IC) is the initial vector with 8 = 0.
To express this solution in an explicit form, we utilize

coherent states defined by

which leave the lowest, order-g2, term unchanged. This
is straightforward to verify directly by inserting Eq. (5.1)
into
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u'd, P——(g'),
dp

and comparing with

2 8gV'd, = P—(g').
8p

(5.2)

(5.3)

ten as

i—(c„~i(8)—Ac„(8)) = nbpc„(8)

for n & 1, while

(5.10)

As we shgl see, it will prove convenient to exploit this
freedom and employ a "two-term inverse P function"

. d
i—ci(8) = bp(cp —Ac i).

8
(5.11)

1 1

~(g') bog' bog'
(5.4)

The generalization of the previous abstract vector defini-

tion (4.3),

Before proceeding to extend the results of the preced-
ing section to this case of an essentially general P func-
tion, it is worth pausing to describe the relation of this
coupling definition to that where the P function itself
contains only two terms:

ICe) = 10)(~ —&c-i)+).I&),~(8)
n=1

(5.12)

transcribes relations (5.10) and (5.11) into an operator
equation

P(g ) = bp—g —bpAgs.

It is easy to check from Eqs. (5.2) and (5.3) that or

t'
l. 1& . d

I

1 —&a' —
I

&—ICe) = boa'lCe),
Np d8 (5.13)

1 1 +
g

(5.6)
i—lCe) = bpSlCe),
d8

where

(5.14)

converts P(gs) into P(gz). The relationship of the pertur-
bation series for the current-current correlation function
for these two choices of the P function is, in fact, a simple
application of the mathematical techniques developed in
the preceding section. In view of Eq. (3.14), with a one-
term P function a change of scale from yzi to pz2 induces
a change in the coupling of

1 = 1 2 2

s( 2)
=

z( z)
+ o (P2/Pi) (5.7)

This is precisely the coupling redefinition (5.6) if we iden-
tify g = g (ps), g = g (pi), and A = bpin(ps/pi).
Thus, if we replace the phase rotation e'e used in the
previous section by the scale factor @22/pzi = e"~~', then
the previous solution (4.13) of the one-term renormaliza-
tion group relations (4.1), (4.2) implies that

C(z) = e"'C(z), (5 8)

where C(z) and C(z) are the Borel transforms, defined
by Eq. (2 9), for the two difFerent schemes. This is the
result quoted earlier in Eq. (2 22). Since the relation be-
tween these t 0 schemes hM this simple, explicit form,
it suKces to work out the consequences of the more con-
venient, two-term inverse P function.

We turn now to solve the recursion relation (3.24) for
the two-term inverse P function (5.4). This we shall do by
developing an operator technique which generalizes that
introduced in the previous section. Inserting the two-
term inverse P function (5.4) into the recursion relation
(3.24) gives

i—c„+i(8) =bo(co —&c i)& + ) mboA" c (8).d8

(5.9)

By subtracting successive equations, this can be rewrit-

8=
l

1 —&at —
l

at.
Np

(5.15)

Using the commutation relation [N, atj = at, this opera-
tor may be rewritten as

S= tl1 —sat
N+1)

1= at(N+ 1)

1=at+Aatai (5.16)
N —Aai +1'

Just as in the work of the previous section, Eq. (5.14)
has the straightforward operator solution:

e
—shoes

l C) (5.17)

where lC) is the initial vector at 8 = 0.
Continuing to work in the spirit of the previous section,

we introduce left eiaenstates of the onerator R.

&(&I = Kl~ (5.18)

which reduce to coherent states at A = 0. The projection
of the abstract vector lCe) onto these states defines a
generalization of the coherent state representation:

~e(() = KICe). (5.19)

In this representation, the abstract operator relation
(5.17) becomes a concrete relation between ordinary
functions:

&.(() = -'""&(()
We again assemble the absorptive coeKcients into an ab-
stract vector,

l~) =):I ) (5.21)
n i—

which has the generalized coherent state representation
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&(() = ((,'l~) (5.22)

Using Eq. (5.20) to rotate from the negative real t axis
to the positive axis and taking the discontinuity gives

0, 1, 2, . . .) are linearly independent and form a complete
set of analytic functions in the region I(l ( 1/IAI. Making
use of these functions gives

A(() = sin(7rbp() C(() . (5.23) (5.29)

This is the relation (2.43) quoted in Sec. II. The functions
A(() and C(() will be seen to be precisely the modified
Borel transforms of the absorptive and dispersive coefB-
cients.

To use this result, we need the explicit form of the gen-
eralized coherent state representation. To derive it, we
first note that the explicit construction of the ((I states
may be obtained from their coherent state representa-
tive ((lz'). To obtain this representative, we multiply
Eq. (5.18) from the right by (N —Act + 1)lz') and use

d

d .Iz') = u'lz') (5.24)

((I') = A& du (] u)A(, —leg((z (5.26)

Because z' = 0 is a regular-singular point of the differen-
tial equation (5.25), the other linearly independent solu-
tion is singular at the origin. The scalar product of a co-
herent state Iz') with a vector of finite norm produces an
entire analytic function of z'. Hence the solution (5.26)
is the proper solution to the differential equation (5.25)
since it defines an entire analytic function of z'. The
state Iz* = 0) is the ground state IO). The solution (5.26)
is normalized so that ((IO) = l.

Expanding Eq. (5.26) in powers of z*, using the stan-
dard integral representation of Euler's beta function, and
using

which follows from the definition (4.10), to arrive at the
differential equation

( z*„ , —A„ + 1 ((Iz') =
I

1 + z"„ I „ „((Iz'),„d d . ( „d'I
dz' dz' ( dz*) dz*

(5.25)

which is a standard confluent hypergeometric equation in
the argument (z'. The solution we need is, however, easy
to obtain directly. Since the differential equation (5.25)
is linear in z*, it is solved by a Laplace transform involv-
ing the kernel e"z* which converts the derivative d/dz'
into a multiplication by p and replaces z' by the deriva-
tive d/dp. This method produces a first-order differential
equation, which leads to the solution

and

~(() = 5 —A — ) + ) .4 X) ~,
n=1

(5.30)

which are just the results (2.41) and (2.42) quoted in
Sec. II.

We turn now to investigate the relationship between
the new transform and the standard Borel transform,
and to also put our previous results in a more general
setting. The power series expansion coefficients (f„)of
some function f(x) may be used to define an abstract
vector according to

IF) =):ln)
n=o

(5.31)

The coherent state representation produces the Borel
transform

OO

F(z) = (zlF) = )
n=O

(5.32)

&(() = ((IF) = ).S.e.(q).
n=o

(5.33)

The relation between the modified Borel transform and

the Borel transform can be derived by using the transfor-
mation function ((lz') given in Eq. (5.26). We first note
that, according to Eq. (4.10),

OO

z = ) —a IO) (Ola"
dz n!z=o n=0

= ):ln)(nl = 1 (5.34)

Utilizing this identity, the relation between the two trans-
forms can be easily obtained,

while the new representation produces the modified Borel
transform

z*n
(nlz*) =

gives the number state representation of ((I:

(5.27) &(() = ((~l)") = (( d, (*~l~)
d

1

du (1 —u)"~ 'e~"~(zlF)
z=O

& ((:) =—Xln)/vn!
I'(1+ A()

I'(n+ 1+ A()
(5.28)

Near the origin ( = 0, (t)„(() has a power series expan-
sion which starts from (", so the functions (p„(())(n =

du (1 —u) "~ F((u) . (5.35)

This expression was previously quoted in Eq. (2.29) of
Sec. II.

To invert this relation, so as to express the ordinary
Borel transform in terms of the modified Borel trans-
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B(z) = (zlP) =1+
(1 ),+„/~ (5.36)

produces a simple pole in the new representation. This
can be proven from the observation that

form, we note that by Cauchy's formula any analytic
function can be expressed as a superposition of simple
poles. Hence the inverse relation to (5.35) may be found
by studying how to invert a simple pole. The state IP)
defined by the coherent state representation

verse relation to Eq. (5.35):
/

b'(n) = (nllb') = f , (nl/) = i/(')(('Ilb') (b 42)

This result was presented in Eq. (2.28) in Sec. II, where
it was derived in a different fashion.

Number state matrix elements of the completeness re-
lation (5.41) give

$,
'

x (i/Ob. (()=b ... (5.43)

Ag —1 P(u
du (1 —u) 1+

P( ' (1 —u) "&

1 —P( (1 —P(u)" //

1

1 P(—
Hence, in view of Eq. (5.35),

~(() = ((IP) =
1

(5.37)

(5.38)

where

x (P)
—= (nIP)vn' (5.44)

Here the contour must encircle the origin with a radius
constrained by I(I ( 1/A so as to avoid the singularities
of P„((). With this restriction, Eq. (5.43) describes the
way in which (P„(()) and (g„(P)) form reciprocal sets of
basis functions. Expanding the coherent state represen-
tative (zIP) given by Eq. (5.36) in powers of z identifies
the number state components (nIP) and yields the ex-
plicit form

I

((I&) = f2, , (CI /) = i/(')(('Ib')

This implies the formal completeness relationis

f 2 , I/) = i/( )(('I = i.

(5.40)

(5.41)

This expression of the identity holds when it is inserted
in matrix elements and the contour chosen appropriately
so as to enclose the relevant singularities. Inserting the
completeness relation between (zI and IF) yields the in-

Having found how to invert the relation (5.35) for
a simple pole, we can now treat the general case. In
the neighborhood of the origin where the modified Borel
transform (5.33) is assumed to define an analytic func-
tion, Cauchy's formula may be applied:

((IF) = d(' (('IF)
(539)

27ri (' —( '

where the contour circles about the origin with I('I )
In view of the transformation function (5.38), this

Cauchy formula may be written asis

„I'(n + A/P)

r(1+A/P) ' (5.45)

w hich are polynomials in P. This is the result quoted in
Eq. (2.26) of Sec. II.

The completeness relation (5.41) can also be exploited
to extract the coefficients (f„) of an asymptotic series
from the modified Borel transform:

f =( IF)v != 2,. ( IP=I/()((IF)v !
d(

2
. X (1/()((IF) (546)

d(

Since ((IF) = E((), this is the formula (2.25) stated in
Sec. II.

With these results in hand, we may now derive the
explicit relation between the dispersive coefficients (~)
and the absorptive coefficients (a„). Applying (5.46) to
the absorptive transform and using the simple relation
(5.23) between their modified Borel transforms, A(() =
((IA) = sin(carbo()((IC), gives

(nIA) v n! = . y„(1/() sin(xbo()((I( )2+i(

ii„(1/() sin(nba j) ) bi (C (ml C) v'm! ),d(

m=O

where in the second line Eq. (5.28) has been used. Conversely,

(n(C)vn! = f . v„(1/j) ( ) b (()(mlA)v'm!) .

(5.47)

(5.48)

' So as to keep the notation uncluttered, we use the symbol ]P = 1/(') to denote the state ]P) defined by Eq. (5.36), but
evaluated at P = 1/('.

This represeibtation of the identity as a contour integral is a generalization of an idea of Schwinger [14].
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Using the definitions (5.12) and (5.21) of the states ~C) and ~A), and the explicit forms (5.28) and (5.45) for the
functions Pn(() and y„(() gives, for n & 1,

na =„("sin(mbo() (cp —A2 s)+ ) 4 (j)mcd( nl'(n + A()

m=1

= ) . ( "sin(vrbo() ((co—Ac 1)bm, o+m,c }.d( nI'(n+A()
2~i I' m+1+Am=p

(5.49)

The terms in the summation in Eq. (5.49) with m & n vanish since the integrand is then regular at ( = 0. To evaluate
this expression, we define combinatorial factors I

&
(where n, m, l are non-negative integers which satisfy n m+ l)

by the generating function

I'(n+ 1+x)
r(m+ 1+z)

Inserting this expansion in Eq. (5.49) and expanding sin(nba() in powers of ( now yields

(5.50)

n 1
d
— ( oo ( b )2k+1 n m 1——

(C $C ) ( ) ( )ki O~ pn —2k —1m
—1 )+ ) ~C ( ) ( )k( O) ),n

—m —2k —1m —1

(2k + 1)t 0,2k (2k + 1)t m, 2k
k=O m=1 Jc=p

(5.51)

Here [z] denotes the integer part of 2:. This result
provides an explicit evaluation of the absorptive coefB-
cients an in terms of the dispersive coefficients {'cm}with
smaller indices, rn ( n It is th. e result (2.44) of Sec. II.
In the limit A ~ 0, using

which is precisely the previous result in [7] as quoted in
Eqs. (2.11) and (2.12) of Sec. II.

Making use of the expansion

r(++1) n!
I'(n —k+ 1) (n —k)! '

we, find that, for n & 0,

(5.52) ) - ~(2'" —2)&2k~

sin z „(2k)! (5.54)

(n-1)!
-i (vrbp)"= ~n,oda( —) ' ca

!8!—1 2k+1
k (~bo) c -2k-i' ~-( ) (2k+1)! (. 2k 2)!

(5.53)

where B arne the Bernoulli numbers, and going through
similar steps, one may express the dispersive coefficients
(c„}as a sum of the absorptive coefficients (a„}. For
n) 1, one has

d( I (n+A()
2ni( I'(m+1+A() sin carbo(

n-1
d 1

n —m —1
n+1 n + ) ( ) In —1()()n m t 1(m——n- —

nmbo 2ni( sin 7rbo(

n —1 I'L ™2

&n+1 —&an g -, g - l(2 —2)&2kl,
b )2k 1).

m=1 A:=1

(5.55)

while

ap
C

7l p

a1 —Aap
Cp =

Vrbp
(5.56)

coefficients (a }with m & n+ 1 and the A —+ 0 limit
reproduces the previous result in [7] quoted in Eq. (2.14).
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,d (tip') = -bp((n-1)d -i(tip')
p

—A(n —2)d„z(t/pz) +
(A6)

APPENDIX A: CRITIQUE OF
WEST'S PAPER

West [1] considers the difFerentiated correlation func-
tion t dK(t)/dt which he terms D(t/p2, g2(pz)) [defined
in his Eq. (8)].i~ This is a renormalization group invari-

ant which has a perturbative expansion in powers of the
running coupling:

(A2)

where, in our notation, ki bp(n —1) + A, and P(ki)
(bpki) i. By using the free field limit D(t/p, , 0)
—P& Qf /4vr, where {'Qf) are the quark charges (which
follows from Eq. (8) in [1]), the claimed large-order be-
havior of the coefficients d„(t/p2) can be written explic-
itly as

(/) 2) 2/ —2+2/2 P q2) ( } )
2/2

A 4 3 f
(A3)

We shall show that this result is both inconsistent and
contradicts our exact relations.

Because D(t/p2, g2(p2)) satisfies the homogeneous
renormalization group equation

p'd„, D(t/p' g'(p')) = o

the coefficients in the expansion (Al) must obey

(A4)

n=0 (9p

(A5)

Using the asymptotic expansion of the P function,
P(g ) bpg —bpAg ——. , and identifying the co-
efI1cients of each power of the coupling yields

Some of the properties of this function are discussed in
Sec. III, Eqs. {3.18)—{3.20).

D(t/p, g (p, )) ) (—)"d„(t/p, ) g(p ) ". (Al)
n=O

[To facilitate comparison with West's paper, we use his
notation for the coefficients (d„}which, for p, = t, —
differ from our (k„') in Eq. (3.18) by a factor (—)".] West
asserts [in his Eq. (20)] that these coefficients have the
large-order behavior

- 1/2

d„(t/p ) ki D(t/p, 1/ki) cos nor,

Using the explicit large-order behavior (A3) on the right-
hand side of Eq. (A6) implies that

p zd„(t/p ) const x (—b())"n" '/,
p

(A7)

c„d„+i(—1) x [1+O(l/n)](—)"
nbp

v +
eA/bP g q2 bn n~ —i/2-4- ' '--f f

~A/bp
2 (A9)

Such large-order behavior (A9) for the dispersive coef-
ficients creates a singularity in the Borel transform

C(z) = cp —Ac i +), z"
n=1

(Alo)

at z = 1/ebp. (No such singularity, closer to the origin
than the first ultraviolet renormalon at boz = —1, has
been found in any investigation of individual Feynman
diagrams [5].) Inserting the asymptotic form (A9) into
Eq. (A10) yields the leading behavior of t (z) near z =
1/ebp

..

~A/bp
/ (2} {) Q/) (2 —e}222) {All)

We now go through similar steps for the absorptive
coefficients a„. Since Eq. (A8) is the special case of
the general relation between the phase-dependent coefI1-
cients (c„(8))and the momentum-dependent coefficients
(d„(t/]t~)), with t = —~t]e's, the analytic continuation of
Eq. (A8) produces

which states that the logarithmic derivative
(pzd/diaz)d„(t/p2) has the same large-order behavior as
does d„(t/pz) itself. However, this contradicts Eq. (A3)
which asserts that the leading-order behavior of d„(t/p2)
is independent of p~.

We shall now show that formula (A2) also contradicts
our results. The assertion (A3) may be recast as a predic-
tion for the dispersive coefficients (c„). Comparing the
integrated expansion of t dK/dt, Eq. (3.19), to the orig-
inal Euclidean expansion (3.13) and using our two-term
inverse P function (2.15) yields

n~ = -(k/+, —Ak/)/bp

= (—)"fd„yi( —1) + Ad„(—I))/bp . (A8)

This implies that the perturbative coefficients {k„')of the
differentiated correlation function have the same large-
order behavior as that of the original coefficients (c„)
(up to an overall constant factor), provided that the co-
efficients have n! growth. If the difFerentiated coefficients
have the asymptotic behavior (A3), then from Eq. (A8),
the dispersive coefficients will satisfy
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n —3

Imd„( )-(—)"+
8 () ~Qi)

—1+1/bp
)n+1 ) g2 bn —i n 5/&

8~a~2~
(A13)

Hence the large-order behavior of the absorptive coeK-
cients a„ is given by

~A/bp
2 bn —1 &n —5/2

8~ay'2m

~A/bp

() Qy) (ebp) I'(n —2") . (A14)

Comparing the large-order behavior of c„given in
Eq. (A9) with that of a„given in Eq. (A14), we find
that a„/c„1/n, which contradicts the constraint, de-
scribed in Sec. II E, that a„and c„must have the same
large-order behavior if the radius of convergence of the
Borel transform is less than I/bo. Hence (A2) cannot be
correct.

Incidentally, we also find that substituting Eq. (21)
into Eq. (12) in [1] does not give the large-order behavior
for r„(1) stated in Eq. (22). Using a, = gz(s)/4x and

na„= (—)"(lmd„+J (1) + A lmd„(1)) /b() . (A12)

Equation (21) in [1] gives the predicted large-order
behavior of Im dn(1):

as would result from using a different renormalization
scheme. Provided that the coefficients (dn) grow suf-
ficiently slowly, we shall show that such a redefinition
does not change the position or the nature of the leading
singularities in the Borel transform

F(z) = ) f„z"/(n-I)! (B2)

of a, perturbative series. [This requires that the Bo«i
transform of the coefficients (d„} have a larger radius
of convergence than does F(z).] Hence the results
of the text concerning the possible singularities in the
Borel transform of the current-current correlation func-
tion have a general validity.

It is instructive to first consider the special case of the
coupling redefinition

1 1
+A,

g2 g2
(B3)

f(g') = Z —z—e '~s F(z) .
Z

Substituting the redefinition (B3) into the representation
(B5) immediately yields the altered Borel transform

g =g+Ag+Ag (B4)

on the Borel representation (or inverse Borel transform)

F(z) = e "'F(z) (B6)

a(s) - s(& q2, ) ) r.(i) i

n=p

we find from Eq. (A14) that

~A/bp

r„(l) s (4vr ebo)" I'(n —2),
47t.3bp

(A15)

(A16)

which differs from Eq. (22) in [1] by the factor —n")'~'.

However, the corrected result (A16) must still be in error
as it arises from the inconsistent result (A2).

APPENDIX B: COUPLING REDEFINITIONS
AND BOREL TRANSFORM SINGULARITIES

The analysis in the text was simplified by choosing a
definition of the renormalized coupling for which the in-

verse P function contains only two terms. One may won-

der if the earlier results critically depend on this choice.
We consider here the effects of a coupling redefinition of
the form

(B8)

Placing such an infinitesimal redefinition on the right-
hand side of

—e ')s F(z) =
Z

dZ —z—e 'is F(z)
Z

(B9)

and expanding to first order in bg2 produces

F(z) = F(z) +. 6F(z), (B1O)

which produces the redefined function f (g )—:f (g (g )) .
This is just the result (2.22) of the text. If F(z) has a
singularity at z = z„ then F(z) has the same singular-

ity multiplied by a factor of exp( —Az, ), plus lower-order
singularities generated by the power series expansion of
exp( —A(z —z, )j.

The effect of an arbitrary coupling redefinition can be
found by compounding the effects of infinitesimal redefi-

nitions
g2 g2 fg2 (&7)

where
6g ~62g + 63g +64g

g g +) dng (Bl) with

dZ , 2 bg

Z g4

This differs from the original form of Eq. (21) in [1] by a
factor of 3(p& Q&), which we believe was missing there. Using

(B11)
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~(z) =- ) b„z"/(u-1)!
A=2

(B12)

to denote the Borel transform of the series (B8), 6'g~ has

the Borel representation

GZ —z

0 Z
(B13)

Since the series expansion (B8) for 6gs starts at order
g4, both h(z) and its derivative b, '(z) vanish at z = 0.
Using this representation, the efFect of the infinitesimal
coupling redefinition on the original Borel transform E(z)
may be expressed as

bF(z) = —bz zF(z) —z dz'E(z')
cl' b, (z —z')

0

(B14)

The validity of this formula is easily verified by inserting
it into the integral on the left-hand side of Eq. (Bll),
interchanging the z and z' integrals, and performing the
resulting z integration. The first part of this expression,
—b'sz F(z), is just the infinitesimal version of the previous
result (B6): The order A term in the transformation (B4)
is generated by an infinitesimal redefinition (B8) with
only 62 = A nonvanishing, in which case the convolution
integral in Eq. (B14) vanishes. For a general redefini-
tion, the convolution integral will become singular when
an end point of the integral pinches a singularity of F(z)
or b, (z). Because the kernel (Bz/Bz2) [b,(z —z')/(z —z')]
is regular at z = z', the convolution weakens singular-
ities in E(z); if F(z) has a singularity at z = z„ then
bE(z) + b2zF(z) is less singular at this point by at least
one power of (z —z, ). Consequently, iterating this in-

I

finitesimal coupling redefinition cannot change the loca-
tion or leading behavior of any singularity in F(z) which

is within the domain of analyticity of 6(z). Therefore,
except for an overall multiplicative factor, arbitrary cou-

pling redefinitions cannot change the nature of any sin-

gularity in a Borel transform F(z) which is within the
radius of convergence of the Borel transformed coupling
redefinition b, (z).

APPENDIX C: BOREL TRANSFORM DETAILS

We show first the equivalence of the singularities of the
modified Borel transform and the standard Borel trans-
form presented in Eqs. (2.30) and (2.31). Suppose that
the Borel transform F(z) has a singularity at z = R of
the form

F(z) = (1 —z/R) (Cl)

which is Euler's integral representation of the hypergeo-
metric function [15]:

E(() = F(a+AR, 1;A(+1;(/R).
Since the hypergeometric function F(a, b; c; z) is analytic
in the domain where ~z~ ( 1, to examine the behavior of
E(() near ( = R, we make use of the analytic continua-
tion

Inserting Eq. (Cl) into Eq. (2.29) gives the modified
Borel transform

1

E(() = A( du(1 —u)"~ '(1 —(u/R)
0

(C2)

F(a, b; c; z) = Ai E(a, b; a + b —c+ 1; 1 —z) + A2 (1 —z)' ' F(c —a, c —b; c —a —b + 1; 1 —z), (C4)

where

I'(c)I"(c —a —b)

I'(c —a)I'(c —b)
'

I'(c)I'(a + b —c)
I'(a) I'(b)

(C5)

+ (1 —4/R)" ((/R) "' (C7)+ r(AR+ )
where g = A(—AR —o;. Since F(a, b; c;0) = 1, Eq. (C7)
gives the leading singular behavior of E(j,') as I,

" ~ R as
well as the first correction,

Noting that

E(a, b;a;z) = (1 —z) (C6)

we now find that the modified Borel transform E(() may
be expressed as

X(() = —F(AR+ o., 1; 1 —il; 1 —(/R)
A

fl

(
I'( R+ l)r(a)

I'(AR+ n)
x [1 —AR (1—(/R) ln(1 —(/R)

+O(1—(/R)] . (C8)
This shows that if the Borel transform F(z) is exactly

a simple power-law singularity, then the modified Borel
transform P(() will contain a singularity at the same po-
sition but with a shifted power, and with subleading cor-
rections suppressed by (1—(/R) ln(1 —(/R). It is not dif-
ficult to see that the converse also holds: If the modified
Borel transform E(() has only the first power-law term
shown in Eq. (C8), then the Borel transform E(z) will
have the singularity shown in Eq. (Cl) with a sublead-
ing correction suppressed by (1—z/R) ln(1 —z/R). The
equivalence we have demonstrated is just that between
Eqs. (2.30) and (2.31) stated in the text.

We now turn to prove that the transformation (2.37)
constructs from the modified Borel transform P(z) the
same "inverse Borel transform" f(y) as is produced by
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the Laplace transform (2.35) of the standard Borel trans-
form. Substituting the expression (2.28) for the Borel
transform F(z) in terms of the modified Borel transform
j(z) into the Laplace transform (2.35) gives

f(v) = — dze ' "
2~,.(11+(1 z/(), +„ I

xE(() . (C9)

Interchanging the order of the integrals 9 yields

f(u) =—

(C13)

where the path of the ( integral is now the same as the
original path of z. The change of variable z = yt+ ( con-
verts the inner integral into the standard representation
of an inverse I' function:

f(v) = — . &(()
1 d

y c 2ni/', d(e '~"((/u)"' &(&)

( — /&)"'+'
(C10)

X—2' Ch e-'
(—t) -'&-'

where the contour C wraps counterclockwise about the
entire path of the z integral. Separating the integrand
into two pieces by writing

1 —Av
d(

g/„(&/&)"' ~(()
y o I'(1 + A()

(C14)

1+ z ( 1

(]. —z/()1+~( (l. —z/()1+

(C11)

and then, for the term in braces, integrating by parts in
z yields

f(u) =

x dze

(C12)

The (-contour integral can be written as a line integral
of E(() times the discontinuity (in () of the function

dze '/ "(1—z/() "&. Hence

which is the result (2.37).
We can also show directly that the transforma-

tion (C14) defines a function which has the desired ex-
pansion. After rescaling I,

' by a factor of y, the rep-
resentation (C14) immediately shows that f(y) has an
asymptotic expansion in powers of y, f (y) Q„cc„y".
The coefficients may be computed by inserting the defi-
nition (2.24) of P into Eq. (C14), substituting ( = sy,

(sV)"
I'(rn+1+Asy) '

{C15)

and noting that only the first n terms in the sum can
contribute terms of order y". Hence the coefficient c„
may be extracted by a contour integral encircling the
origin:

2mi y y" 0 I'(m+1+Asy)

m=o

dz (z/A)
2vriz I'(m+1+z)

des 's*+"(I—z/8) = ) / $ . (x/A)
m=O

(C16)

This is valid under the condition that the integrals con-
verge absolutely. For A & 0 it is sufficient that the modi-
fied Borel transform X(() be bounded and analytic within a
neighborhood of the contour of the z integral (assumed to lie
in the right half plane). For A ) 0 sufficient conditions are
that P(() be bounded and analytic within some wedge en-
closing the contour of the z integral (so that z/( may remain
bounded away from one as both z and ( -+ oo). For suffi-
ciently small values of y the integrand is then exponentially
bounded.

dz nc =f . =f,
27rlz z+ n (C17)

so that, as expected, f(y) P„of„y".

The terms with m & n give no contribution since, for
these terms, the ratio of I' functions is a polynomial in
z of order n —m —1 and thus when divided by z" +
produces a vanishing residue at the origin. The anal
term gives
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APPENDIX D: ALTERNATIVE DERIVATIONS

Several difFerent approaches may be used to derive the
relations between the absorptive and dispersive perturba-
tive expansion coefficients. This appendix sketches two
complementary methods which do not involve the ab-
stract vector representations employed in the main text.

By examining the asymptotic behavior of the disper-
sion relation satisfied by the correlation function K(t),
one may derive the result (2.47) expressing the disper-
sive coefficients in terms of the absorptive coefficients.
The scalar correlation function K(t) satisfies the once-
subtracted dispersion relation

s
7r AK(t) = — —p(s)

o s

dS—p(s)
S

where

I„(5)=—
ds—p(s) (s/t)
s

-=-Io (t) + ).[I (t) —I (t)] (D4)

(D5)

AK(t) —= K(t) —K(0) =-t ds p(s)
s (s —t)

' (Dl) +
s

(D6)

p(s)—:ImK(s + i0+) . (D2)

Given the asymptotic expansion of the spectral density,

p(s) ) a„(g'(s))",
n=o

(D3)

this dispersion relation may be used to derive the asymp-
totic behavior of the correlation function K(t) as ~t~ ~ oo
along any ray in the complex t plane. To carry this out,
it is convenient to separate the dispersion integral (Dl)
into two pieces, 0 & s & ]t[, and ]t~ & s & oo. In the
low-momentum piece, one may expand the integrand in
powers of s/t, and for the high-momentum piece, expand
in powers of t/s. Hence

where the spectral density p(s) is the discontinuity of
K(t) across the positive real axis: The asymptotic expansion of I+(t) may be computed

by inserting the expansion (D3) of the spectral density,
changing variables from s to g2 (s), and performing the re-
sulting integrations term by term. The final expressions
are simplified if one uses the rescaled inverse coupling

z = 1/ [bcg2(s)]

as the variable rather than g2(s) itself. The relation
(2.19) between s and g2(s) may then be expressed as

s=A z~e',

where we have defined p—: A/bc = ——bi/bs. Similarly,
let y = 1/[bqg2(~t~)], and t = ~t~e'&. Using ds/dz =
s(1+p/z), one finds for the high-momentum contribution

OO ( oo

I+(t) dz (1+p/z) ) a~ (bcz) (t/A )"z "~ e "'
&:o

) (a +whoa i) bo (t/A )"n +"~ 'I'(1—rn —np, ny)
m=o

r m+n~
(D9)

where a ~
= 0, and the asymptotic expansion of the incomplete I' function has been used,

F(1—n, 2:)—: ) . (—)" F(o,+A:)

F( )
(D10)

which is valid for ~x~
—+ oo with arg(x) & 3vr/2.

When evaluating the low-momentum contribution, the asymptotic expansion of the spectral density can only be
used when s )) A . However, for n ) 0, the integrand of I„(t) is strongly peaked about the upper limit s = ~t~.

Hence, one may ignore the contribution to the integral from low momenta, s & z, for some cutoff e chosen to scale
with t so that r/~t~ vanishes faster than any power of g~(t) while simultaneously g2(r) ~ 0 as ~t~

—+ oo. Thus, for
n&0,
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I„-(t)= Gals

p(s) (s/t)" + O(z/t)"

dz(l+p/z) ) a (boz) (t/A ) "z"~e '
&m=o

) (a +whoa~ i) (—bp) (t/A ) "e' " n " [I'(1—m+ np, e '
ny) —I'(1—m+np, e *

nw)I
m=O

m=0 „, r- rm-~~ (D11)

where ip(rc) = 1/[bp g~(y)].
To evaluate the final term Io (t), define a "subtracted" spectral density which is integrable from 0 to oo,

P(s) =—p(s) —e(s—& ) [ao + a» (s)]

where e(z) is the unit step function, and let C(p2) = J~ (ds/s) p(s). Then,

(D12)

2
I~l

Io (t) = C(p, ) + —[ao + aig (s)]-ds 2

S

ds—P(s)s

2-C(& ) + ao»(ltl/v') + ai dz(1+p/z) (bpz)
' —) a

m=2
dz (1+p/z) (bpz)

C+ aoy+ (ai + pbo ao) bp lny ) (am+1+'lbp am) bo y™/m,
m=l

(D13)

where C —= C(ys) —ao in(p~/As) + aibo (ln[bpg2(p2)] +
pbog (p, )) is (despite appearances) a p-independent
constant.

Finally, putting these results together, we find that

For k & 0, A&,~(P) is a polynomial in P of order k+ l.
Inserting the expansion (2.45) of the ratio of I' functions,
noting that

AK(te'~) c i/g (t)+cp ln[g (t)]+ ) c„(P)g2(t)",
n=O

m+0

(D20)

where

c i ——(s bp)
'

(—ap),
cp = (7rbp) '(ai —Aap),

(D14)

(D15)
(D16)

where Bi,(x) is a Bernoulli polynomial, and evaluating
the result at P = vr yields the same result (2.47) found
earlier.

The inverse to these relations, which will express the
absorptive coefficients in terms of the dispersive coeffi-
cients, may be derived in a brute-force fashion by inte-
grating the recursion relations

1
cp(P) = (7rbp) (ai —A ao) ln(bp) ——[ap Ap p( —P) + C],

7r

m=1

(D21)

and

——) .(a -A: —&a -I,-i)bo &I, I, ( 4), -—
A;=0

(D18)

previously derived in Sec. III [Eq. (3.24) with 8 = P —vr].

Since there is no explicit P dependence in these relations,
one easily sees that c„(P) must be an nth-order polyno-
mial in P. If the initial conditions are known values of the
Euclidean coefficients, (c„=c„(P= vr)), then a general
form for the P dependence which reproduces the initial
conditions is

( ) )-,„~ „,I'(m+k+nA/bp)
I'(m + nA/bp)

a+0

c„(vr—P) = c„+) K„ i
(ibog)'

/=1
(D22)

(D19) Substituting this form into the recursion relations (D21)
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K„+i I+i ——(cp —Ac i) A" '
Ip I

n —l

) mc PA —I tA—IA

m=1
(D23)

where (I" I }denotes the same combinatoric factors

completely determines the coefficients K„I. For our p
function with b„= bo A", one finds that

and [24]

(4 ) b = 1
I

2857 5033N 325Nzll (E7)
64 2 18 54

To apply our results, we need first to express the MS
expansion in terms of our coupling g which has a two-
term inverse P function. The two couplings are related
by

n —l+1 n —l+2

A:1=m+1 kg =%1+1

~ ) kiks ki

(D24)

ail d

y = g +o2g +csg +o(g )

P(y'(g')) = p(g')

(E8)

whose generating function was introduced in (2.45).
Evaluating this result at P = vr and taking the imaginary
part immediately yields the expression for the absorptive
coefficients quoted in Eq. (2.44).

Requiring that

2dg 2 bpg
(E10)

APPENDIX E: KNOWN RESULTS

and inserting the expansions (E4) and (E8) into the re-
lation (E9) yields

Here we collect previous perturbative results and
present them in terms of our notation. In the modified-
minimal subtraction (MS) scheme which uses a coupling
that we now denote by g, the known @CD corrections
to the R ratio have the form

o.s = ——A +o.2(o.g+A),2 2

bo

4zz Aa. (z) /p~ Q~~

(E11)

(a) Ng = I

2 S 2

P(s) —3I ) q&
I

l y ( ) +rsI
~ -/ '). 4 ' "'&4 'r

+rs
I 4, I

+O(g )
fy'(s) )
g4m2 )

where Qf is the charge of the quark of flavor f. The first
two terms are not difficult to calculate (see, for exam-
ple, [16]). The coefficient r2 for the third term has been
obtained independently by several groups [17—19],

I ~ I I I

/
/

/
/

/
/

1.5-

0.5

-0.5-

-1.5-

0.5 1.5
bz0

T2 ——1.9857 —0.1153Nf, (E2)

where N/ is the total number of quark flavors. Recently,
two groups [20, 21] have calculated the fourth coefficient

T3 ——6.6368 —1.2001 Nf —0.0052 Nf

-12395
(3Ef Q/)

4z'Aa. (z) jP~ QI

15-

0.5

(b) Ny=5

~ I & ~ a I I

p(y ) = —bpy —biy —b2y
s —0(y' ),

where

(E4)

The p function p(y ) = p dy2/dp2 in the MS scheme has
the asymptotic expansion ~/a. s-

/
/

I
/ -1.5-

0.5

2=1 2
4vr bp = — 11 — Nf I, —

4 3 ) '

while [22, 23]

(4~ ) b, = —
I

102 ——N/ I,
38

16( 3 )

(E5)

(E6)

FIG. 1. First three partial sums for the absorptive mod-
ifie Borel transform A(z) for Nf = 1 and Nf = 5. Plotted
is 4m Aa (z)/ Pf qf versus bpz The short . dash, long dash,
and solid lines denote the Brst, second, and third partial sums,
respectively.
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with no constraint on the first parameter o.2. Since we
have not yet specified the renormalization point for the
coupling g, there is a one-parameter family of couplings
with a two-term inverse P function.

We shall require that o.2 vanishes so as to keep g as
close to g as possible. This redefinition then shifts only
the fourth term in the expansion of R(s):

c y
———6 556ap,

= —0.04333 Gp,

4& cg —— 0.02463 ap,
(E17)

and the first four dispersive coefficients are given by

(4rr ) aq =r2ao,

(4rr ) as = (rs + 16rr ns)ao .

(E13)

Relations (5.55) and (5.56) determine the first four dis-
persive coefficients in terms of the first four absorptive
coefficients:

C
Gp

mbp
'

ay —Aap

mbp

G2 —Aay
Cy =

vrbp

G3 —AG2 7t bp G]+
2xbp 6

C2 =

(E14)

For five flavors, Nf = 5, the numerical values of the
parameters are

4x bp ——1.917,
r2 ——1.409,

(4rr ) us = —0.12.

A = bi/bp ——0.03194,
r3 ———12.81, (E15)

The values of the first four absorptive coefficients become

ap ——0.09726,
4~ aq ——ap,2

(4~')'a, = 1.409a„
(4rr ) as = —12.92ao,

(E16)

R(s) =3~ ) Qf 1+ s+r2[

+(rs+16rr as) ], ~
+ O(g )

4 &g'~ s
q 4rr')

(E12)

Since R(s) = 12rr ImK(s+ i0+), the first four absorptive
coefficients are

1ap= —) g~,4~
41t Gy = Gp,

2

(4rr ) c2 = —0.2168ao.

The presence of the term (4rr~) s ns, caused by the difFer-
ence between our coupling g2 and the more conventional
MS coupling gs, produces only a small (1%) change in
the fourth expansion coefficient of the R ratio (E12).

Given these results, one may compute the first three
partial sums in the modified Borel transform of the ab-
sorptive coefficients:

g~(z)—:) n a„z".F(l+Az)
- I' n+1+Az

(E18)

The results are plotted in Fig. 1 for two different num-
bers of quark flavors. The series of partial sums is obvi-
ously highly unstable when boz is less than about —1/2.
Based on these graphical results, the presence of an ul-
traviolet renormalon singularity at bpz = —1 is certainly
not surprising. Most intriguing, however, is the behavior
of these partial sums near boz = +1. As discussed in
Sec. II, unless the absorptive transform A(z) vanishes at
boz = 1 the dispersive Borel transform will be singular
at bpz = 1, leading to previously unknown nonperturba-
tive 1/q corrections in the operator-product expansion.
If the complete A(z) does have a zero at boz = 1, then
in the sequence of partial sums one might hope to see
a zero on the positive axis whose position converges to
boz = 1. As Fig. 1 shows, the difFerences between the
partial sums grow as z increases from zero. However, for
one quark flavor, at bpz = 1 the first two partial sums
difFer from the third by only —21'% and +19%, respec-
tively. While hardly conclusive, the data for one flavor

appear to support the simplest hypothesis: that further
partial sums will converge to a nonzero value at bpz = 1,
leading one to predict the existence of nonperturbative
1/qs effects. As the number of quark flavors increase, the
partial sums (for fixed values of boz) become increasingly
unstable. For Ny = 5, the last partial sum does have
a zero near bpz = 1.3, but the differences between the
difFerent partial sums are clearly too large to draw any
meaningful conclusion about the true value at bpz = l.
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