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The deconfining finite-temperature transition of SU(3) gauge theory is studied on the dedicated paral-
lel computer QCDPAX. Monte Carlo simulations are performed on 12 X24X4, 24 X36X4, 20 X6,
24 X6, and 36 X48X6 lattices with 376000 to 1112000 iterations. The finite size scaling behavior of
the first-order transition is confirmed both on the N, =4 and N, =6 lattices and clear two-phase struc-
tures are observed on spatially large lattices (24 X36X4 and 36 X48X6). The latent heat at the
deconfining transition is estimated both by a direct measurement of the gap on the spatially large lattices
and by applying a finite-size scaling law. The results obtained by these two independent methods are re-
markably consistent with each other on both the N, =4 and 6 lattices. The latent heat for N, =6 is much
smaller than that for N, =4 and is about —,

' of the Stefan-Boltzmann value 8H/15. The details of the

data and the error analysis are presented.

PACS number(s): 11.15.Ha, 12.38.Gc, 12.38.Mh

I. INTRODUCTION

Determination of the nature of the finite-temperature
deconfining transition of QCD is an issue of essential im-
portance in understanding the development of the early
Universe and in the study of heavy-ion collisions. Re-
cently it has been realized that the determination of the
nature of the transition requires much more intensive nu-
merical calculations than done previously even in pure
SU(3) gauge theory [1]. Through the recent simulations
on the N, =4 lattices [2—5], with N, being the lattice size
in the temporal direction, the order of the phase transi-
tion has now been definitely determined to be of first or-
der. A large spatial volume of lattice as well as high
statistics are required both to see a clear first-order signal
and to fix the order of the transition by the study of
finite-size scaling (FSS) properties. It has also turned out
that the latent heat estimated on a spatially large N, =4
lattice is much smaller than previously determined [2].

In this paper, we study the deconfining transition in
pure SU(3) gauge theory first on the N, =4 system
(12 X24X4 and 24 X36X4 lattices [6]) with statistics
which is largely improved compared with previous
works. The results for N, =4 are completely consistent
with previous results. The high statistics of the data en-
ables us to obtain new results such as a clear four-peak

structure of the Polyakov loop at the deconfining temper-
ature. We are also able to perform reliable error analyses
of physical quantities because of these high statistics.
Then we further study the N, =6 system (203 X 6, 243 X 6,
and 36 X48X6 lattices) in high statistics. In order to
achieve a quality of the data indicating a clear first-order
signal, the spatial size of the lattice as well as the statis-
tics must be enlarged compared with the N, =4 system.
We find that we need the linear spatial extension N, of
the lattice to be at least six times N, both for N, =4 and 6
in order to obtain a clear two-phase signal. We present
the details of the data and the error analyses for both
cases of N, =4 and 6 systems.

As is shown in detail later, we confirm the FSS of the
first-order transition both for N, =4 and 6 and thereafter
determine the latent heat for N, =4 and 6 both by high-
statistics measurement on large lattices and by applying a
FSS law. The results obtained by these two independent
methods are remarkably consistent with each other both
for N, =4 and 6. We find that the latent heat for N, =6 is
much smaller than that for N, =4 and is about —,

' of the
Stefan-Boltzmann value 8~ /15. A part of this work has
been briefly reported in Ref. [7].

In Sec. II, the parallel computer QCDPAX is intro-
duced. In Sec. III, we describe our Monte Carlo runs and
discuss the quality of our data. A finite-size scaling
analysis of susceptibilities is presented in Sec. IV. Section
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V is devoted to the study of the latent heat. Our con-
clusion is given in Sec. VI.

host computer
I Ethernet

II. QCDPAX
graphic
display

host —PU array
interface (HPI)

hardware
debugger

The simulation is performed on the QCDPAX [8], a
massively parallel dedicated computer constructed at the
University of Tsukuba as the fifth generation of PAX
(parallel array experiment) computers [9]. The
QCDPAX project started in 1987 as a joint collaboration
of physical and computer science groups mainly at the
University of Tsukuba. The machine was designed by the
QCDPAX Collaboration for the simulation in lattice
QCD and manufactured by Anritsu Corporation.

The global architecture of QCDPAX is given in Fig. 1.
QCDPAX is local memory MIMD (multiple instruction
multiple data) machine which consists of identical pro-
cessing units (PU's) mutually interconnected in a toroidal
two-dimensional nearest-neighbor mesh. In the spring of
1990, 480 PU's were installed achieving the peak speed of
14 GFLOPS (10 floating-point operations per second).
Most simulations are performed with 432 PU's to reserve
PU's for replacing broken ones. In this case the peak
speed is about 12.5 GFLOPS. These peak speeds are
confirmed by the square sum calculation 5 =+;x;. We
have several small QCDPAX's consisting of 16 PU's for
the development of application programs and for simula-
tions on small lattices.

Each PU is an independent one-board microprocessor
with peak speed of about 30 MFLOPS. It works com-
pletely asynchronously with an independent clock. The
CPU is Motorola's 68020 and the FPU (floating-point
processing unit) is L64133 by LSI Logic company. A
specially designed controller FPUC (FPU controller) to
operate the FPU in a vectorized way is manufactured us-

ing gate-array technology. As the main local memories,
each PU has 4 MByte 100 nsec DRAM's (dynamic ran-
dom access memories) where the program and some in-
termediate data are stored, and 2 MByte 35 nsec CMOS
(complementary metal-oxide semiconductor) SRAM's
(static random access memories) where the floating-point
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FIG. 1. The system configuration of QCDPAX.

data for the vectorized calculation is stored. The PU ar-
ray is connected to the host workstation, Sun-3/260,
which compiles and assembles the source program, loads
the object program into the PU array, initiates parallel
tasks, and transfers and receives the data to and from the
PU array.

The user of the QCDPAX should prepare two pro-
grams: one for the host computer and the other for the
PU's. The program for the host computer is written in C.
The PU program is written in a newly developed
language PSc (parallel scientific c), an extension of c,
which has the ability to handle the parallel processing
features of the QCDPAX and to perform the vectorized
computations with the FPU. A Psc program is compiled
to a code in an assembly language qfa (quick floating as-
sembler) which is specially designed for our PU. Optimi-
zation of the code can be done at the level of qfa. A com-
piler and an assembler are developed for coding the PU
programs.

Simulations on the 24 X 36 X4 and 36 X48 X 6 lattices
are performed on the QCDPAX with 432 PU's, while
those on the 12 X24X4 and 24 X6 lattices are per-

TABLE I. Parameters of the Monte Carlo runs and averages of observables over the full runs after thermalization. Errors are es-
timated using the jackknife method with the bin size given in the table.

Lattice 24 x36x4
5.6925

12'x 24x 4
5.6915

36'x48x6
5.8936

24'x 6
5.89

20'x 6
5.8922

Total number
of iterations

Thermalization
Bin size

712 000
2000

35 500

910000
20000
10000

1 112000
12 000
50000

480 000
5000

25 000

376 000
6000

18 500

n„.t
/II

P
P,,

P,

0.0680(70)
0.0687(69)

0.549 59(24)
0.549 38(22)
0.549 80(26)

0.0807(16)
0.0818(16)

0.549 748(65)
0.549 503(59)
0.549 993(71)

0.0287(24)
0.0291(23)

0.581 249(23)
0.581 224(20)
0.581 274(25)

0.0305(17)
0.0312(16)

0.580 786(20)
0.580 761(18)
0.580 810(21)

0.0396(17)
0.0402(17}

0.581 172(24)
0.581 138(21)
0.581 206(26}

y(A„, )/V
y(P)/~

2.079(69)x 10
2.856(58}x 10-'

1.935(34)x 10
5.305(64) x 10-'

3.43(13)x 10-'
7.85(15)x 10-'

3.52(12)x10 '
2.571(27)x 10-'

4.07(14)X 10
4.265(35) X 10
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formed with 288 PU's. The 20 X6 lattice is simulated on
a small QCDPAX with 16 PU's. Many routines for
checking the hardware of the QCDPAX are developed
and included in the simulation jobs [6]. About 15—20%%uo

of the total computation time is devoted to these self-
checks and recalculations in case of errors. The one link
update time, excluding the self-checks, is measured to be
1.44(1.60)psec on the QCDPAX with 480(432) PU's.

y(P) —= vx((P'& —(7&'), (3.4)

where V=A„„P. The expectation values of these quanti-
ties are listed in Table I.

We see many flip-flops in the histories of P on all the
lattices we have simulated (Fig. 2). The history of 0

precisely, we also study the susceptibility of Q„t and the
averaged plaquette P =—(P, +P, ) /2:

III. MONTE CARLO RUNS
AND QUALITY OF THE DATA

We use the standard one-plaquette action

(3.1)

(a)
0.555

0.55

with U being the ordered product of the link variables

UI around a plaquette p and P=6/g . The partition
function is defined by Z= fgi dUI exp( —S). Gauge
configurations are updated with a three SU(2) subgroup
eight-hit pseudo-heat-bath algorithm: a Cabibbo-
Marinari algorithm [10] slightly modified for vector pro-
cessors [11]. The acceptance rate is about 95%%uo.

Parameters of our Monte Carlo runs are summarized
in Table I. An ordered initial configuration is used ex-
cept for the case of the 36 X48X6 lattice, for which the
configuration obtained with 88 000 iterations at P=5.895
from the ordered start is used as the initial one. As is
shown below, the values of P's listed in Table I exactly
agree with the deconfining transition points P, within sta-
tistical errors except for the case of the 24 X 6 lattice, on
which the value of P is slightly smaller than our estima-
tion of P, . Our statistics is much improved over the pre-
vious works. See Refs. [3—7] for the N, =4 case. For the
N, =6 case, Brown et al. [2] reported the results of
10000 to 100000 iterations at several values of P on
(16 —24 ) X6 lattices. Our spatial lattice size is greatly
enlarged and the statistics is one order improved.

At every iteration, we measure the average spatial pla-
quette P, and temporal plaquette P„

1 1

3VN 3
p =spatial

1
P, = g —Re TrU1

p = temporal

and a spatially averaged timelike Polyakov loop,

1 10=—g —Tr g U„,.4
I t=1

(3.2)

(3.3)

where V is the spatial volume of the lattice. The order
parameter for the deconfining transition of SU(3) gauge
theory is given by the Polyakov loop 0, which detects the
spontaneous breakdown of the center Z(3) global sym-
metry at the deconfining transition [12]. In the study of
the deconfining transition on a finite lattice, it is con-
venient to study the Z(3)-rotated Polyakov loop zQ
where 0 is multiplied by an element z of Z(3) such that
arg(ZQ) H( —m. /3, m. /3]. We denote the real part of zQ
as Q„t. To investigate the nature of the transition more
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FIG. 2. Time history of the average plaquette P in bins of
1QQ: (a) 12 X24X4, (b) 24 X36X4, (c) 2Q X6, (d) 24 X6, (e)
36'x48x6.
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y, „(V)- V~,

P, (N„V) P, (N„~ ) ——V

(4.1)

(4.2)

with p= cr =1 for the first-order transitions [18], in con-
trast with nontrivial critical exponents of second-order
transitions. As a typical example, the second-order
deconfining transition of the SU(2) gauge theory is
characterized by p=0. 64(1) and 0 =0.51(3) [19].

The V dependence of y,„(Q„,) and y,„(P) is summa-
rized in Figs. 10 and 11, respectively, together with the
results of other collaborations for N, =4 [4,5]. The linear
V dependence of the N, =4 data confirms the first-order
nature of the transition. Our results for X, =4 are con-
sistent with the scaling line of the previous results. Our
new data for X, =6 also show a clear linearity. The re-

FIG. 9. The same as Fig. 6 for the susceptibility g(P).

suits of our scaling fits for y,„(Q„,) are summarized in
Table III. For the fit of X, =4 results, we have included
the data of other groups [4,5]. The fits here and in the
following are done with SALS program system [20]. We
find the critical exponent p to be very close to unity. The
results for y,„(P) are similar with larger error bars. We
finds, „(P)=0.011(3)+0.00025(21)X(V/N, )

" ' for
N, =4, V= 16 —28, and y,„(P)=0.0031(4)
+0.00002(+10/ —2) X( V/N )

. ' for N, =6,
V=20 —36 X48. Thus the result for X, =6 also
confirms the previous conclusion obtained for N, =4 [1]
that the deconfining transition is of first order.

The value of p, at V= ~ is determined by (4.2) by

TABLE II. Peak height and peak position of the susceptibilities obtained by the spectrum density method. Errors are estimated
by the jackknife method.

Lattice 24~X36X4 12 x24X4 36'x48x 6 24'x 6 20 X6

y,„(Q, , )/V
y .„(P)/V
7,„(P,—P, )/V

2.082(46) x 10-'
2.858(65) X 10

1.935(34) X 10
5.306(64) x 10 ' 3.44(15)x 10

7.96(15)x10-'
4.4535(68) X 10

3.74(16)X 10
2.620(44) x 10-'
2.07(45) x 10-'

4.08(14)x 10-"
4.275(35) x 10-'
3.40(39) X 10

P, (Q„,)
p, (p)
P(P, P,)—5.69245(23)

5.69254(20)
5.69149(42)
5.69164(31)

5.89379(34)
5.89416(33)
5.89448{52)

5.89292(87)
5.8938(52)
5.871(22)

5.8924(14)
5.8903(13)
5.891{29)
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fixing cr =1. The V ' dependence of P, is shown in Figs.
12 and 13, the results of the fit being summarized in
Table IV. The fit is stable under a variation of the fit
range, and the p, 's obtained both by the y(Q,«) and the
y(P) are consistent with each other. We estitnate

P(& )c rot
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p, (N, =4, V= ae)=5.69254(24) (4.3)
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p, (N, =6, V= ae )=5.89405(51) (4.4)

using V=24 -36 X48. We note that the value of the
coefficient C(N, ) in Table IV is independent of N, within
the errors, suggesting that the leading FSS is determined
by the relative volume V/N, alone.

Our estimate of p, (4, ae ) is consistent with the estimate
of Fuku gita, Okawa, and Ukawa [4], 5.69226(41)
(V=163—283), and Alves, Berg, and Sanielevici [5],
5.6923(7) (V=14 —24 ). However, it is slightly larger
than that of the latter group including the data of smaller
lattices: 5.6910(4) ( V= 8 —24 ). Note also that there is a

0.06--

FIG. 12. P, determined bye(II„, }: (a) N, =4, (b) N, =6.

sizable systematic difference between the value of
p, (N„V) determined from y(Q„, ) and that from y(P) on
small lattices such as V=8 and 10 [4,5]. Our P, (6, 0e)
is significantly larger than a previous estimate [21] of
5.877(6) extrapolated from small lattices: V=7 —11 .

Comparing the N, dependence of our p, (N„ae) with
the prediction of the two-loop perturbation theory for the
shift of p„hp2 ~„we find [p, (6, ao )—p, (4, ae )]/
hp2 ~„~=0.561(2). This asymptotic-scaling violation
was noted in previous works [21] and the magnitude of
the violation is consistent with previous estimates by the
Monte Carlo renormalization group (MCRG) method at
these p's [22].
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V. LATENT HEAT

Now we study gaps of thermodynamic quantities at the
phase transition, in particular the energy density e and
the pressure p (in dimensionless form}:
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I I

300

x10
~ a ~ ~

I

200

V/N
f

FIG. 11. The same as Fig. 10 for y,„(P). The value of
g,„(P) for N, =6 is multiplied by a factor of 10.

V, B(1/T)

a4 a
P 1/T BV

nZ(T),
(5.1}
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N,=4 o QCDPAX

FOU

a ABS

e —3P= —36, (P, +P, ),(g)

e+p =4Pc(P)(P, P—, ) .
(5.2)

5.692

5.69

(a)
I
I

0.01
I
I
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5.894—
N,=6

p QCDPAX

5.892
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I

0.01 0.03 0.04

FIG. 13. The same as Fig. 12 for /3, determined by y(P).

where V, =a V and I /T=aN, on isotropic lattices.
Conventionally, the combinations of e —3p and e+p are
studied, because they are proportional to a sum and a
difference of P, and P„respectively [23]:

Here p(q) is the renormalization-group p function and
c(P) is a response function of the gauge coupling constant
with respect to an anisotropic deformation of the lattice
[24]. In the one-loop perturbation theory, they are given
by [23] P(g)/g = —11/4m +O(P '), and
c(p)=1—1.00062p '+0(/3 ). (Strictly speaking, the
e —3p requires a further subtraction of the zero-
temperature contribution [23]. In the gap studied in the
following, however, this contribution cancels out. )

To estimate the gaps of these quantities, we separate
our Monte Carlo runs at the transition point into two
phases. As shown in the proceeding sections, on our
large lattices (24 X 36 X 4 and 36 X48 X 6), our /3's locate
exactly at the transition point and the two-phase struc-
ture is very clear both in the history and in the histo-
gram.

We first try to separate the runs by imposing cuts to
A„„or ~Q~. We find, however, the resulting expectation
values are sensitive to the choice of the value of the cut,
and it is difficult to get an unambiguous result, as noted
in [4]. We instead separate the runs by inspecting the
time history of the Polyakov loop. A sufficient number of
iterations around flip-flops and around spikes should be
removed to avoid contamination from transition stages
[4]. Figure 14 is an example of expectation values of ob-
servables in each phase as a function of the number of re-
moved iterations. In this example, 3000 iterations have
to be removed to obtain a stable and unambiguous result.
We disregard 3000 (2000) iterations around the flip-flops
and spikes for 36 X48X6 (24 X36X4) lattice. Only
when the average persistence time of each phase is
sufficiently large compared with that of the transition
stage are we able to obtain stable results: This condition
is satisfied only on spatially large lattices. On the

TABLE III. Finite-size scaling fits for y,„(Q„„).For N, =4, the data of Refs. [4] and [5] are included in the fit. The fit with D~

and pz is done for comparison with previous results given in the literature.

Nr

y( Nr ~ V ) =y( Nr ~ 0)+D ( Nr )( V/Nr )

y(N„O) D (N, ) p(N, )

12 -28
14 -28'

12~ X 24—283
16-'-28'

20' —36'x 48

1.54(26)
0.93(69)
1.53(81)
2.37( 1.10)

0.69(84)

0.048(09)
0.067(25)
0.050(23)
0.036(21)

0.065(54)

1.171(34)
1.115(63)
1.164(77)
1.122(98)

1.017(135)

N V

g(N V) =g&(N 0)+D
1 {N )( V/N )

Nr ~ V) =Dr(Nr )( V/N, )

(Nr 0) D 1 (Nr ) D (N, ) p2(N, )

12 -28'
14'-28'

122 X 24 —283
163—28'

20'-36' x 48
24'-36' X 48

0.19(23)
—0.47(20)
—0.48(25)
—0.61{45)

0.58(19)
0.53(40)

0.1249(43)
0.1321(30)
0.1322(34)
0.1329(41)

0.0722(36)
0.0726(43)

0.126(13)
0.105(66)
0.106(77)
0.101(13)

0.116(14)
0.102(25)

1.004(23)
1.039(13)
1.039(15)
1.047(24)

0.921(27)
0.945(42)
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TABLE IV. Finite-size scaling fit of p, obtained by the Q„„and p susceptibilities: p, (N„V)=p, (N„oo )
—C(N, )(N, /V).

P
N

12'-28'
14 -28

122 X 24 —283

16 -28

20 -36 X48
24 -36 X48

P, (N„oo )

5.692 43(20)
5.692 56(22)
5.692 47(22)
5.692 54(24)

5.894 01(44)
5.894 05(51)

C(N, )

0.064(17)
0.084(21)
0.065(24)
0.082(32)

0.063(49)
0.072(77)

P, (N„oo )

5.692 65(19)
5.692 67(21)
5.692 56(20)
5.692 58(23)

5.894 72(42)
5.894 29(153)

C(N, )

0.069(16)
0.072(20)
0.051(21)
0.056(35)

0.161(58)
0.038(425)

I

(~-3p)/T' - 36 x48x6
3779.4

-- 3779.3

36 X48X6(24 X36X4) lattice, the average number of
iterations between flip-flops and spikes is about
16000(19000). On our small lattices the above condition
is not satisfied and therefore we are unable to obtain
stable results on these lattices. Our results for
(E 3p )/T and (e+p )/T on the large lattices are sum-
marized in Table V.

At a first-order transition, the coefficient of leading
FSS of y,„(P) is related to the plaquette gap for V= oo

[18]. This provides us with another way of estimating
b(e 3p)/T—[5]. The results of our FSS fit to the data
shown in Fig. 11 are given in Table VI. We find that the
result for N, =4 agrees completely with our direct mea-
surement on the 24 X36X4 lattice given in Table V.
The result for N, =6 is also consistent with our direct
measurement on the 36 X48X6 lattice. The slightly
(two standard deviation) smaller values for 4(e —3p)/T
obtained by the FSS fit for N, =6 can be understood as
due to either of the following: (1) the values of V used for
the FSS fit are not sufficiently large to extract the V= ao

limit, or (2) the gap is still slowly decreasing with V on
the 36 X48X6 lattice. Identifying the origin of the
slight difference among these two possibilities is beyond
the scope of the present study.

These results can be compared with the previous ones:
on the 24 X4 lattice at the same P,
b(E 3p)/T =4.2—00(95) (Fukugita, Okawa, and Ukawa
[4]); 3.78(20) (Brown et al. [2]), and h(e+ p ) /T"
=2.927(97) (Fukugita, Okawa, and Ukawa); 2.54(12)

(Brown et al.). On the 28 X4 lattice at P=5.692,
b(e 3p)/T—=4. 11(12) and b(e+p)/T =2.826(37)
(Fukugita, Okawa, and Ukawa). Our results for N, =4
are completely consistent with those by Fukugita, Okawa
and Ukawa. We find that the values of the physical
quantities in both phases themselves agree with each oth-
er.

For N, =6, Brown et al. estimated [2]
b(e +p) /T =2.48(24) on a 24 X6 lattice. We find a
much smaller value, 1.835(51), for this gap. Our results
of (e+p)/T for N, =6 is shown in Fig. 15 together with
the data of Brown et al. [25]. Consulting this figure, we
understand the origin of the discrepancy as follows: (1)
Brown et al measur. ed (e+p )/T in the deconfined
phase at p= 5.9 which is slightly above our estimate of p,
and obtained [25] 2.60(22) which is larger than our value
2.195(37) at p= 5.8936 by 0.41. This difference can be at-
tributed to the sharp drop in (e+p)/T above the transi-
tion point. (2) The value of (e+p)/T in the confined
phase assumed by Brown et al. [25] is 0.12(10) at
P=5.875 which is smaller than our value 0.360(35) by
0.24. Our data indicates that the increase of (e+p )/T
in the confined phase near P, in the data of Brown et al. ,
which they took to be due to mixing of the phases and
disregarded in the estimation, is partly a real effect. Thus
these two facts in total lead to the difference of 0.65 for
the gap. We note that in the paper [2] of Brown et al.
they pointed out themselves the possibility of a slight
overestimate of the latent heat.

These results for the latent heat raise two problems.
First, gaps for N, =6 are smaller than those for N, =4 by
a factor 1.5 for b,(e+p) and 1.7 for b, (e 3p), indicat—ing

3776.95

deconfining phase 3779

-- 3779.1

TABLE V. ( e—3p )/T and ( e+p ) /T with one-loop pertur-
bative coefficients assumed. Phase separation is performed as
explained in the text.

3776.9

3776.85—
- confining phase

I I

0 2,000 4,000
3776.8 I I

6,000 8,000 10,000

number of removed iterations

FIG. 14. The average of ( e—3p ) /T in each phase on the
36 X48 X 6 lattice as a function of the number of removed itera-
tions near each Aip-Aop and spike.

Lattice

(~+p)h.d/T'
(&+p )qGp/T
(~—3p)h.d/T'
(~—3p)q~p/T

A(e+p )/T
h(e —3p)/T

24'x 36x4

5.6925

0.551(47)
3.324(29)

703.478(74)
707.539(42)

2.773(55)
4.062(85)

36'x48x 6

5.8936

0.360(35)
2.195(37)

3776.892(43)
3779.287(46)

1.835(51)
2.395(63)
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TABLE VI. Finite-size scaling fit for y,„(P) assuming a first-order phase transition:
g(N„V)=y(N„O)+D(N, )(V/N, ) F.or N, =4, the data given in Refs. [4] and [5] are included in the
fit. h(c 3p—)/T is determined by the plaquette gap defined by AP=2[D(N, )/N, ]'~ . The one-loop
expression for the coefficient c(P) is assumed.

12'-28'
14'-28'

12 X24—28'
16 -28'

y(N„O)

1 ~ 137(57)X 10
1.054(66) x 10-'-

1.029(70) x 10-'-

1.279(64) x10 '

D(N, )

1.485(82) x 10-'
1.556(82) x10 '
1 ~ 572(83) x 10-'
1.455(48}x 10-'

A(e —3p )/T

3.911(11)
4.005(11)
4.025(11)
3.872(64)

20 —36'- X 48
24' —36'x 48

3.200(32) X 10
3.241(81)x 10--'

6.10(31)x 10-'
5.94(42) x 10-'

2.185(55)
2.155(153)

4

0

3-- 0

QCDPAX

QCDPAX

QCDPAX

T4 - a Columbia

2—

(36'x48) separated

(36 x48)

(24 )

(24 )

N=6

naively a scaling violation at P= 5.7 —5.9. Second, both
N, =4 and N, =6 results show discrepancies between the
values h(e —3p) and b, (F.+p), which naively suggests a
finite pressure gap at the transition, although it becomes
smaller for a larger N, .

Since the violation of the asymptotic scaling at these
P's is already well established, the use of perturbative
coefficients for e —3p and e+p is not validated and we
have to estimate nonperturbative corrections to these
quantities.

MCRG studies show that, although the asymptotic
scaling is violated for /3(6, several quantities obey,
roughly speaking, a common effective scaling law if P is
not too small [22]. Since the coefficient of e —3p is given
by the /3 function, we can use the nonperturbative )r) func-
tion of the MCRG studies for a nonperturbative estimate
of the e —3p. The correction factor to the one-loop per-
turbative /3 function which the MCRG studies [22] give is
0.6+0.05 at /3=5. 7 and 0.75+0.07 at it3=5. 9. Large er-
ror bars are caused by the dispersive MCRG results. (A
similar approach was proposed also by Engels et al. [26].)

These corrections make A(e —3p)/T =2.44(24) for
N, =4 and 1.80(18) for N, =6 [27]. Therefore even after
we include the correction factors, the discrepancy be-
tween the two remains. Thus b, (e—3p)/T shows a sub-
stantial scaling violation [28].

We now find the difference between the corrected
b, (E 3p)/T [2.4—4(24) for N, =4 and 1.80(18) for N, =6]
and the uncorrected b, (F.+p)/T [2.77(6) for N, =4 and
1.84(5) for N, =6] is small for both N, =4 and N, =6.
Since we expect a vanishing Ap, this suggests that the
nonperturbative corrections to the coefficient of e+p is
small. Confirmation of this requires a nonperturbative
study of anisotropic lattices [29] with a stnall anisotropy.

VI. CONCLUSION

We have performed a high-statistics measurement of
the deconfining transition in the SU(3) gauge theory on
the dedicated parallel computer QCDPAX. The first-
order nature of the transition is confirmed by the linear
FSS of susceptibilities both on N, =4 and 6 lattices. On
the spatially large lattices (24 X36X4 and 36 X48X6),
we have measured the gaps of the energy density and the
pressure both by separating our Monte Carlo runs into
two phases and by applying a FSS theory for the gap
b, (e 3p ). The two—results thus obtained are remarkably
consistent with each other. We have found that the la-
tent heat for N, =6 is much smaller than that previously
estimated on a spatially smaller lattice and also that for
N7 4. The latent heat we have found for N, =6 is about
—,
' of the Stefan-Boltzmann value 8m /15.
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FIG. 15. (e+p)/T for N, =6 near the transition point.
Small diamonds show the expectation value of (e+p)/T in
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forrned as explained in the text. The solid lines are the results
obtained by the spectral density method using our data.
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