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In this article the relaxation time approximation for a system of spin- —fermions is studied with a view

to calculating those transport properties obeyed by relativistic dense matter such as viscosity coefficients,

thermal conductivities, spin diffusion, etc. This is achieved via the use of covariant Wigner functions.

The collision term is, of course, linear in the deviation of the Wigner function from equilibrium, and a
priori involves arbitrary functions of the four-momentum. These functions are restricted from physical
arguments and from the requirement of Lorentz invariance. The kinetic equation obeyed by the Wigner
function is then split into a mass-shell constraint and "true" kinetic equations, whose solution is sought
within the Chapman-Enskog approximation. It is also realized that, in a relativistic quantum frame-

work, there exist two expansion parameters: the new parameter occurs because of the existence of a new

length scale defined by the Compton wavelength; in some cases (e.g., when the effective mass of the fer-

mions goes to zero), this last quantity can be of the order of the mean free path. From the first-order
solutions and from the Landau-Lifshitz matching conditions, the main transport properties of the system

are obtained as functions of the macroscopic quantities (temperature, density, polarization) and of vari-

ous relaxation times to be determined elsewhere by a specific physical model. Finally, all the results ob-
tained are discussed and suggestions for some extensions are given.

PACS number(s): 05.60.+w, 12.38.Mh, 25.75.+r, 47.75.+f

I. INTRODUCTION

In the last few years many attempts have been made to
calculate the transport coefficients of relativistic dense
matter, whether for nuclear (symmetric or pure neutrons)
or quark matter. Two main motivations are behind these
attempts. First the recent developments of experiments
involving heavy ions collisions demand a better under-
standing of an assumed hydrodynamical stage [1] of the
resulting fireball, and also of directly connected questions
such as the entropy production and a possible return to a
state of local equilibrium. Second, the description of
dense objects studied in relativistic astrophysics (neutron
stars, strange stars) necessitates the knowledge of trans-
port properties in many important problems (cooling of
such stars, energy and momentum transfer from inner to
outer parts of the star, etc.).

Although they can be evaluated via the use of Kubo's
relations (or connected models) [2], the transport
coefficients [3,4] (heat conduction, viscosities, diffusion
coefficients, etc.) are generally calculated on the basis of
kinetic theory [5], whether relativistic [6,7] or not, i.e.,
through the use of a Boltzmann equation (or of its quan-
tum version, the so-called Uhlenbeck-Uehling equation
[8]) or of any other kinetic equation. Such an equation
generally involves the dynamics of dense matter under
the form of a cross section. For quark matter, we believe
that, at the present moment, it is probably illusory to ob-
tain a credible cross section from QCD in the energy
domain of interest (i.e., between T-100 MeV and, say,
T~500 MeV, so as to have an order of magnitude in
mind), a domain where precisely the deconfining transi-
tion is supposed to occur: this transition is neither com-
pletely understood from a theoretical point of view nor is

it established experimentally. For relativistic nuclear
matter, the transition amplitude is generally evaluated at
second order in the coupling constants of the model (one
boson exchange) although the perturbation expansion
does not converge. Hence, the results obtained are quite
problematic.

For these reasons, a more phenomenological approach
has often been preferred, based on the use of a relaxation
time approximation of the collision term, where all the
dynamics are supposed to be included in a single parame-
ter (via the relaxation time) that should be evaluated else-
where with a specific model. Next, the calculation of the
transport coefficient follows from a first-order Chapman-
Enskog expansion of the kinetic equation. Owing to the
above remarks, we believe that such an approach, some-
what more modest than a general one, is the most reason-
able at the present moment. It presents the advantage of
giving the general structure of the transport coefficients
as functions of the temperature T, of the energy density p
(or the chemical potential, or the particle density, etc. )

and the relaxation time ~; furthermore, when this last
quantity is roughly evaluated as

1

on&v&

[where n is a particle (or possibly a hole or quasiparticle)
density, where cr is a total cross section, and ( v ) is the
average relative four-velocity of two colliding particles],
then reasonable orders of magnitude can be obtained.

Following this line, most authors have used a relaxa-
tion time model for the (relativistic) kinetic equation, of
the general form
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f(x,p) f—, (x,p)p.af(x,p) =
r(p )

(1.2)

where f(x,p ) is the distribution function of the particles
(or quasiparticles), f, (x,p ) is the (local) equilibrium dis-
tribution function [9], and r(p ) is a priori a four-
momentum-dependent relaxation time. For instance, the
choice w(p)=const has mainly been studied by Marie
[10],while the choice [11] r(v) TE=

L L
(1.6)

sion is a trivial problem. As to the collision term, it is
indeed difficult to infer its general form due to the matrix
character of the Wigner function. As to a Chapman-
Enskog expansion, quantum theory and relativity do in-
troduce a supplementary length (the usual Compton wave
length) and, accordingly, one more expansion parameter.
Besides the usual dimensionless parameter,

r(p)=
u 'p

(1.3) (where L is a macroscopic length, ( v ) -c for a relativis-
tic system), there also exists the following parameter

is the one of Anderson and Witting [12] (where r =const
and where u" is the local average four-velocity of the
medium). This last choice is the most popular one for the
following reasons [12]: (i) r has truly the meaning of a re-
laxation time, whether the system is at T=O K or is ul-
trarelativistic T))m, whether the mass of the particles is
zero or not; (ii) the so-called Landau and Lifschitz match-
ing conditions [13],i.e.,

or, equivalently,

(1.7)

(1.8)

J[i] 0 (1.4a)

(1.4b)

where the index (1) refers to the deviation from equilibri-
um, is automatically satisfied as a consequence of the con-
servation laws for the four-current J" and the energy-
momentum tensor T"'. Moreover, as has been discussed
by Danielewicz and Gyulassy [4], the Landau and Lifs-
chitz form of relativistic hydrodynamics leads to more
sensible results at low densities. For subsequent use, let
us also notice the first-order Chapman-Enskog solution
[12] of Eqs. (1.2) and (1.3),

f~, I(x,p)= — p df, (x,p)+O(r ) .
P'0

(1.5)

Nevertheless, although quite natural and valid more or
less for dilute unpolarized systems, the Anderson-Witting
equation possesses some obvious limitations which we
briefly review. First, the concept of a distribution func-
tion does possess a well-known domain of validity and in-
stead one should rather use a Wigner function, defined in
a covariant way [7,14—16]. Next, nucleons or quarks are
fermions obeying some sort of Dirac equation and spin is
taken into account Uia a 4X4 covariant Wigner matrix
(or a larger one when internal degrees of freedom are tak-
en into account) while it is definitely not so in the
Anderson-Witting equation. Another remark may also
be in order. While the Anderson-Witting equation must
be supplemented by a mass-shell —type constraint on p",
it is not so in the Wigner function approach (see below
and Refs. [7] and [15]). Finally, polarized matter can be
dealt with more completely in our Wigner function ap-
proach than in an extension of Eq. (1.2) (see Appendix
A). Moreover, the Anderson-Witting equation cannot be
used in its original form either to obtain spin waves,
internal quantum number waves, or a possible coupling
between them.

Unfortunately, neither the obtaining of a relaxation
term for a relativistic kinetic equation satisfied by the co-
variant Wigner function nor its Chapman-Enskog expan-

However, in ordinary cases, g is generally much small-
er than e and its contribution can perfectly be neglected
[17]. This is the case for on-shell particles of dilute sys-
tems. Nevertheless, when one thinks of systems of quasi-
fermions their (effective) mass depends on r, p, etc. and
can, in principle, be arbitrarily small, leading thereby to
arbitrarily large values of the parameters g and g. A
well-known example can be found in the Walecka model
[17,18] for nuclear matter or in the so-called scalar plas-
ma [19] where the effective mass of the nucleon (or of a
quark) is given by

M=m —g(y), (1.9)

II. BASIC EQUATIONS AND DEFINITIONS

In this section the basic definitions and equations need-
ed in what follows are briefly recalled and details can be

where ( P ) is a scalar meson condensate and where g is a
coupling constant.

In this paper, we would like to explore these problems
and provide some solutions. We expect new qualitative
phenomena, such as a self-diffusion in the medium due to
the "two-fluid" character of its constituents (i.e., spin-up
and spin-down particles and/or particles and antiparti-
cles) or spin waves, besides some modifications on the
structure of the transport coefficients themselves. We
shall not, however, investigate here other interesting
cases that also give rise to modifications of the latter and,
more important, to new transport coefficients. For in-
stance, neither collective effects [20] and/or external
fields [21] are dealt with below.

In Sec. II we recall briefly the basic equations and
definitions used throughout this paper while in Sec. III an
introductory discussion of a particular relaxation term is
given. In Sec. IV a class of general relaxation terms is
studied (and also their Chapman-Enskog solution). Sec-
tion V is devoted to the general properties of an accept-
able collision term. In Sec. VI transport properties are
studied while a discussion and some remarks are given in
Sec. VII.
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found elsewhere [7,14,15]. The one-fermion Wigner func-
tion is defined as

F(x,p)= Jd R1

(2')

Xx 'x'
Q x+—XQ x ——),R

2 2

(2.1)

where g obeys a Dirac equation which does not need to
be specified further here and where the angular brackets
denote a quantum statistical average value. F(x,p) is
normalized through

J"(x ) = Tr J d p y"F(x,p ), (2.2)

where P(x ) is the conserved four-current of the fer-
mions, i.e., a charge, or baryonic-number, or leptonic-
number, etc. four-current. J"(x ) defines the average
four-velocity u" of the system under consideration
through

Equilibrium

In equilibrium the collision term must vanish whatever
its form, the system is invariant under spacetime transla-
tions and F, (p ) obeys the system (2.7), which reduces to

(y p —m)F,q(p)=O=F, q(p)(y p —m) . (2.8)

Multiplying these equations on the appropriate side by
(y p+m), one gets

(p —m )F, (p)=0 (2.9)

which indicates that F, (p ) is necessarily proportional to
5(p —m ). Next, F, (p) is decomposed on the Dirac
algebra generated by the 16 matrices y
(A =1,2, . . . , 16) as

F,„(p ) = —,
'

[f(p )I+f„(p )y"+t'f„„(p)a""

the interaction time is much smaller than any other
times)] and no collective effects [20], is obtained by add-
ing a phenomenological collision term to Eqs. (2.7).

J"(x)—:nu", +fs„(p )y sy" +&fs(p)y'] (2.10)

where n is the charge (or baryonic-number, etc.} density
of the system, and with u =1.

The main physical quantities needed are, besides the
four-current, the average energy-momentum tensor

T"'(x)= Tr J d p p "y"F(x,p) (2.4)

and the spin-density tensor

S""(x)=—Tr J d p[y"a"'+o"'y ]F(x,p), (2.5}

S"" (x }=—Tr f d p e"" ysy F(x,p ) .
1

(2.6}

Note that a symmetric form of T" and a conserved
version of S""~have been given in Ref. [7];unfortunately,
they are valid only for noninteracting systems and hence
are generally of little use.

For free particles [23] the covariant Wigner distribu-
tion (2.1) obeys the following equations [14]

which is necessary for the description of polarized media.
Equation (2.4) is nothing but the average value of the
canonical energy-momentum tensor and hence is not
necessarily symmetric and is conserved in the absence of
external fields or condensates, the only case which is con-
sidered in this paper. S",a completely antisymmetric
tensor, is not conserved since this is the case only for the
total (spin plus kinetic momentum) angular-momentum
density [7,22]. It can be rewritten as

so that the various f "'s obey the following system
[equivalent to Eqs. (2.8)]

p„f" mf =O, —

p "f mf"=0, —

2mf„, +e ~„~"fP =0,
5=0,

~ fP"+mfs„=O,
p~f'"=0

p(pf ~)

P„fPs =o

p'„fs =o

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

(2.18}

(2.19)

F,q(p ) =—f,q(p )I+ f,q(p )

epxpZ fs q(p )a'"
2m

which are obtained after elementary manipulations [21].
Equation (2.12) and the mass-shell constraint p =m im-
ply Eq. (2.11). Equations (2.13) and (2.15) are equivalent
owing to the conditions (2.16) and (2.18). Equations
(2.14), (2.17), (2.18), and (2.19) then appear to be trivial
and one finally obtains

[iy 8+2[y.p —m]]F(x,p)=0,
F(x,p) [iy.b—2[y-p —m ] j =0

(2.7a)

(2.7b} +fs„„(p»)ysy" (2.20)

which can easily be derived from the Dirac equations
obeyed by P and g. The most general kinetic equations
for F(x,p), assuming as usual pointlike collisions [i.e.,
the scale of length (and time) in which the system is de-
scribed is much larger than the interaction region (and

Therefore, the most general equilibrium Wigner func-
tion does depend on two as-yet unknown functions f (p )eq
and fs, (p ) to be determined by a direct calculation from
the definition (2.1) and the ordinary relativistic density
operator. For f, (p ), one finds [24]
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f,„(p)=,6(p' —m')E(p )

(2'�)
(2.21)

expP(p„u" —p)+ 1

where E(p ) is the sign of p (with po=p u ) and where p
is the chemical potential. When the system is unpolar-
ized, f~, =Oandonehas

F,q(p)= f,q(p) . (2.22)

For polarized systems f5, (p)%0 and can always be
rewritten as

(2.23)f5, (p)—:S (p)f,q(p),

where S~(p) is a pseudo four-vector orthogonal to p&
[Eq. (2. 18)]

pt, S'(p») =o .

In such a case, F,q(p ) possesses the general form

y'p+m y53 p p1+ "S ( )

eq p
2 eq p

(2.24)

(2.25)

where use has been made of Eq. (2.24). Note that the first
term of the right-hand side of this last equation is nothing
but the usual projector over the positive-energy states
while the second cannot be interpreted as a projection
over spin-up states [25], since S"S„=—S Wl; note also
that these two matrix operators commute due to the fact
that p&S =0.

At this point the (pseudo) four-vector S"(p) is com-
pletely arbitrary, and this for two reasons. First, it de-
pends on the polarization of the system whatever its
definition. Next, this arbitrariness reAects that of the
Dirac spinors of the free particle. Therefore, a physical
choice must be made as to S"(p}=S(p)N"(p), with
N"(p )N„(p ) = —1. As to S(p ), it can easily be shown to
be directly connected to the polarization of the medium
through the density operator, whose spin part reads

With the choice

S(p)=P[(u p) —(n p) ]' (P=const)

M" can easily be calculated as

M"= —Pn "n, m

so that

P= n„M",1

mn~q

M"u =0 .P

(2.31)

(2.32)

(2.33)

bal spin-quantization axis. The above choice (2.28) for
N" (p ) is, in fact, a consequence of a simple analysis of the
way a system of charged particles is usually polarized.
Suppose, indeed, that the system under consideration is
placed in a magnetic field: the various spins align along
its direction thus leading to a (more or less, according to
the temperature) polarized system. If we now switch off
the magnetic field, the system is then metastable and will
depolarize more or less rapidly (for helium III, this relax-
ation time is of order of a couple of days). If we now look
at the Wigner distribution f~& in the presence of the mag-
netic field, one can see [21] that it is proportional to N4(p )

where n" is the space direction of the magnetic field. The
choice (2.28) is, accordingly, quite natural.

At this point, it should be remarked that, although
spin does not commute with the Dirac Hamiltonian, our
choice is quite sensible since we do not deal with a true
equilibrium state but rather with a metastable one.

In order to gain more insights on S(p ), let us evaluate
the various macroscopic quantities S"' (spin-density ten-
sor) and M" (polarization four-vector). One has

MP= Id p f95(p)

S(p)u("n")p,= f 'p . . .i f (p ) . ( .3 )
[( )2 ( )2] l/2

1+y,y N"(p) 1 y,y„N"(p)—
Pp }+ "

I
1 —Pp }]

1+[2ep )
—1 ly sy„N"(p }

2
(2.26)

M" then appears to be parallel to the spin-quantization
axis and P is the polarization of the medium. The choice
(2.31) has been used after previous results of the magnetic
field case [21].

From M", one gets

where g(p ) is the percentage of spin-up particles. Hence,
as a result, one has

Sj v~ = i Pv~aM
2 a (2.34)

S(p ) =2((p) —1 . (2 27) so that, locally, the spin tensor M"" reads

On the other hand, the simplest physical choice for
N"(p ) is the following

uI~n ~p.
z X 2 in (2.28)

[(u'pi. )' —(n'pi )']'" '

u "n„=0, n "n„=—1, (2.29)

whose physical meaning is that it represents a given glo-

where u" is the average four-velocity of the system and
n" is a unit spacelike pseudo four-vector orthogonal to
u",

M"—:S" u = —
—,'e" u Mug a (2.35)

In the rest frame of the system where u"=(1,0}and tak-
ing n" along the third axis, the only nonvanishing com-
ponent of M" is M ' . Finally, our choice (2.28) and
(2.31) for S"(p ) appears to describe correctly a polarized
medium in (metastable) thermodynamical equilibrium.
Other choices are, of course, possible but they deal with
systems prepared in particular ways: particles endowed
with four-momentum p contain a prescribed p-dependent
percentage of spin-up particles, etc.
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III. AN ILLUSTRATIVE EXAMPLE

jiy ()+2[y p —m]]F= i—y u
F—Feq (3.1a)

F[iy () —2[y p —m]j = i—
F—F,

Q (3.1b)

A few years ago, a simple relaxation time kinetic equa-
tion that generalizes the Anderson-Witting one [12] was
suggested [26]. It reads

F—Feq

F—F = —BFyeq

Q
y —+2ip +2im

7

Q
y ——2ip —2im

-aF,
——2ip +4mr

(3.7a)

(3.7b)

and it has the property that the Landau and Lifshitz
matching conditions (1.4) are satisfied: this can easily be
checked (i) by taking the trace of both equations, (ii) by
integrating over p, (iii) by adding both results of each
equation (3.1), and finally (iv) by taking account of the
current conservation; also the same procedure must be
repeated after multiplying by p . Another property of
this system is that it leads to the Anderson-Witting equa-
tion when the "magnetic polarization" is neglected: this
can be seen through [26] the Gordon decomposition of
f"(x,p) which yields [14,24] f"~p"f or f„„-0,and
f&-0, f~&-0. Of course both Eqs. (3.1) are consistent
with each other (see Sec. V for the case of a general col-
lision term).

The interest of this kinetic equation not only lies in its
simplicity but also in the fact that it raises a number of
problems to be found in general quantum and relativistic
kinetic equations.

Let us first try to solve the system (3.1) by a naive
Chapman-Enskog expansion at order 1 in ~, with

—+2ip +4m
7

Setting now p"=mP and after some rearrangements,
it then reads

F—Feq

Q
y —2ig 2i-

m~
& gF

2

+2ig +4
m7

(3.8a)

F—Feq

y +2ig +2iQ

gF. m7
2

+2i g +4
m7

(3.8b)

In this last system there appears two expansion param-
eters: (i) I/mL, which comes from the term dF/m and
(ii) I/mr. Let us first expand these equations with
respect to g= 1/mr; one obtains [from Eq. (3.8a)]

F=F +wF +eq (1) (3.2)

where F,q
is now a local equilibrium Wigner function;

i.e., it depends on x via the macroscopic quantities
(T,u",p) involved. Then, the right-hand side of Eq.
(3.1a) should be considered at order zero in r, and taking
into account Eqs. (2.8), one gets (with y uy u =1) F()) — (y'p+m }r'()f

q

'r yp+m
4m

r (+I r aF„
2 ggu m

for the dominant term (in I/g); or, equivalently

(3.9)

(3.10)

F(, )(x,p)=y uy BF,q(x,p) (3.3) 7
()) p c (3.11)

a~„(x,p)=y.uy "[y p+m ] 4m
The same results are obtained from Eq. (3.8b) achiev-

ing thereby a consistent solution of both Eqs. (3.1). In
the passage from Eqs. (3.10) to Eq. (3.11) use was made of
Eq. (B2).

Several remarks are now in order. It should first be no-
ticed that Eq. (3.11) does not only constitute the dom-
inant part of the solution (i.e., in I/g) but also the
correct first-order Chapman-Enskog solution since the
term v.B is precisely of order ~/L. This circumstance is,
in fact, fortuitous and does not appear with general col-
lision terms (see Sec. V). Another remark is that the solu-
tion (3.11}leads exactly to the Anderson-Witting results.
Let us briefly show this. What is needed to get the trans-
port coefficients is T" and J which can be obtained
from Eqs. (2.2) and (2.4). These last equations can also be
rewritten as

(3.4)

Similarly, from Eq. (3.1b) one obtains

ag„(x,p)
F(, )(x,p)=[y.p+m]y y u

4m
(3.5)

which is different from (and in contradiction with) the re-
sult (3.4) whereas Eqs. (3.1}are consistent.

To see exactly what was wrong in this naive
Chapman-Enskog expansion, the system (3.1) is rewritten
as

(3.6a)

dF y = (F F,q ) +2—i ( y p——m )
Q (3.6b)

J"=fd p f' and T" =fd p p"f" (3.12)

y BF=— 2i(yp —m)—(F F, ), —9

where use has been made of the properties (2.8) for F,q.
Equivalently Eqs. (3.6) are transformed to

indicating that only the function f~, )(x,p } is of interest
in view of our goal. It is given by
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fIii: Try F(i)= p ~fep.u m
1'

p

(3.13)

(3.14)

C(F)=M.(F F—, ).X, (4.1)

where M and X are 4X4 complex matrices. 3 priori, it
depends on 2X 16 complex parameters while the most
general relaxation collision term assumes the form

In other words, it has exactly the same form as (and is
identical with) the Anderson-Witting result [12]. This, of
course, does not mean that the physical content of Eqs.
(3.1) is identical with the one of the Anderson-Witting
equation; for instance, higher-order approximations do
differ; or while Eqs. (3.1) is suitable for polarized media
(see below), this is not the case for the Anderson-Witting
equation. However, it has been found that, for unpolar-
ized media, most collision terms do possess the property
that the first-order Chapman-Enskog solution coincides
with the Anderson-Witting solution (see Sec. IV).

Let us now give a glance at polarized media, i.e., those
whose equilibrium Wigner function is given by Eq. (2.25).
It is not difficult to realize that Eq. (3.11) [in which Eq.
(2.25) is inserted] is still valid and, more important, so is
the case for Eqs. (3.13) and (3.14). It follows that the
transport coefficients so obtained are identical with those
given by Anderson and Witting [12]. However, from Eq.
(3.11), one can obtain the relaxation of the average polar-
ization four-vector f~5~

& ~
(x,p ),

C(F )
—yQlJcd(F Feg ) (4.2)

[iy 8+2[y p —m]]F=C(F),
F[iy 8—2[y p —m]]=C(F),

(4.3a)

(4.3b)

where C is chosen in such a way that this system be con-
sistent, i.e., so that

C(F ) = yC t(F—)y (4.4)

where this last property results from the following one [7]

y 0FfyO —F (4.5)

where ( a, b, c,d } are spinor indices running from 1 to 4.
Equation (4.2) depends on 4 complex parameters and
much less when symmetries are taken into account.
However, despite this lack of generality Eq. (4. 1)
possesses a sufficient degree of complexity to accommo-
date most useful physical cases, and our relativistic quan-
tum kinetic system reads

as

fsI&I(x p)—= Tr[ysy"F(&)(x p)]

M(iI(x )=fd p fg(i)(x&p )

(3.15)

(3.16)

and from the requirement of consistency.
In order to expand F in a many-parameter Chapman-

Enskog series, the above system (4.3) is first written in
terms of the dimensionless variables P=p" /m and
x"=—x "/L and thus reads

p ~A,rf d—p f"„(x,p)Seq

and the corresponding transport coefficients

M(~)(x )=u ' 6Pn 'X

(3.17)

\F
L

F+ ( g
—1)F=

L

2F( ( )
C(F)

(4.6a)

(4.6b)

+ i~, [m—."'B„n,,P+n BP] '
4—1 p v

1.+n" v i ——i21 3 4 —1

+W Pi4, n Bu +r—Pi„n
3

(3.18}

where k is the thermal conductivity, X is

X =—~ "(u)[a~+Pu„], (3.19)

IV. A GENERAL RELAXATION TIME MODEL

A general relaxation time model —although not the
most general one —is now studied. It is chosen so that
the collision term has the following form

and the i „are integrals defined in Appendix A.
It is finally clear that the system (3.1) does not allow-

at least at first order in the Chapman-Enskog
expansion —a coupling between polarization and 4-
current.

g=F, /L, e=E' f /L (4.7)

are considered although there exist possibly many others.

where 8, is the Compton wavelength of the particles of
the system and where 8 f is their mean free path. 8 f~
has been made apparent in Eqs. (4.6} Uia an implicit
redefinition of C(F): this has been made in accordance
with the fact that a collision term is always supposed to
be of order 8 f (or r ' if one considers that, in a rela-
tivistic system, (U) 51). Note also that 8 f is sup-
posed to be any of all possible collision lengths (such that
the following developments make sense): for instance,
there exists a collision length for spin Hip, another one for
the attenuation of polarization, etc. Another important
point to be noticed is that there may exist the interesting
situation where one of the relaxation times is much
greater than all others. In such a case one has to face a
Chapman-Enskog expansion whose first term is not
necessarily a stable equilibrium state but rather a meta-
stable one. Such a case can be found, in a nonrelativistic
context, in the study of polarized He: during experi-
ments performed (e.g. , spin-echo ones) the medium
remains fully polarized [27].

Now, only two expansion parameters,
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In general, g is much smaller than e. There exist, howev-
er, physical situations where these parameters are of the
same order of magnitude or where e(&g. Among these
last cases, one 6nds those where collective effects are im-
portant [18—20].

Setting now

so that one gets

F(1)e
iP+y ()F, P+

P+MP+ = p)+ m p~+ p3 P+
p'u

m
(4.19)

8=a,o)+Ca(, ),+pa(])„+ - . ,

F=F(o)+eF()),+gF()) +
(4.8)

(4.9)

p u p u
p&+m p2+ p3 v&+ m v2+ v3

(4.20)

iy 1}( )F( )+2(y p —m )F(,)„=MF((),N, (4.10a)

for the expansion of our various quantities in terms of
powers of e and g and separating the different orders, one
gets

which reduces to

F(1)e

i ~ ()F,
m

iB(o) yF(o) —2F(, )„(y p —m ) = NF(, )—,M, (4.10b)
p'u p'u

p~+ m p2+ p3 v]+ p+ v3
m m

(y p —m )F() ), =F((),(y p m) =0—, (4.11)
(4.21)

M =p,I+p2y p+ p3y. u + u 4' u p,
N =v, I+v2y p+v3y u+v4o'. u.p,

with the following notation

(4.13)

MF()) N=O=NF()) M, (4.12)

where we have set M =y Mty . Here, we limit ourselves
to the "simple" case of an isotropic collision term, i.e.,
depending only on p" and u" so that the matrices M and
N read

where use was made of the properties (see Appendix B)

P+y P = P+,p
m

1+y5y"Sp
P+, =0.

2

(4.22)

Had we used Eq. (4.10b) instead of Eq. (4.10a), we
would have found

0' '11 'P =O' 11+„

(4.14)

In the following, it appears quite helpful to
use the decomposition of the various matrices
M, N, F(,)„F(,)„.. . obtained, with the projectors

m+y p
2m

F(1)e
'u

p*, +mp,*+p p,
p'u

v) +mv2+ v3

(4.23)

they are such that

P+ +P =I,
P+P =P P+ =0

and for any 4X4 matrix X, one has

&=P+&P++P+&P +P XP++P &P

(4.15)

(4.16)

It follows that the consistency of the results (4.21) and
(4.23) implies that the denominator should be purely
imaginary

Pl+82m + p3 vi+v2m + &3 —iA (p ),p'u p Q

m

(4.24)

General form of F(,), where A(p) is a known (but as-yet unspecified) function
ofp and, accordingly, one has

From Eqs. (4.11), it is easily seen that F(,), has neces-
sarily the form

p -BF,

mA (p)
(4.25)

F(]),=P+F(,),P+ . (4.17)

Multiplying now both sides of Eq. (4.10a) by P+, one ob-
tains

iP+ y-BF, P+ =P+MP+F(I),P+NP+, (4.18)

where use has been made of Eqs. (4.1S) and (4.17). On
the other hand, the matrices M and N of the form (4.13)
do possess the property

Note that the case A(p }:—0 only leads to constraints
on local equilibrium [see Eq. (4.18}] which implies

p BF =0.
It should be emphasized that the general form (4.25),

despite its apparent generality, is essentially similar to the
one obtained in Sec. III and reduces to Anderson and
%itting*s when the denominator is chosen to be propor-
tional to p.u. Note also that it is valid whether the sys-
tem is polarized or not.
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Determination of F(, )„

Let us now solve Eqs. (4.10) and (4.12}for F(,)„and, to
this end, let us decompose this last matrix as in Eq.
(4.16) and multiply Eq. (4.10a) from the right by P and
from the left by P+, one gets

The other components, i.e., P+ F(,)„P and
P F(, ) P+, are obtained from P (4.10a) P+ and P+
(4.10b) P, respectively, as

1P F())qP = [iP y BF,qP P—MF(, ),NP ],
4m

P+ MP+ F( i ),P+ NP =0

which leads to a nontrivial solution only if

P+ NP =0,

(4.26}

(4.27)

(4.29)

1P F„)„P = — [iP BF, yP +P NF„„MP ] .
4m

similarly, Eq. (4.10b) yields P NP+ =0. Multiplying
now one of the equations (4.10) on both sides by P, one
is led to

2P F(, )„P = PM—P+F(, ),P+NP =0 . (4.28)

(4.30)

The last term, P+F(, )„P+, is expressed as a function of
the other ones by multiplying Eq. (4.12) on both sides by
P+ and using Eq. (4.19)

P+F(i)„P+=— P+ F())„P XP+ P+ MP F())„P+
, + (4.31)

p'Q
v) +m vp+ v3

m

p'Q
p)+ m p2+ p3m

Gathering now all these results, F(&)„ is given by

F(,)„=Eq. (4.28)+ Eq. (4.29)+ Eq. (4.30)+ Eq. (4.31}
or

F = 1—(1)r]
P+ MP

p'Q
p~+ m p2+ p3

P iy BF,
4m

P MP+

p'Q
p&+m p2+ p3

P+iy BF,q
4m

P+ BF,qi yP+
4m

P+BF, iyP+
4m

P+ MP

p'Q
V~+me2+

P NP+

p'Q
v]+m vp+ v3

(4.32)

This part of the complete first-order solution constitutes the physically interesting one since it yields various polariza-
tion effects connected to charge and energy-momentum flows, leading thereby to a number of new transport properties
such as spin diffusion.

Let us now give an explicit solution for F())„. It is obtained by replacing M and N in Eq. (4.32) by their specific form
(4.13). After a straightforward but quite long and tedious calculation, one finds

F(,)„=I — (P P")b, ~—(p)u —rtt+(5 5')—1 (p+p')e t' ~piu t tt

+y — (p —p*)b ~(p)u r p"+(5—5') —i(a —a') 6""(p)u

+(a+a') e "uip +—(p+p*)b, z(p)b~„(p)u ttt e~ " d' '" t)„—
4

+o" r(~„}— (a+a') u(~„} (p+p')5 „(p)h—„—(p)u( rt)}

+ p t~zb, ~(p)u ett „(p—p')ez t)(~ u—t~
}

+ 5 (p)u t('t)p ez „— e &„„pit(p p') .&-
8m
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+y y" —(P+P')z + (a —a') "t p u)' ——(P—P')6 ~(p)u t + (5—5')p t)
4 " 4m m ~ 4 ~" 4m

——(P—P')b„(p )6 &(p }u ( t~)" +y~ (a+a')p t& ut' (4.33)

where we have set

1r„=
4 Bgeq

a„[s„f,q],

p p v
Za =

&Xpva m

(4.34)

(4.35)

(4.36)

v3=mv4,

v) =m v2+ v3
p Q

m

v3+m v4

p'Q
v)+ m v2+ v3

V3

V)

p3
—mp4

p Q
p)+ mp2+ p3m

(4.45)

(4.46)

a P
gap( )

ap p p
m

p3+mp4
p'Q

p&+m pz+ p3
m

(4.37)

(4.38)

(p3+mp4)(p3 mJM4} 1—(p u)

p'Q p'Q
p&+ p2+ p3 p& m p2 p3

(4.47)

, =1 . (4.48)

p3
—mp4

p'Q
p)+ m p2+ p3m

(4.39) Let us also recall that Eq. (4.24), that connects these
various parameters, is purely imaginary.

From the constraints (4.45) —(4.47), one concludes that
the most general admissible form for ¹is

5=a/A, ""(p)u„u, . (4.40)

The above solution (4.33) finally depends on four real
parameters only, namely the real and imaginary parts of
a and P. In the case of an unpolarized system, the above
expression for F~&~„has a slightly simpler form obtained
by setting

V3N= v +—y u (y.p+m) .
m

(4.49)

f(1)vpp mf (1)g (4.50)

(2) It can easily be verified that F())„does possess the
property

S"(p ) =0, t ~(p ) =0 . (4.41)

Remarks

(1) So far, Eq. (4.12) has not been completely used and
the consistency of P+F~, ~„P+ as obtained from either
equation can be shown to require the following con-
straints on M and N

but verifies neither f(~) ——0 nor f ~ p„=0, although these
conditions are quite natural and indeed are true in most
cases studied with a general collision term [see Sec. V].
These last conditions can be obtained by imposing either

u'p ~fS,(p)f„]=0

P MP+

p Qp]+ pe+ p
m

P NP+

p Qv)+ m v2+ v3
m

(4.42)

and, in this case, we constrain the form of local equilibri-
um, or by setting a=O. When this last condition is as-
sumed then the matrix M has necessarily the general
form

Furthermore, the following relations hold

P NP =0=P NP (4.43)

p3M=(y.p+m) )M + y. u
m

(4.51)

P MP
P MP+ MP

p Q
p&+ m p2+ p3m

(4.44)

if one does not want any very particular constraint on lo-
cal equilibrium. More explicitly, these constraints lead to
the following relations

(3) When the system is not polarized then F(,), does
not lead to polarization phenomena (in other words,

f~(, ), =—0 as well as f~()), =—0). It is not so for F(,)„since
f~(,)„+0. F(,)„ implicitly contains the possibility of po-
larized perturbations. The average polarization four-
vector of such a perturbation is given by

)=I
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and, in the case of an unpolarized system [see Eqs. (4.41)],
it reads

M(~)(x )u =0 (4.54)

A,aPp
d'p(P+P*)p„u. ag„(p ) .

4m

Moreover, one can also note that

(4.53)
as it should be.

(4) It is desirable, although not mandatory, that the
Landau and Lifshitz matching conditions (1.4) be
satisfied, or

' J p[ f(i)~+1f(&iq] = = " J p'Tf~&~&+ f &~ (4.55)

V. GENERAL PROPERTIES OF THE RELAXATION
TIME APPROXIMATION

Let us now investigate the most general relativistic
quantum Bhatnagar-Gross-Krook (BGK) [28] collision
term and, to this end the system (4.3) reads

iy BF+2[y. p —m]F=C(F),
idF y 2F[y.p —m—]=C(F),

(5.1a)

(5.1b)

where the collision term [C C] must satisfy the con-
sistency condition (4.4): i.e., C= —y C+y . It should be
noticed that the following discussion is valid for whatever

[ C, C ], be it a collision term or an arbitrary interaction
term. Only the results specialized to linear [C,C] are
not general: in a relaxation time approximation F ap-
pears linearly in C(F) and, since C(F, )=0, C(F) must
depend on F through the combination

5F—:F—Feq ' (5.2)

Besides these simple properties C(F) must also obey
the general conditions which have to be satisfied by all
collision terms: (i) C(F, ) =0, (ii) conservation laws must
be verified, and (iii) an H theorem should exist. Property
(i) is satisfied by construction in our specific case while
consequences of point (ii} are studied below. As to the
existence of an 0 theorem, it is required in order to en-
sure the monotonic relaxation toward equilibrium. Actu-
ally, not only is the definition of an entropy for o8-
equilibriurn states quite moot but it is also difficult to ex-
press the entropy itself in terms of the Wigner function
the more so since it a priori includes polarization [29].
Therefore, we shall content ourselves by demanding (i)
that all f" (A =1,2, . . . , 16} relax towards f,"q and (ii)
that the second principle of thermodynamics be satisfied.

and a similar equation with p„ included inside the in-
tegration symbol.

However, it should be realized that the integrand of
Eq. (4.55) can also be considered as a first-order expan-
sion of f" with respect to the (supposed) small parameter
(m r) . Accordingly, the following question raises itself
in a natural manner: should the Landau and Lifshitz
conditions be satisfied at order 0(1/mw) or at order
0(1/m r )? When the first possibility is chosen —and it
corresponds to the usual first-order Chapman-Enskog
term —then it provides a condition on f ~ & ~, only.

Note that entropy density could be defined through the
thermodynamic relation

p= —P+pn+ Ts, (5.3}

C = ,' [cI+c„y"+c„„cr—""+c,„y,y"+c,y'} (5.4)

and a similar decomposition for C whose coefficients are
denoted by c„(A = 1,2, . . . , 16).

Kinetic and constraint equations for the f "'s

The general system (5.1) does not look like a relativistic
kinetic equation [7,30]. This is due to the fact that it in-
cludes both transport properties and mass-shell con-
straints. They can be disentangled in several ways. To
this end, the system (5.1) is rewritten as

where n is the charge density, p is the energy density, P is
the pressure, and p the chemical potential. However,
even though this would be more or less satisfactory for
off-equilibrium states of spinless particles, it could hardly
be so when spin is properly taken into account.

Note also that, since F is a 4X4 matrix, there exist a
priori 16 possible relaxation times and also C&6 possible
couplings between the 16 components of F. It follows
that, a priori, the general collision term C depends on 136
constant. Of course, this number is drastically reduced
when symmetries are taken into account.

In this section, the system (5.1) is first set in a more
suitable form, i.e., as a set of equations for the f "'s from
which a system of cpupled kinetic equations for the same
quantities is deduced. The consistency of this system and
some natural conditions then impose some constraints on
C. Among these conditions is the demand that they are
truly relaxation equations and that they are similar to or-
dinary ones (such as the Anderson-Witting equation) in
this sense that they can be solved with a Chapman-
Enskog expansion. In particular, since C generally de-
pends on macroscopic quantities such as the equilibrium
average four-velocity u", it is demanded that no deriva-
tive enters into it: if ~ is one of the various relaxation
times, C should be of order ~ ', a property which would
no longer persist if C would contain, e.g., terms like B„u,
or BpT, etc. Other consistency properties will also be im-

posed, e.g., as to the mass shell on which evolves the par-
ticles within the system.

Finally, C is decomposed on the Dirac algebra as
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2(y m+ —m)F=C,

2F(y m. —rn )=C,
where

(s.sa)
p Bf5 —p„B f~&= —e"' p (c„„+c„„) (5.18)

(5.5b)
and at the following constraint (mass-shell) equations

lp+ (5.6)
(p —m )f= (c„—c„)+—(c c)—+B"p"f„„, (5.19)

Multiplying Eq. (5.5a) from the left by (y a++ m ) and
Eq. (5.5b) by (y n. +m ) from the right, adding and sub-
stracting the resulting equations, one obtains +mB"f„„——p"B f~)e q„„, (5.20)

m pv(p' —m')f„= (c„,—c„„)+—(c,—c, )+ (c —c)

(p m——
—,'O)F= —,

' [m(C+C)+y ~+C+Cy m.

ip BF=—,'[(y m++m)C C(y —n +m)] .

(5.7)

(5.8)

(p —m )f„,= — e—~„,(c~ —c5)p + (c—„„.—c„„)

+ —.p(„(c,)+c„))+—e g„~ (Yf,
8i

These last two equations have the unpleasant feature
that they involve the derivatives of the collision term

[C,C } and also OF. In fact such terms can be eliminated

by considering the following two quantities

pP
(p —m )f = — . (c „+c„)+—.(c —c )

(5.21)

iy BEq. (5.5a)+Eq. (s.sb)iy B

which lead to

,'[~y —BC ~BC y]=I~y By pF ~BFyp y ]-
OF mi[—y Bf—BF y]—

and

(5.9)

(5.10)

+ BgP ———g gPB fP"

——p (c5+c~)+—e"" p Bg„

——B fm
5

(5.22)

(5.23)

,' [iy BC+iB—C y j =iy B y.pF+i BFyp y

im[y BF—+BF y], (5.11)

respectively. Introduced into Eqs. (5.7) and (5.8), they
yield

(p m)F= ,'[iy—B(y p —m—).F F(y p nl )i—y B]—

Note that the "transport equations" (5.14)—(5.18) as
well as the "constraint equations" (5.19)—(5.23) are gen-
erally valid whether [ C, C ] is a collision term or an arbi-
trary interaction term; no assumption has yet been made.
In particular, without any further hypothesis, it has not
the form of a relaxation equation

(5.12)

+iy By pF+t BFyp y] im'ty BF—+BF.y]

+ —,
'

j (y p —m )C —C(yp —m )J,
ip.BF=—,

' [(y p+m )C —C(y.p+m )

p Bf"=K" .(f f, ) (A, 8—=1,2, . . . , 16)

which can be cast into the form

d X=K.(X—X, )d7. eq

(5.24)

(5.25)

(5.13)

where the "unpleasant" features of Eqs. (5.7) and (5.8)
have disappeared.

Taking now the traces of these last two equations with
the 16 matrices of the Dirac algebra, we finally arrive at
the following "transport" equations

1p.Bf= —.p"(c +c ),
2i

(5.14)

(5.15)

p.Bf"'+B("f")"p„= e"" ~p (c &+c &)—, .
4r

pP
p Bf&= (c&„c&„) (c&+c5),

(5.16)

(5.17)

pPp.Bf„p„B"f"+mB"f=— (c„„—c„)+ (c"+c ), —

with X—:
)[f "(( and K = ((K "~(( so that each f" relaxes

monotonously towards its equilibrium value f,". In or-
der that the system (5.14)—(5.18) have the expected form
(5.24) two general conditions must be obeyed: (i) C(F)
must be linear and must depend on I' through
oF=F F, and (ii—) the superfluous terms

p„B"f"+m B"f, B—"f pz, and p„B f 5 occurring in the
left-hand side of Eqs. (5.15), (5.16), and (5.18) must not
be present. As a matter of fact, in a first-order
Chapman-Enskog expansion they disappear completely
(see below).

The constraint equations (5.19)—(5.23) are now worth
discussing. In the absence of any external field (or con-
densate) whatsoever, in the kinetic regime we are consid-
ering, collisions are pointlike and hence particles lie on
the mass shell p =m . This property can be seen in
another way: when the solution of the transport equa-
tions are expanded in a convergent approximation whose
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zeroth order is such that p =m (as is the case for an
equilibrium Wigner function) then, owing to the linearity
of I C(F),C(F)], each order is on the mass shell, and so
is the complete solution.

For future use, let us also give a system of equations
[31] obeyed by the f"'s and obtained directly from Eqs.
(5.1) by taking the various traces, summing and adding:

BqS"' —( T"" T"—")=0 (5.33)

unique.
Besides the conservation laws (5.31) and (S.32), there

also exists the conservation of the total angular momen-

tum, which includes some kind of a balance equation for
the spin. It reads

p„f" mf—= ,'(c ——c),
Bg"=—.(c+c),1

21

t}„f"'+p"f mf"—= . (c"—r")—,1

dg+4p f„„=—.(c„+c„),
2l

1
—,'B(g )

2mf„—„pe i„—„f,= . (c„c—„„),—
2l

~
~ f5 ei pv~+p [pfv)

=
2 (C~v+ Cpv }

8+5 2p ei „g—t'" 2mf5„= ——,'(c5„—V5„},

1M &"e„t,„„+2p„f,= . (c,„+—c—,„),
2l

p„f"= —
—,'( +2' ),

1
B~&"+2mf = ——.(c —c ) .~ 5 5 2

~ 5 5

Constraints on the collision term

(5.26a)

(5.26b)

(5.27a)

(5.27b)

(5.28a)

(5.28b)

(5.29a)

(5.29b)

(5.30a)

(5.30b)

which, in terms of %igner functions, can be written as

-'~ fd4 '"f fd—' (~f )-O. (5.34)

Comparison of Eq. (5.34) and Eq. (5.28b) yields

f d p[c„„+c„„]=0 (5.35)

(5.36a)

(y p —m)F =0

C[F(t ) ]=0
(5.36b)

(5.36c)

and similar equations resulting from the expansion of Eq.
(5.1b). Multiplying Eq. (5.36a) from the right by P and
from the left by P+, one finds the constraint

P+ CP =0 (5.37)

(and also the equivalent constraint P CP+ =0). Similar-
ly, Eq. (5.36a) multiplied from the left by P+ yields

which also constitutes a weak constraint.
Let us now look at the possibility of a Chapman-

Enskog approximation. Performing the same expansion
of Eq. (S.la) as in Sec. IV, we arrive at quite similar ex-
pressions that read [see Eqs. (4.10)—(4.12)]

iy'BF +2(y'p m )F(~) =C[F(~~ ]

Besides the linearity of C(F), the form of the collision
term has to be such that the usual conservation laws are
satisfied. Furthermore, the possibility of a Chapman-
Enskog expansion of the solution [or possibly another
type of expansion such as that implied by the 14-moment
method (i.e., the relativistic grad moment method}; how-
ever, here we limit ourselves to the Chapman-Enskog ex-
pansion] should also be allowed.

Let us first investigate the conservation laws and, to
this end, let us integrate Eq. (5.26b) over p, after it has
been successively multiplied by 1 or by p . One gets [see
Eqs. (2.2) and (2.4)]

a Z~= fd4p(c+c—)=0,1

2i

B„T"=—f d p p (c+c}=0.

(5.31)

These last two equations are, in fact, weak constraints
that lead to matching conditions [S—7, 10] to be satisfied,
whether Landau-Lifshitz ones or others. For instance, it
is clear that, when

( c +c ) =const X (f—f,q ),

ip dF, =mP+C

while the unwritten analogous equation provides

~F =mCP+

P+ C —CP+ =0

(5.38a)

(5.38b)

(5.39)

which implies Eq. (5.37). A comparison between Eq.
(5.13) and Eq. (5.38) shows that the consistency of the
first-order Chapman-Enskog solution gives rise to

,'[ty BC+i'—Cy]=O(e) . . (5.40)

p =m, BF~dF, (5.41)

From Eq. (5.12) and the fact that P F,q
=F,qP =0, one

gets

At this point, it must be strongly emphasized that F~, ]
appearing implicitly in C and C is always F~t), [see Eq.
(5.36a)] and hence all the above constraints refer only to
f~", ), ttnd not to F~, ~„. We come back to this point below.

Let us now examine the consequences of the mass-shell
constraint p =m and of the Chapman-Enskog expan-
sion

then the Marie matching conditions are obeyed, while for
CP +P C=O . (5.42}

(c+c)=constXu„(f"—f", ),
this is the case for the Landau and Lifshitz ones. Howev-
er, these last expressions for (c+c) are by no means

Conditions (5.39) and (5.42) can now be decomposed on
the Dirac matrices and yield 20 equations which do not
present much interest except in their main consequence:
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mP.Bf, =—(c+c),
2l

pP
p df", = . (c+c),

2l

(5.43)

(5.44)

p t}f"q = . e" p (cst3+cst3)
l

(5.45)

the various coefficients Ic",c "J can be expressed in
terms of Ic,cj and jcs cs J only .Introduced into the
transport equations (5.14)—(5.18) they provide

Moreover, because of the relation p„fs, =O=p„fps~, ~„
the tensors b",c",d" should be chosen as being orthogo-
nal to p", so that Eqs. (5.51) and (5.52) contain
1+3+3+3 X 3 = 16 independent parameters. The
a, b",c",d" are functions of the various components of
p" and of constant phenomenological relaxation times.

Let us now discuss the system (5.51) and (5.52).
1. The fact that f"a-p"f has the interesting conse-

quence that the energy-momentum tensor is now sym-
metric. As a consequence, the local polarization tensor is
conserved at order e:

p Bfls .
q
= b,""(p)(c„+2„),eq (5.46) gPvx — 1 ePvkPQ d4 f —O(e)2 5p (5.53)

p ~fs.,=0. (5.47)

4'p
pp& (1)e m& (1)e

p f5(1)e

5, =0

which result from
P F(,),=F(1),P =0.

Eq. (5.36b),

(5.48a)

(5.48b)

(5.48c)

(5.48d)

i.e., from

The collision term

Let us now turn to admissible collision terms. To this
end, it is necessary to construct the most general scalars
and pseudovectors from those at our disposal, i.e., from

f fP fPv fP f PP ttP nP ePvatS (5.49)

First, it should be recalled that the various f~"&~,
's [for

simplicity, the indices (1) and e are suppressed; they are
reestablished whenever necessary] obey the following re-
lations similar to the equilibrium ones Eqs. (2.11)—(2.19)

We still insist, at this point, that while the left-hand side
of these last equations refers to equilibrium functions,
their right-hand side concerns F(1), only while F(1)„has
to be determined from Eqs. (5.36a}—(5.36c). Accordingly,
the various f~", ),'s obey the following relations, as well as

their equilibrium analogues,

2. Unlike the results of the preceding section where
the first-order solution, in the parameter e, implied a
complete decoupling between f and fs, here there exists
a possible coupling Uia the functions b" and c". As a
consequence, spin diffusion and other transport phenome-
na connected with polarization do appear at this order
and not only at order g.

3. When the medium is not polarized, then n" —=0 and
Eqs. (5.51) and (5.52) decouple still at order e

4. Equations (5.44) and (5.45) for f" and f" do not
contain any new information, but these functions can be
obtained from relations (5.50) once the system
(5.51)—(5.52) has been solved.

5. One could be tempted to take as the most general
form of the relativistic quantum relaxation time approxi-
mation Eqs. (5.51)—(5.52) with the left-hand side now
containing the f "'s instead of the f,"q's and on the right-
hand side the (f"—f,"q ) instead of the f (", ~,. In fact, this
would be equivalent to an equation (or rather a system) in
which F(1)„—=0; indeed, this would imply that F1)„obeys
both Eqs. (5.36b) and C(F(,~„)=0, and it is not difficult
to realize that their only solution is precisely F(, )„=—0.
This choice would also mean that the nontrivial part of
the solution would be at least O(rl ).

6. The system (5.51) and (5.52) is linear in the un-
known functions f~ & ~, and f s~, ~, and hence can be solved
without any particular difficulty (see Sec. VI) and, conse-
quently, allows the calculation of transport coefficients at
O(e) and O(rl). On the other hand, the explicit calcula-
tion of F(,)„—although straightforward since all our
equations are linear —is much more involved.

fyv
— &PvaPP1

a 5P& (5.50) VI. TRANSPORT PROPERTIES

m
p ~f q= (c c)= f(~) + gfg(~) (5.51)

(5.52)

It follows that, for instance, a scalar such as u„f" is

proportional to f and hence should not be considered as
essentially different from f. Finally, with all these con-
straints in mind, one can write

In the preceding section, it has been shown that a great
variety of possible collision terms (in the relaxation time
approximation} can actually be constructed. In this sec-
tion we would like to obtain a specific collision term, as
simple as possible but nontrivial in the sense that it
should also contain effects occurring because of spin con-
tributions (e.g., spin precession, spin diffusion, etc.). A
similar collision term is also well needed in other prob-
lems such as the evaluation of transport coefficients of a
quantum relativistic plasma embedded in a magnetic
field.

The only function that can a priori be determined is the
function a(p ) occurring in Eq. (5.51) since, when the sys-
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tern is unpolarized, the equation for f should reduce to
the Anderson-Witting one. Accordingly, a(p) can be
chosen to be

a(p)=— (6.1)

In this section it is shown how these conditions do re-
strict the range of the arbitrary functions that occur in
the collision term. Next, the explicit form of the conser-
vation relations are studied since they are repeatedly used
in the calculation of J~ & ~

and T~, ~. Then a simple admissi-
ble form for 5f is proposed and it obeys the Landau and
Lifshitz matching conditions. The results obtained for
J~ &~

and T~&'~ are given while the corresponding transport
coefficients are derived and discussed. Finally, 5f", is
dealt with in another subsection.

The conservation relations

note, however, that we could have added an arbitrary
term proportional to P, the polarization of the system.

In order to say something about the remaining un-
determined phenomenological functions b",c",d", one
can still resort to the matching conditions. If one wishes,
for example, to implement the Landau and Lifshitz
matching conditions, as was the case in the nonpolarized
case, the deviations to the baryonic current and energy-
momentum tensor to first order in e should obey

(6.2)

In Eqs. (6.9)—(6.16), use was made of the notations

a=—u"8 (a),P

a'=n "B„(a),
4" =q" —u"u

=—q" —u "u v+n "n

F"=—e" ~u na P &

(6.17)

(6.18)

{6.19)

{6.20)

(6.21)

(6.22)

with the properties

~"'u =~"'n =F" u =F" n =0,
F}tf, A v —FPv

A,
7T

F" F~'= —W

Another useful tensor is

eFPv l PvaPF [P v]
~p

— u n

(6.23)

(6.24)

(6.25)

(6.26)

I40aI, —yI +y 0=0, (6.27)

In terms of the derivatives of the chemical potential p
and of the inverse temperature P, or rather of the param-
eters a =Pp and y =mP, Eqs. (6.9)—(6.11) may be rewrit-
ten as

The equilibrium conservation relations read

B„J"„=O(e),

B„TI,"=O(e),

BqS"," =O(e)

with

(6.3)

(6.4)

(6.5)

I4i
c I22 yI

3
(6.28)

a 'a~(a)= "a '[a~(y)+yu~],
I4O

(6.29)

where the I„are defined in Appendix A.
Let us also recall here the relations provided by the

normalization and orthogonality of u" and n":

J", =nu",

T",' =pu "u —PA"

g pvA. I &pvkpP
cq n p

(6.6)

(6.7)

(6.8)

u B&u =0=n B&n

u B&n = —n B&u

(6.30)

(6.31)

so that Eqs. (6.3)—(6.5) lead to

n+n6I=O,

p+ (p+ P )8=0,
6" d (P)=(p+P)u",
P=P(0+u' n ) =Pm." r}„u„,
Per"""r}~(n ) = —n W"[Bq( P}+Pn ~ ],
e"" ~n„Bq(n )=0 .

(6.9}

(6.10)

(6.11)

(6.12)

(6.13)

(6.14)

Determination of 5f=f, & ~, —

The first-order correction 5f is used when evaluating
the transport coeScients of the system via the calculation
of J~[,

~
and T~[, ]. The starting point of our analysis is the

most general possible form for 5f. It reads

5f =Ap. Bf, +B p Bf,~, {6.32)

where A is an arbitrary scalar function of p" and 8 is
the most general pseudovector orthogonal to p that can
be constructed from p", n", u", e" ~. Accordingly, 5f
can be written as

Relation (6.14) will also prove useful when cast into the
form

5f =a(p)p. Bf,q+b(p)n~. Bf„
m u B&n =~ n&, (6.15)

+c(p)p nW p~ Bf, ,
+d(p)p ne""~ p„u„n p B. f~z, (6.33}

e~' ~u„n 8 (np)=F~ B„(n„)=0. where the functions a (p ),b(p ),c(p ), and d(p ) are a priori
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arbitrary scalar functions [32] ofp.
First, one must notice that, in the absence of polariza-

tion (i.e., when P:—0), 5f should reduce to the
Anderson-Witting form. Consequently, a (p } can be
chosen to be

a(p)=—
p Q

(6.34)

= —u( n } p d(Pf) Pfp 8—u{ n

(6.35}

The first term in this last expression, once contracted
either with W"p or with e)'" p„u„n [which occur in
the third and last term of Eq. (6.33), respectively] van-
ishes. Therefore, the peculiar effects due to the existence
of spatial gradients of polarization occur only when the
second term is present, i.e., when b(p )%0.

The second term also contains the gradient
—(p u lm)Pb(p)p Bf. An explicit calculation of JI'))
and T~~&~ shows that this expression contributes terms
proportional to u" and u "u, respectively, besides normal
terms orthogonal to u". These terms are quite undesir-
able in view of the Landau and Lifshitz matching condi-
tions (6.2) but are the only one of this structure. The only
possibility left to eliminate these undesirable contribu-
tions is by way of choosing b(p ) so that the same struc-
ture as the first term in (6.33) be reproduced; this occurs
when

A second remark is the following. In the other terms
of Eq. (6.33), the expression p Bf5,„appears and one has

p.8f s
=p ()[—u "(n /m )p Pf ]

4

i4oP(8+n u')u "u' (in TI')') ) .
6~

(6.38b)

From Eq. (6.12), which stems from the conservation of
angular momentum, it is found that, in fact, these terms
have the same general structure and can be grouped as

m
~2i

2&

l4 $
~

3
Pu" (in J~(, ) ) (6.39)

m
+s 2 l21

277

m4
2 l22

2%

~40

(for JI')) ),

(for T()) )

(6.40)

A simple choice for c(p } that allows these conditions to
be obeyed is given by

m
c(p ) = —15m,

(bF"(u)p~, ) (p u )
(6.41)

and a similar expression in T)[",].
Let us now consider the third term of Eq. (6.33), i.e.,

the c(p ) term. An explicit calculation shows that its con-
tribution along u" has exactly the same structure as the
undesirable extra term (6.39). Accordingly, both terms
can be chosen so as to cancel each other and, to this end,
it appears necessary that

(p u)
J d p' 2 '[b,(u) p p] c(p)

15m p'u

mb(p)= ' (p.u)
(6 36) where

Other undesirable terms, proportional to u" or u"u',
come from the remaining parts of the second term, i.e.,
from

0" —= u "u —n"n

and

7$ p.B(P)f,„p'Q

The fourth term also brings contributions in u" (for the
four-current) or in u "u" (for the energy-momentum ten-
sor) although with a very different structure; in the four-
current, for instance, it is proportional to

n
(ii) r, ,p B[u'~n 'p ]Pf,q

.
(p Q)

From (i) one finds

m
i2) Pu" (in JI') ) ),'

2772

4

i22Pu
"u" (in T()')") )

2%2

while from (ii) one gets

3

i 4P()8+n. ) uu(in JI')) ),
6m

(6.37a)

(6.37b)

(6.38a)

PexvaPu n (1 u .u)'
v a P

This has no counterpart elsewhere. It seems therefore
that one should choose d(p ) =0.

In fact, in the local rest frame of the system such a
term is proportional to

P(hhu) n,
so that it vanishes when the local equilibrium three-
velocity is irrotational. In such a case, it is not necessary
to impose d(p}=0. More generally, it seems that the
condition (V hu) n=0 can be obeyed in a great number
of physical cases.

Finally, the simplest possible form for 5f can be taken
as
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p.d m 0"p6f = r—P f, —r, n~ Bf&, +15 p n.rr" p~.BfPp. u " ' (p.u)' "
()5, p.p)'

and it depends on two relaxation times ~ and v;.

(6.42)

Transport coefBcients

The calculation of the first-order correction J~[, ] for the four-current is straightforward and results from the integra-
tion of Eq. (6.42)

j(i) = Jd p 5f (6.43)

and from the use of the conservation relations for local equilibrium. The basic manipulations can be found, e.g. , in Ref.
[12] or in Ref. [20] and are therefore not repeated here. One finds

m' I41
J~()

)

= [v r P] I4, I4o l—P"[B,(P)+Pu, ]6~2 I40

l4 —1 l4 —1+r, — [bF"B„(P)+PM"u,] — i2) — P[n."'u„+rr""n'„+n "n ~B nf)]
. . (6.44)

)5,"'B,(P)= n i))."'B,—(Pn ) . (6.45)

The other terms do not appear in the nonrelativistic
description. There is some ambiguity about the proper
way of grouping them together.

This expression obeys the first Landau-Lifshitz condition,
and reduces to the expression first given by Anderson and
Witting when the system is unpolarized, P=—0, as expect-
ed. The first term is the usual heat conduction term with,
however, a slight modification: one now has an
"effective" relaxation time [r~r r, P] that —depends on
the polarization of the system.

Among the polarization-dependent terms one also no-
tices the expression bF'B,(P), which is easily identified
with the gradient of parallel polarization V(M3) present
in the classical derivation performed by, e.g. , Lhuillier
and Laloe [29]

m
7 s2 2 21l

l4 1 [n'"n '~B (Pn&)+Per" u, ]

(6.46)

and interpreted as a cross effect between transverse and
parallel gradients of the polarization, plus another Eckart
term [33].

Let us now turn to the energy-momentum tensor; from
the integration of Eq. (6.42) one finds

The decomposition chosen in (6.44) has the advantage
of reducing the number of transport coefficients to three,
the first being the usual thermal conductivity, the second
being the coefficient of the gradient of parallel polariza-
tion plus another term quite similar to Eckart's [33]. The
third contribution to J~~1] may be rewritten as

T)v Jd4 pp

=
[ ) W7O()'+ ) W7)))" +g2W)~" +qW""]+ ( b," + [UV"'I—0

+u("Ic) [b. ' B~(P)+Per ' u) ]+c2[n")vr"~B (Png)+m. ' u ]] . (6.47)

The first line contains the shear viscosity effects. The
shear viscosity is here split into three components

go, g, , g2 and a cross effect between shear and bulk viscos-

ity g. The viscous stress tensor has been decomposed on
a basis of orthogonal tensors 8',I" which are the covari-
ant generalization [34] of Braginskii s [35] tensors, de-
rived elsewhere

W" =—', [n"n "+—,'b," ][n n~+ '6 ~]2cr &—

= [2n "n '+W'] [n u '+
—,
' 8],

W"'=[rr)' n ~ '~" n n~]2(7 aP &

(6.48a)

(6.48b)

(6.49)
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IV~2'= —[W n "n~+m "~n "n ]2o &

~(Pan n v) ~(Pau n )

IV""=[W"+2n "n']8 .

20. ~ is the symmetric traceless shear tensor:

(6.Soa)

(6.50b)

(6.51)

TI' = (p+p )u "u" P—rii" +u'"q~'+X~'+ g b—,""
3

(6.59b)

(with

2o- ~=a uI'+a~u —u ui' —u u~ —-'ea ~
3

(6.52) x~=s~' a„—'
P P

(6.60)

with the property

2'" = W" + W"'+ W"0 1 2

The shear viscosities then read

(6.53)
q", and q2 are the polarization contributions to the heat
current, X" is the viscous stress tensor), may be put in

either Eckart form

I6 ) m 4l 6—2 5l40
go=(r —r,P), y +r, , P

2~' 15 '
2w

(6.54a)

Jg =nUg, (6.61a)

Tg"=(p+ &)Ug U; I'q&"—+ U,'"g,"~+Z~"+g
8
3

m4 I6 ) m4 15l40+2l6
ri) =(r—r,P), y +r,2~' 15 ' 2m'

m4
rl2=(r —r, P) y

27T2

m 4 80'4o 105'zz 8'6 2—
+1~ 2 210

rn 8i6—2 I+40
' 2~'

(6.54b)

(6.54c)

(6.54d)

or in Landau and Lifshitz form

Jg'=nUg+Qg',

Tg"= (p+P ) Ug UL Pri""+—X""+g
L9

with a O(e) redefinition of u", respectively,

Ug =u" +—X"+
n n

Ug=u" + q2 .1

p+P

(6.61b)

(6.62a)

(6.62b)

(6.63a)

(6.63b)

The bulk viscosity can be picked up in the second line of
T(1)

m4
g=(r r, P) y-

6m

I23I40 +I2) I4& 2I22I40I4&
2

+I, ,I22 I2) I23

(6.55)

Determination of 5f l~
=fg~, ~,

The most general possible form for 5f~~ is

sf", =&"p.af+D"'p af„ (6.64)

and has the same structure as in the nonpolarized case if
one replaces the relaxation time by a polarization-
dependent one, r~r, P. From the vorticity tensor V"",

V" =
m ("n }n~[a~(u &)

—a&(u )],
one obtains the new coefficient

105iq2+ 10i40 —8i6
S 210

(6.56)

(6.57)

m4
C) = 7 Pl40

6m.
(6.58a)

m4
C2= Vs 2

P l22
27T2

l40
(6.58b)

The result (6.44) and (6.47), schematically rewritten as

and this term may constitute a new dissipative effect.
Finally, in the third line of Eq. (6.47) is a contribution

to the heat current whose structure is similar to that of
the polarization part of u'"J~&'). The coefficients c& and

c2 are given by

6f,'= — '
p af,'+ " p.af', ,

p u p u
(6.6Sa)

fif', = — '
p af,' — ' p.af', ,p-u p-u

(6.65b)

where C" and D" a priori involve twelve arbitrary func-
tions of p. In order to reduce this number and obtain a
nontrivial minimal form, no such compelling conditions
as the Landau and Lifshitz conditions in the case of 6f
can be imposed: however, three such conditions on P
and n" could exist; this question is addressed at the end
of this subsection.

It is known from classical [29] calculations that the
heat current and parallel component of the spin current
undergo a coupled relaxation, awhile the transverse corn-
ponents of the spin current precess around the polariza-
tion axis and, of course, relax toward their equilibrium
value.

These last features, when written in a noncovariant
form, then lead to the following system for the various
components of 5f5:

J~=nu~+rX~+q~, (6.59a) (6.65c)fif, = — ' p.af 'p af', —
p u p'u
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mind that

QfP=— g"pp. u —p pu"
7T „p Bfg

p u p u
&x g"pp -u —p pu" a P

epv gu 9 p ~f5 qp up u

u "nvp u "n pp.Bf, —r, n~.Bf,
(p u ) (p u )

(6.66)

or, covariantly (and keeping in

p„5f", =O=p„p.Bf", has to be verified)
It should be noticed that the expression chosen in (6.66)
allows for different relaxation times for the parallel and
transverse components, as has been pointed out by Jeon
and Mullin [36] or Dominguez Tenreiro and Hakim [34].

Furthermore, it is not very difficult to implement one
matching condition for the polarization. Requiring that
the definition of the polarization P should not be
modified at first order in e, i.e., that PI„=—0, demands
that n„f d p Bf~& =—0. From a derivation similar to the
one previously used, it turns out that this condition is
obeyed provided 5f", is of the following form

5f", = r—p Bf q— n~ Bf„q+15 p nor ~p p Bf;$Qpp
ui~n jpv

p'u

g" p. u —p u" x g"pp u —p u"
m. ,p Bf~;— e, &u npBf"„

pu pu '" pu pu
With the choices (6.66) or (6.67), one finds, respectively,

(6.67)

~ ~

~

m '4 —
1d"p of 5

= r~ —i~, Prr""ri„+ P(rr""u'+m ~B npu")
7T'

'4 —1

2772

3

+~'2~2
I4-1

I20ci —I&&j+y 41n" + I
40

I —I4, n[B—q(y)+yuq]u"

3

+7~"2~2
'4 —1 '4 —1

i P—n" u "n 8—(P)21 3

I4, I4O n[B—&(y)+y—uz]u" [from Eq. (6.66)]
I41

(6.68)

or

~4 —1

d4p 5f~~ = —r~ i2, Prr" n, + P(rr"'u', +sr ~B npu")

l4 —
1

m
S

277

'40 '4o
a PP'u" + i — Prr ~B n u" [from Eq. (6.67)] . (6.69)

It follows that the off-equilibrium part of the spin tensor reads

gg pvA. iMvl. p d 41

2 5p

or, from Eq. (6.69),
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m 3
5S"" =r i Pu{"n"F n + Pu "n'F u' — Pm. ~cj n F{"'n~)'4 —1 l4

J. 2 214~ cK 3
77 ~ p

m v Xa- '4 —1+r i Pu{"n'vr l n + Pu{"n'H) u'
X4 2 21 cK 3 a

3

+z
4~

3

+7,
4~

I4—1

Iroa I2,—y+y 0 F ""u +— I4 2
—I4, n [8 (y)+yu ]F"n

3 3 I40

I41
21i —PF{""u l — P'F{""n l —— I I —n [8 (y)+yu ]F{""n

3 3 I 4 —1 40 a a
40

(6.70}

and from Eq. (6.67)

5$"" =rj[same as in Eq. (6.70)]+rx[same as in Eq. (6.70}]

3m

4m
PF{""n l+ i — Pn. ~B n F{""n

22 3 a p (6.71}

where a ~ b pc i represents the antisymmetrized combination

a bPc j=a bPc —a b cP+a b cP—a bPc +aPb c —aPb c

5S"" may also be rewritten in a more transparent form which is here exemplified for Eq. (6.71)

5S"" = —— d p(p Im )5f""1

2
(6.72)

where relations (5.50) were used to transform 5f 5 into 5f"". This last form is more like what one would expect for the
current of a quantity described by the distribution function f"'.

5S"" is rewritten in terms of the gradients of a polarization tensor P'F"' as [from Eq. (6.67)]

3

5Sv ~= ~; F{v~'F~Ou~}urg (P'F }+ ' [F{v~'F Pg~lrg (P*F ) F{v~u~}n~g (P'F )]J 4 2 21 y ap y ap p ap

3

i m{" 'F"~u u 8 (P*F )+ [ " 'F"~b rB (P*F )+F{""u n F~rB (P'F )]X4 2 21 y ap r ~p r ~p

m '22+r, F " 'F ~d, 8 (P'F p}+ i — i F—""n u B~(P"F ij)
4n

(6.73}

A final remark

Finally, when 5f and 5f ~& are known, one can go back to the transport equations by solving a linear system. For in-
stance, if one chooses 5f as given by Eq. (6.42) and 5f~~ as in Eq. (6.70), then the transport equations turn out to be

p.Bf= —p.u 5f+
(p.u )' n„5f", , (6.74)

7 J +Xp.Bf~5=[ri" p-u —p u "] — W"5f,„+ F~"5f,„i+ x i+&x

m 'Ti 77 p~ 7 T 7'T

+15 p nm. p 5.fz&
—15 p n F p 5f~&(~.p p)', + (b, p p)', + '„

(6.75)
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with F ~=@ ~" u„n . Note that these transport equa-
tions are valid at order O(e) only. They may, however,
be studied per se as if they were true at any order.

VII. REMARKS AND DISCUSSION

Let us now summarize and discuss further the previous
results as to our relativistic quantum kinetic equation and
the subsequent transport properties of the system it de-
scribes. This kinetic equation is the generalization of the
well-known Bhatnagar-Gross-Krook equation [28], i.e.,
of the relaxation time approximation, written for spin- —,

fermions. The collision term involves (i) an equilibrium
Wigner function for a polarized system and (ii) arbitrary
functions of p occurring Uia the possible scalars, four-
vectors, antisymmetric tensors, pseudo-four-vectors and
pseudoscalars that can be constructed from those at our
disposal. Next a solution of the kinetic equation was ob-
tained in the Chapman-Enskog approximation and it was
realized that t~o expansion parameters were necessary to
this end; the first one, e, is the usual parameter while the
new one, g, occurs as a consequence of the advent of a
new length scale determined by the Compton wavelength
of the fermions. Then the Landau-Lifshitz matching con-
ditions were used to simplify further the first-order solu-
tion and, as a consequence, the main transport properties
(thermal conductivity, viscosities) of the system were de-
rived as functions of the usual macroscopic parameters
(temperature, density) and of various relaxation times,
and of the polarization. On the other hand, what might
be called for brevity the "spin part" or the "polarization
part" of the solution could not be constrained on the
basis of matching conditions and was determined only
through physical arguments involving, e.g. , spin preces-
sion, spin diffusion, cross effects, etc. All these questions
have to be taken up and discussed.

(1) The "equilibrium" Wigner function of a polarized
system of spin- —,

' fermions was shown to be of the general
form (2.25)

yp+m ysy I p f1+ "S ( )

eqP =
2 eq P

where S„(p) is such that p S(p ) =0 and was determined
from the density operator. However, there exists some
flexibility in the choice of S„(p ). The simplest possibility
(2.28) can be replaced by the more general one

U»n jp.&"(p ) =
[u( nt'p~v(. n, )p']'" '

where U" is a unit timelike four vector, orthogonal to n"
but a priori different from u". This more general choice
shows that X"(p ) depends on Pue arbitrary constants (the
five independent components of v" and n") and hence
S„(p) does depend on six. This is, in fact, quite satisfac-
tory since the macroscopic spin tensor M" does indeed
possess six independent components. Note that expres-
sions similar to Eqs. (2.30)—(2.35) can be obtained quite
easily in this general case. However, such a choice would
have made all our equations quite involved.

It should also be noticed that the complexity of, and

the arbitrariness in, the description of a polarized system
is specific to relativity: the nonuniqueness of timelike vec-
tors (unlike the Newtonian case where all timelike "four-
vectors" are parallel) leaves a freedom in the choice of u"
while the orthogonality of p" and S"(p ), the spin four-
vector, gives rise to a more cdmplex description than in

the nonrelativistic case.
Also, in the absence of a magnetic field, polarized

matter can only be in a metastable state so that it was im-

plicitly assumed that the system relaxes towards a true
equilibrium state in a time much longer than all other
times under consideration in the problem. Had this as-
sumption not been used then, in most cases, the
Anderson-Witting results would have essentially been ob-
tained: it is thus necessary to go over to nonlinear terms
(and thus beyond the relaxation time approximation) in

order to get interesting spin effects (see below).
(2) From the tensors at our disposal, a quite general

linear collision term was written and was somewhat re-
duced from the fact that F, the covariant Wigner func-
tion, obeys a more general equation that the kinetic one
[i.e., Eqs. (5.1)]. This general equation involves, as
remarked by many authors, both the mass-shell con-
straint and the kinetic equation. In particular, the col-
lision term was greatly simplified on the following basis:
between collisions particles are free; this is a quite natural
assumption valid as long as the system is not too dense
and also in the absence of external fields whose action
would modify the free motion between collisions. It
should also be stressed, at this point, that collectiue effects
are not considered in this paper; for instance, the motion
of quasifermions between collisions is not "free" but
occurs according to a dispersion equation of the general
form [23]

Det[y p —X(p )] =0 .

It is clear that our assumption is an oversimplification
which should be relaxed in the study of many interesting
physical cases. Note, however, that such a simplification
is common to all works presently published on the sub-

ject.
(3) Among the various conditions imposed on our col-

lision term, it was demanded that it be so that a con-
sistent Chapman-Enskog expansion be possible. Of
course, other possible approximation schemes could have
been used but such an expansion recommends itself. Oth-
er possibilities, such as the fourteen moments method or
variational methods, could have also been imposed; how-

ever, it is not sure at all that new constraints would have
been obtained and this way has not been explored.

The relativistic quantum Chapman-Enskog expansion
was performed under the assumption that all relaxation
times occurring in the collision term are of the same or-
der of magnitude except that, as was noted above, the re-
laxation time of polarization was taken to be infinite.
First-order formal expressions for the Wigner functions
were obtained, in particular for f~, ~„which was shown to
be sufficient to derive the off-equilibrium part of the
four-current and of the energy-momentum tensor. These
expressions are quite sufficient when the parameter g is

negligible, which property is valid whenever the effective



RELAXATION TIME APPROXIMATION FOR RELATIVISTIC. . . 4623

mass of the fermions is large enough as g«e; this
occurs, e.g., when one considers a nucleon on its mass
shell, its effective mass being very close to its usual mass.
The expression for f~, ~„was obtained only in the "sim-
ple" case where the collision term is of the form MF(, )N
(Sec. IV). When q«e the Wigner function f~i~, had the
customary form (p "/rn )f~i~, and the energy-momentum
tensor was thus symmetric. As a consequence, the spin-
density tensor S"",a nonconserved quantity, appeared
to be conserved at order O(e).

(4) The Landau-Lifshitz matching conditions were used
to get a more specific form for f~, ~, . While f~, ~, was
completely determined from these conditions (up to three
arbitrary relaxation times to be provided by a dynamical
and/or statistical model), it should be noticed that this
has been obtained by very strong demands and, in fact, a
less stringent way to implement them would certainly
lead to a more arbitrary f~, ~, . It should also be remarked
that the usual (five) Landau-Lifshitz conditions

u J(i),=0, u T(i), —0,
have not all been used. Only the two following ones

u J(i) =0& u u T(i)& =0

have been incorporated in the solution, to which P~, ~,
=O

has been added. This means that the equilibrium quanti-
ties n,q, p,q, P,q

have been preserved. However, u" is left
completely free and was fixed in the final result only Uia a
change of the four-velocity of the form

u"—+u "+P,
where P is O(e).

Several remarks are now in order as to the matching
conditions. First the equilibrium Wigner function de-
pends on five [P,n, , qu] plus six [P,v", n "] quantities
and it seems that, a priori, eleven matching conditions
must be imposed. In order to discuss this point let us
consider a system of charged spin- —,

' fermions embedded
in a strong magnetic Geld. Due to this magnetic field the
system is polarized and the direction of the polarization
vector is that of the magnetic field, say n", in four-
dimensional notation [21]. The conserved quantities (be-
sides the charge four-current) are mainly the energy and
the momentum along the magnetic-field axis. In the case
of Eq. (3.1), this gave rise to the following matching con-
ditions [26]

u„J~(, )
=O, u„u T~(, )

=O, n„u Tl(", )
=0

(which are the analogues of the Landau-Lifshitz condi-
tions), and no others. In particular, the polarization P is
a function of the thermodynamic parameters n, and T
and, of course, of the externa/ magnetic Geld. Therefore,
nothing particular had to be imposed on P, which is not
an independent state variable. Here, however, the situa-
tion is a little different. (i) The equilibrium Wigner func-
tion at hand does not correspond to a true thermodynam-
ical equilibrium and hence the eleven (or eight if one
identifies u" and v") macroscopic quantities involved
[n, , T, P, u", n "] should lead to eleven matching condi-

tions expressing, in particular, the conservation of the
general form of the equations of state. (ii) Unlike the
strong magnetic field case, all three components of the
three-momentum are conserved in collisions. Conse-
quently, eleven (or eight) matching conditions have actu-
ally to be imposed or, besides the five usual ones, six (or
three) more relations have to be satisfied. Unfortunately,
there is no compelling reason why such or such condition
should be imposed corresponding to the six new quanti-
ties connected with the macroscopic spin tensor. For in-

stance, imposing the same form for the equation of state
of the system even though slightly off equilibrium does
not provide anything new. The equation of state
P =P(n, , T) is the usual free gas Fermi equation and
does not depend on the polarization P. Similarly, P does
not depend on n, and T. Thus there exists a large num-
ber of possibilities for the remaining conditions. For in-
stance, the following six relations

v"=u", b„(u )M~~, ~,
=—b,„(u )(Pn")~,

I

could tentatively be imposed. It would remain to check a
posteriori that no contradiction appears or that no in-
teresting physical effect is eliminated. For instance, it
would be desirable that the precession of the polarization
four-vector would not explicitly disappear.

(5) From the solution f~, ~, the main physical quanti-
ties, i.e., the off-equilibrium parts of the four-current and
of the energy-momentum tensor were calculated thus
leading thereby to the transport coefficients we were
looking for. As in the magnetic-field case studied else-
where new terms were obtained which have to be dis-
cussed.

A glance at Eq. (6.44) for JI',
~

indicates that this quan-
tity involves three terms instead of the first one only, in
the nonpolarized case [12,13]. The first term is the heat
conduction term with this only difference that it now in-
volved an effective relaxation time which is polarization
dependent. The second one contains the space gradient
of the polarization and hence represents a spin diffusion
effect. However the third term is more difficult to inter-
pret and is connected with the spatial variation of the
quantization axis. Nevertheless, the decomposition used
for J~(&) is by no means unique and we could use another
one involving spatial gradients of the density instead of
the u terms, using a relation of the general form

W'u„=Acr"'8 n, +BE"'(B„P+Pu ),

where A and B are known expressions. Doing so it turns
out that the off-equilibrium part of the four-current reads

J~(, )
=A.iW [8 P+iP ]+uiA, )

n n[8j3+ui]
+De din q

+'ho"i(u)diP+rJqn ~sr +8 (Pntt),

where we have set
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I4oD= ——
w, P

I22

m'
A~=(r rP—), I4, I~—

6~ 4o

pm I2, I4+ 'T~ I4o
6m Iq2

m4
A~

—(r r P) I~, I40
6m 4o

and where the coefficients o.
&

and o.
2 are still those given

in Sec. VI. This last expression for J~, ~
is more suited for

interpretation than the form (6.44): D is a diffusion
coefficient while X, and A.

~~

are obviously perpendicula~
and parallel heat conductivity coefficients, respectively:
similarly, o. , and O.

z are directly connected to polariza-
tion and its spatial direction.

In fact, the main source of ambiguity in defining the
above transport coefficients ultimately lies in the difficulty
to get a satisfactory expression for the o8'-equilibrium en-
tropy of systems of particles endowed with spin. Indeed,
the knowledge of such an expression would allow a
clear-cut definition of transport coefficients (see, e.g., in
the relativistic case, Ref. [7]). Unfortunately, this prob-
lem is not specifically relativistic. In the nonrelativistic
case, an approximate form has been suggested by Lhuil-
lier and Laloe [29]; it is however not completely satisfac-
tory when used in our case.

(6) The determination of fI5~, ~
is somewhat more ambi-

guous, in the absence of any specific physical arguments
and/or model. A precise form for this Wigner function
is, in fact, useful, as noted earlier, in order to get a BGK
collision term. Here, use was made of a "minimal" form,
in the sense that the precession of polarization and a few
spin effects (such as spin diffusion) were taken into ac-
count. Unfortunately, a full specification of f~5~,

~
was not

generally possible the more so since the matching condi-
tions involving the polarization are not yet well estab-
lished. It follows that the general BGK collision term
has not been fully determined.

However, in the particular case where the collision
term has the form M5FN, the precise form of the ma-
trices M and V has been practically specified (Sec. IV) up
to a few constants. Furthermore, its general solution has
been obtained leading to a sufficiently rich variety of
effects as to accommodate most physical situations.

(7) Several extensions of the above results can be ob-
tained without any particular difficulty. For instance,
global internal symmetries can be dealt with by including
new indices in the Wigner function and in the relaxation
"times. " A simple example is provided by isospin —,'. Its
treatment is completely similar to that of spin in the non-
relativistic case; this is so because of the complete decou-
pling of isospin (or other global internal symmetries)
from the spacetime degrees of freedom. As to gauge in-
variances, the situation is more involved and can be han-
dled in two different ways. First, one can use a gauge-
covariant Wigner function [15] and a BGK collision term
of the kind studied in the present article. The result is a
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APPENDIX A: TWO FLUID MODEL

Let us take as a generalization of the "unpolarized"
Anderson and Witting equation,

the following coupled transport equations

paf, = — " 5f, — "
fif

+ + +
(Ala)

(A lb)

where f+ and f represent, respectively, the distribu-
tion function for spin-up and spin-down particles.

It is further assumed that the system (Al) can be in-
verted as

of+
5f

T++7 T+ T +
T +T+ T++ T

p~() +
X

p'/c f (A2)

Next we perform a Chapman-Enskog approximation in
the case

T++T T+ T + 1 «1
—+ + — + + —— macr

and three other similar equations, where r „,is a macro-
scopic time scale associated with the hydrodynamical
gradient B. The first-order Chapman-Enskog solution is

obtained by replacing p.B[f+ ] by p.B[f+'q] on the right-—eq

hand side of Eq. (A2). f+, and f, are the following
local equilibrium distribution functions

gauge-covariant kinetic equation which is not very sim-
ple. However, the delicate point lies in the use of a (man-
ifestly) gauge-covariant approximation method. Second
[16],one can use a nonmanifestly-gauge-invariant formal-
ism and next show that the final results are actually gauge
invariant.

Another possible extension leading to new physical
phenomena can be obtained by looking at nonlinear
effects of spins only T.o do that in a qualitative (and also
semiquantitative) manner, it is sufficient to write down a
matrix collision term which is quadratic [29] in the co-
variant Wigner matrix and is merely algebraic (i.e., it
does not contain any momentum integration), the various
coefficients involved being function of p. All these exten-
sions are presently being studied.
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+f+eq p(p z —. &)+ 1
h+f eqe

[0+=k+(p»»P=P(x»p=p(x)]
(A3)

JE=f d'p (f'+ f—)—

5'= fd p (5f+ 5—f ) .
(A6)

f—eq
=

)t)(p. e —p)
=0 fe—x& M —=0—(p&X )]

e ~" "+1 Replacing 5f+ and 5f by their approximations into
Eqs. (A4) —(A6), one finds

g+ and g are the fractions of spin-up or spin-down par-
ticles at a given energy and momentum. In the following,
for the sake of simplicity, it is assumed that the latter
quantities are only x dependent: g+(p, x)=(+(x) and

(p, x)=g (x). We shall make frequent use of the
property g++ g = 1.

We are now able to calculate the first-order deviations
to the baryonic current and energy-momentum tensor

5J)'= f d4p
m

p v
5T)xv fd4pP P

m

f., 7 —(k+ —0-».q
p 8 p
p'Q p Q

f.q
7 (0+ 0—)f.q

p'8 p'8
p'Q p'Q

(A7)

(A8)
5J"=fd p (5f++5f ),

5T~"= fd'pp p (5f, +5f ).

(A4)

(A5)

5Jg=fd p f,q
—7, (k+ 0 )f.q- —p ~ — p

p'Q p'Q

(A9)

Let us also define a spin current through with

(7, +7 +) 7,7—, (7+++7 )7—
2 ~++~—— ++ —~—+

(7+ 7, ) —7,7,—(7++ 7)—t=—
2 7++7 7+ 7 +

(A10a)

(A lob)

1++7 (T+ '7 +)+'7 +1+ (T++ 7 )
'r

S 2 ++7 7+ 7

1++7 (T+ +1 +)+7 +T+ (7+++T )
7 2 2 7++7 7+ 7 +

(A10c)

(Alod)

As a matter of fact, the four ~'s are actually not in-
dependent since one should have

0+ =ET

as a consequence of charge conjugation invariance. Fur-
thermore, when the 7's are evaluated (roughly) by expres-
sions of the usual form

1—=no. (v),
'T

n must necessarily involve both g+ and g (besides n, )

since only the density of colliding particles are to be tak-
en into account. For instance, one has

+++
=g+n qo++(v )'

After some straightforward manipulations, the devia-
tions to equilibrium quantities 5J",5T"",5' are found to
be:

I40 I4 I405J"=—[7 TP]417m I —)a I y+y 8 u—"— b," B~(a)+
3

b," [Bq(y)+yuq]

7417m i2) Pu" — b," (1~(P—)
4 —1

(A 1 1)
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41I I I5T""=—[r r—P]4am I a I—y+y 8 u "u"—y 2o" ——5"" y + I——+I0 6—i a
22 23 3 15 3 3 0 0

I4i+ [a (y)+yu ]—
3

I40
B„(a) [u "5" +u "b,"

]

r—4am i22Pu "u — PbF' (—u "6 +u bF")B2(P) (A12)

r

AJAR=
—[r, r, P—]4~m I2, a —I22y+y 8 u" — b," Bq(a)+ bF"[B2(y)+yu2]

r, 4n—m i2, Pu 4 —5" B&(P) (A13)

In Eqs. (A 1 1)—(A13) the following notations were employed

y=mP,

e y coshx —aI„= sinh"x cosh x
h 2dx,

0 [e cosllx Q+ 1 ]2

oo ~ 1i„= sinh"x cosh x dx
y coshx —a+ 1

(we used the parametrization: p =m coshx, p'=m sinhx sin8cos1p, p =m sinhx sin8sin1p, p =m sinhx cos8).
There remains to make use of the conservation relations

P
B„J",„=0, J", =f d p (f'+q+f' )=n, u",

m

B„Tt'"=0, T",„"=jd p p "p '(f 'q +f 'q
) =pu "u" P I&" . —

These equations, respectively, lead to

ri, +n0=0,

p+ (p+ P )8=0,
~"a,(P)=(p+P)u~,

or in terms of 6,y, u"

I4o
I2, n —I22y + y0=0,

3

I4i
I22a —I23y+ y0=0,

3

(A14)

(A15)

(A16)

(A17)

(A 1 8)

(A19)

(A20)

~" [~2.(y)+yu2. ] .
I4o

Inserting Eqs. (A19)—(A21) into Eqs. (Al 1)—(A13) simplifies the latter expressions to

(A21)

4 3

5J"=[r—rP] I40 b.""[83(y)+y—uq] —242rm' i2, Pu" — &" B1(P) ',
40

pv [ p] 4 6 —
1 „6—1 J 22 41 40 23 40 21 41I I 2I I I —I I2 —I I2' 15 3 3 I22 I2& I23

r4~m i —Pu "u"— Pb," — (u "b" +u 5"")d (P)
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4 3

5Jg=[r, —i,P] I4—0 b~ [B~(y)+yu~] 7—;4mm i2, Pu" — LP Bq(P)

Let us consider now a system in a state of quasistatic equilibrium where the polarization lifetime is supposed to be much
longer than the kinetic time scale (such is indeed the case in He where the polarization has been observed to last for a
few days). This is equivalent to saying that the temporal gradient of the polarization can be taken to be zero to a very
good approximation. On the right hand, the parameter g+ —g =P in our equations is readily identified as being the
polarization, so that taking P=O appears to be a natural choice. It should also be noticed that taking P=O is
equivalent to assuming the conservation of our spin current

Jg, =Pn, u", B„Jf=n, P=O.
The deviations to equilibrium riow have the structure:

5J"=Kbl" [8 (y )+yug]+Kpr&"Bg(P),

5T""=2ricr~"+g 6""+—Q (u "6" +u "6" )d (P),8
3

5Jg=Eb," [Bg(y)+yug]+Kph" "dg(P) .

(A22)

(A23)

(A24)

(A25)

This is neither the Landau nor Eckart form. We can put the result into the Eckart form by redefining u" and adding to
it a small quantity of order 2 in the relaxation times

U~=u~+P, P= ~~'[a„(y)+yu, ]+ ~~'aP,sc

neq neq

5J(E) =n U (A26}

5T"" =2ricr""+g b"'+ K—(U"6' + U"b" )
3 A. p p

+ Q
— E (U"5' +U"b" 9 (P)

neq
(A27)

25' =(PK K) 5""—
Bg(E)

+(K,,—PK„}~~'a„(P). (A28)

From these equations the expressions of the transport coefficients can easily be read as

p+ P 4~m I4, I4&I
Ky =[r—rP] y I40 ( thermal co—nductivity ),mn eq 3 I40 I4Q

4 I6-iri= [r—Pr]4m. my (shear viscosity),
15

(A29)

(A30)

4=[.--.P] y
4m.m 4

3

I4 IO3 2+I4,I2, 2I22I4, I40—2 2

+I6, (bulk viscosity) .I22 I2) I23
(A31)

These three usual transport coefficients A, , ri, g are only slightly modified with respect to the nonpolarized Anderson-
Witting [10]case and, as a matter of fact, by changing the collision time r into a polarization-dependent one r —7P.

In addition, new transport coefficients associated with the polarization do appear, as resulting from coupling between
heat current and polarization gradient

p+ P 47Tm . 41

eq 40

or from a coupling between spin current and temperature gradient

2 I

oH=(PK —K) =[~P ~P r, +~,P] y — I~o—
40

and also from a coupling between spin current and polarization gradient

o =(Ep PKp) = [r, Pr] i4- —4~m

(A32)

(A33)

(A34)
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APPENDIX B

In this appendix some useful formulas involving Dirac matrices, y", are given. They are based on the definitions and
formulas summarized in Ref. [21],Appendix A. [Note that in Eqs. (Al 1) and (A12) of Ref. [21], in the last term of their
right-hand sides, the indices p and v must be interchanged. ]

Let p" and u" be two timelike four-vectors such that

p=m u =+1
then the following formulas hold:

(y p+m )y"(y p+m )=2p"(y p+m ),
(y p+m )o. ~u~&(y p+m ) =0,

y p+m
y5 2m

yp+m yp —m 1

, [p„y p+

(y p+m )cr" (y p+m)=2[p("o') pz+m o""+imp"' t'p y,y&I,

y p+m y p+m
2m 2m

(Bl)

(82)

(84)

(85)

y p+m y.p —m pp y.p —m

2m " 2m m 2my5y

y p~~ y p=m'~"+2p~~~ I'p, ,

y'p+m 5 y'+m 1 p 5 l ~p p
2m

y-p —m y.p+m p u y p+m
y'Q y'0

2m 2m m 2m

(87)

(88)

(810)

yp+m „vyp
—m

2m 2m

1
[ mp (py "1+p (pov)&p

2m
(811)

(o""u„p„) = —bu'(u )p„p„,

[y p, y u ]+=2p.u,
[y p o""u„p,, ]+=o,
[y u, tr"'u„p„]+=0 .

To these very useful formulas, used repeatedly throughout our calculations, we should add

„,]-=0,
l~@V— ~PVCXP~

5 2
aP'

(812)

(813)

(814)

(815)

(816)
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