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Chiral Schwinger model based on the Batalin-Fradkin-Vilkovisky formalism
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We quantize the bosonized chiral Schwinger model by using the systematic Batalin-Fradkin-
Vilkovisky formalism. We derive a Becchi-Rouet-Stora-Tyutin gauge-fixed covariant action showing
that the auxiliary fields introduced in the formalism turn into the Wess-Zumino scalar.

PACS number(s): 11.10.Ef, 11.30.Rd

I. INTRODUCTION II. THE ESSENCE OF THE BFV FORMALISM

There has been great progress in understanding the
physical meaning of anomalies in quantum field theory
through the study of the chiral Schwinger model (CSM)
[1—4]. Jackiw and Rajaraman [1] showed that a con-
sistent and unitary quantum field theory is possible even
in the gauge-noninvariant formulation. Alternatively, a
gauge-invariant version [2—4] can be obtained by adding
a Wess-Zumino action to the Lagrangian, as was pro-
posed by Faddeev and Shatashvili [5].

On the other hand, Batalin and Fradkin (BF) [6] have
proposed a new kind of quantization procedure for
second-class constraint systems. Furthermore, when
combined with the Batalin, Fradkin, and Vilkovisky
(BFV) [7] formalism for the first-class constraint systems,
the BF formalism is particularly powerful for deriving a
covariantly gauge-fixed action in the configuration space.
Recently, Fujiwara, Igarashi, and Kubo (FIK) [8] have
proposed a systematic treatment of anomalous gauge
theories based on the BF formalism making a second-
class constraint system into a first-class one with BF
fields. They have applied this formalism to an anomalous
chiral massive U(1) gauge theory in four dimensions [9]
and to subcritical bosonic string theories.

On the other hand, several authors [10]had applied the
BFV formalism to the CSM. Unfortunately, they did not
identify the Wess-Zumino scalar [11] with the BF fields
as pointed out by FIK.

In this paper, we apply FIK's improved method based
on the BFV formalism to the bosonized CSM. As a
pedagogical illustration of this formalism, we quantize
the bosonized CSM through the generalized Hamiltonian
formalism and derive a Becchi-Rouet-Stora- Tyutin
(BRST)-invariant action showing that the auxiliary BF
fields turn into the Wess-Zumino scalar through the
proper gauge choice. In Sec. II, we briefly review the
essence of the systematic BFV formalism. We consider
the bosonized CSM for the regularization ambiguity a = 1

in Sec. III. Through this analysis we expect that we may
get insight into the algebraic structure of constraints and
symmetry properties in an anomalous chiral U(1) gauge
theory in four dimensions because this theory also has
four constraints that are fully second class [9]. In Sec.
IV, we consider the bosonized CSM with a ) 1, which has
two constraints, as an example of different constraint
structure. Section V is devoted to a conclusion.

In this section, we summarize the essence of the sys-
tematic BFV formalism [7,8], which is applicable for the
general theories with first-class constraints. We recapitu-
late this formalism in terms of a finite number of phase-
space variables. This makes the discussion simpler and
conclusions more apparent.

First of all, consider a phase space of canonical vari-
ables q', p; (i =1,2, . . . , n) in terms of which the canoni-
cal Hamiltonian H, (q', p; ) and the constraints
Q, (q', p;)=0 (a=1,2, . . . , m) are given. We assume
that the constraints satisfy the constraint algebra [12]

[Q„Qb]=iQ, U,'b, [H„Q,

]=iamb

V, , (1)

where the structure coefficients U,'b and V, are generally
functions of the canonical variables. We also assume that
the constraints are irreducible, which means that an in-

vertible change of variables locally exists such that 0,
can be identified with the m unphysical momenta.

In order to single out the physical variables, we intro-
duce the additional conditions 4'( q,p, ) =0 with

idet[4', Qb ]~%0 at least in the vicinity of the constraint
surface with 4'=0 and Q, =O. Then the 4' play the
role of gauge-fixing functions. That is to say, from the
condition of the time stability of the constraints, there ex-
ists a family of phase-space trajectories. By selecting one
of these trajectories through the conditions 4'=0, we

can get the 2(n —m)-dimensional physical phase space
described by the canonical variables q *,p *. Then,
4'(q', p, ) can be identified with the m unphysical coordi-
nates.

The quantum theory of the described dynamical sys-
tem only depends on q*,p* of the physical phase space.
Therefore, the partition function is given by

Z= f [dq'dp;]6(Q, )5(4")~det[4, &, ]i

Xexp i f dx(pq H,)—
= f [dq*dp*]exp i fdx[p *q* H„„„,(q *,p *)] . .—

(2)

And the constraints 0, =0 and N'=0 together with the

Hamiltonian equations may be obtained from an action

S=f dt(p;q' H, —VQ, +tr, 4')—, (3
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where A,
' and ~, are the Lagrange multiplier fields canon-

ically conjugate to each other, obeying the commutation
relations

[A.', m, ]=i5b . (4)

Note that the gauge-fixing conditions generally contain
A,
' in the form

[ C ', Pb ]= [P', C b ]= i5b . (6)

The quantum theory is defined by the extended phase-
space functional integral

Z~ =f [dq 'dp; ][d A, 'd m., ][d C 'd P, ][dP'd C, ]e, (7)

where the action is now

S =fdt [p; q '+ n, A; +P, C '+ C,P H+ i [Q, %']—] .

(8)

N'= A, '+y'(q ',p;, A,
'},

where y' are the arbitrary functions. And we can see
that the Lagrange multipliers I,' become dynamically ac-
tive, and m., serve as their conjugate momenta. This con-
sideration naturally leads to the canonical formalism in
an extended phase space.

In order to make the equivalence to the initial theory
with constraints in the reduced phase space, we may in-
troduce two sets of canonically conjugate, anticomrnuting
ghost coordinates and momenta C', P, and P', C, such
that

tions, which can be obtained by the requirement of the
time stability of new constraints, as long as the solution
exists. And then, with the first-class constraint system,
the procedure is straightforward. In the next section, we
will show the concrete analysis through the CSM with
a =1.

III. CSM IN THE CASE a = 1

First consider the CSM in the case of a =1, which
gives the algorithm for the application of the BFV for-
malisrn with BF fields. These new fields, which recover a
local symmetry, were originally proposed by Stueckelberg
[15] in the theory of massive vector fields. Furthermore,
the CSM with BF fields shows how the BFV formalism is
used to find the effective covariant action. In particular,
it is very interesting to formulate the CSM with a = 1 in
terms of the BFV formalism because the four constraint
structures resemble those of four-dimensional anomalous
theory.

We start with the following Lagrangian density of the
bosonized CSM [2—4] with a = 1:

'F F"—"+—,'e A„A "—+,'d„pB"P—

+e A „(rt"" e"")B—„P,
where Fp

=Gpss

B~Ap, E = E'Oi = 1, and
ri„=diag(1, —1). The canonical momenta correspond-
ing to Ao, A „and P are

II'= . =0,5

530
Here, the BRST charge Q and the fermionic gauge-fixing
function 4 are defined by

Q=C'Q ——'C C"'U;bP, +P'm, ,

e=C.y'+P. A,',

II'= . =a'W' —a',5X

5A,

. =P+e(A +A'),

(12)

respectively. 0 is the BRST-invariant Hamiltonian,
which one calls the minimal Hamiltonian,

H =H, +P, Vb8

The measure in Z+ is the Liouville measure on the co-
variant phase space. Furthermore, if we choose the fer-
mionic gauge-fixing function 4 properly [4,13], we can
obtain a manifestly covariant expression. And the
equivalence of the dimensionality 2n +6m in the extend-
ed phase space, including the canonical ghost variables,
to the original dimensionality 2n —2m in the reduced
phase space can be seen by identifying the ghost variables
with the negative-dimensional canonical degrees of free-
dorn, which is suggested by the original work of Parisi
and Sourlas concerned with the super-rotation Osp(1, 1~2)
in the extended phase space [14].

Although we have only discussed first-class-constraint
systems up to now, we may face the problem that a cer-
tain theory has not a first-class but rather a second-class
constraint system. For such a theory, however, we can
make the system first class by introducing BF fields.

The first-class Hamiltonian with BF fields is achieved
by solving some kinds of the coupled differential equa-

where the overdot represents a time derivative and 8' a
partial spatial derivative. Performing the Legendre
transformation, we obtain the primary Hamiltonian

H, =fdx(II, A'+II,j Z), —

=f dx[ —,'(II') +—'(II ) + —,'(B,P)

—e(II&+8,P)(A +A') —A B,II'+e A A'

+e (A'} ) (13)

and obtain the primary constraint Q, —= II =0. Thus the
canonical Hamiltonian is given by

H, =H +fdxuQ, , (14)

where u is an undetermined multiplier field. For the sta-
bility of the primary constraint with respect to the time
evolution, we require the secondary constraints, and we
get

Q2 =B,II'+ e( II~+ B,Q) eA ', —

n —= —II',3

Q4= e(II~+8,P—) eA 2Oe
—A ' .
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~ =—( —a,a'y+a, lI, )
—2a, ~ '+211' .

1
(16)

On the other hand, we could fix the multiplier field u

from 04=0 as follows:
[Q;,H, ]=[Q;,H, +Ha„]=f(Q;), i =1,2, 3,4 .

For example, in the case of i = 1,

[Q, ,H, ) = [Q, ,H, ]+[ e—8, ,H „]

(22)

These four constraints are fully second class, and the
nonvanishing equal-time commutators are given by

[Q,(x ), Q4(y) ] =ie 5(x —y),
[Q2(x), Q3(y) ]= ie—5(x —y),
[Q3(x ), Q4(y) ] =2ie 5(x —y),
[Q4(x), Q4(y)]=2ie a,5(x —y) .

(17)

and we then have the extended phase space. Mixing the
constraints with 0&, 6I2, H, and H&, we could easily find

1 2'

the following first-class constraints in the extended phase
space,

In order to make these constraints first class in the
phase space [2,5], we introduce four auxiliary fields 8~, 8~,
Hz, and H&, which are called the BF fields, such that

1 2'

[8,(x), lie (y)]=i5(x —y),

[82(x ), II& (y) ]= i5(x —y),

=iOz+ieOz=i0, 2 . (23)

Thus we get

6HBF
l

5Hq
=i02 . (24)

—(a, 8, )' ——e'(8, )'] . (25)

Then, the modified system described by Eqs. (19) and (25)
is first class, and we can apply the BFV algorithm to this
modified system in the extended phase space.

%'e introduce four canonical sets of ghost and an-
tighost fields along with auxiliary fields as follows:

(C', P;), (P', C;}, (N', B; }, (26)

Similarly, for the other cases, we also obtain some kind of
coupled differential equation. After some tedious calcula-
tions, the solutions give the desired Hamiltonian, which
contains 0~, 02, H, and H variables in the extended

1 2

phase space,

H, =H, —fdx[811 +—,'e (11 ) +e 8,11 +8a,8,

O, =A, —e9),
Q~= 02+e02,

3 +3 e6 ] +eHg

04=Q4+e(IIe —a, 8, )+e82 .

(19)

with

[N'(x), B,(y)] =i5,'5(x —y),
[C'(x),P, (y)] =i5,'5(x —y),
['P'(x), C', (y)]=i5'5(x —y),

(27}

On the other hand, using Eq. (14) with Eq. (15), we find
that the involutional relations between the canonical
Hamiltonian and the constraints are

[Q„H, ]=iQ~,

[Qz, H, ] =2ie Q, ie Q3, —

[Q3,H, ]= —2ia&Q&+ i Q4,

[Q~,H, ]=i(2a,a'+4e )Q, .

(20)

In order to make the new constraints in Eq. (19) con-
sistent with the time evolution of the system, we require
Eq. (20) to be preserved in the extended phase space, i.e.,

+P,N +P4N ],
where we choose gauge-fixing conditions as follows:

(29)

where i,j=1,2, 3,4. From the systematic BFV formal-
ism, the nilpotent BRST charge Q and the fermionic
gauge-fixing function %' are given by

Q= f dx[B,P'+B2P +B,P'+B„P'+C'Q, +C Q2

+C Q3+C Q4], (28)

'0 = f dx [C,y'+ C ~ + C y + C y +P,N'+P~N

[Q, , H, ]=iQ~,

[Q2,H, ]=2ie Q, —ie Q3,

[Q3,H, ]= —2ia&Q &+ i Q&,

[Q4, H, ]=i(2a,a'+4e )Q, .

(21)

(30)

Here a, P, and y are arbitrary parameters. It will be
proved later that these are proper gauge conditions,
which is crucial for the identification of the BF fields with
the Wess-Zumino scalar. The BRST-invariant Hamiltoni-
an takes the form

Furthermore, the change of the constraint structure re-
quires the modification of the Hamiltonian. Thus, a new
Hamiltonian in the extended phase space should be con-
structed by adding some polynomials Hz„(8„82,II&, II& )

I 2

of the BF fields to the Hamiltonian (4). That is to say, we
should solve the following relations:

H =H, + fdx[2e P, C +2P,a, C +P,(2a,a'+4e }C

+P,C' —eV,C' —P,C'] . (31)

The BRST charge Q, the fermionic gauge-fixing function
0, and the minimal Hamiltonian H satisfy the following
relations:
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i[Q,H ]=0,
Q'=[Q Q]=o

[[q,Q],Q]=o,
(32)

where they are the conditions of the physical subspace
being imposed.

We are now ready to derive the covariant effective ac-
tion. The action is given by

S„=fd'x [II,A'+ ll, A '+ II,j+II, 8, + II, 8,+B,N'+B, N'+B,N'+P, C'+P, C'+P, C'

+P4C +C2P +C3P +C4P ]
—H„„, , (33)

where Hto„~ =H i [Q—, +]. Note that we could suppress the term fd x(B,N'+C &P')= i—[Q, f d x C,N'] in the

Legendre transformation by replacing y' with y'+N'. The generating functional is

Z= f [dp]exp(iS, tr),

where [dp] is the Liouville measure of the extended phase space

[dp] = [d P][d II4]P [d A '][d II, ]g [d 8, ][d lie ] g [dN") [dB„][IC "][dP„][dP"][dC „],
i =0 j=1 k=1

(35)

and a normalization factor in Eq. (34) is understood.
In order to derive the covariant action, we first need to eliminate N', B„B3 B4 P C ] P C 3 P C4 C P]

P3 C P4 8$ IIe A 0 and IIO by Gaussian integration. After integration, we take the limits p, y ~0. Then, the co-
2'

variant effective action is

S, =f d x II, A'+II~Q+IIe8+BN +PC+PP —
—,'(ll') ,'(II—~)—,'(B,—P—) +e(II~+d, g)A'

—e (A ') —(8,8) —8(B,II&—B,B'P)+2e8B, A ' —2e8II' —
—,'e (4e) ——,'e 8

N(B, II—'+eII&+eB,P eA ')+—N (e8+II') N(eII—&+eB,P 2e A '—+eIIe eB,8—)

BB A'+——B —8 CB'C —PP
1 1 7 (36)

with 8,:—8, IIe —= IIe, B2 =—B, P2—= C, C —= C, P =P, and

2—=P
Second, the variations with respect to II', Ile, II&, P,

and P in Eq. (35) yield

II'=a, A, +a,N' —2ee+N',

II&=8 P+e( A ' N)+d, 8 eN— —

N, =—a,e,1
(37)

P=C, P= —C .

Finally, if we substitute Eq. (37) into the action (36),
and identify N with —A o, which should not be confused
with the original Ao, we obtain the covariant effective ac-
tion

Sdr= f d x[ ,'F„„F"+ —,'e A„A "+,'d„—@—B"4—

5s A„=——AB„C, 5s8= —
A, C, 5s4= —AC,1

e

5sC =0, 5sC = AB, 5J3B =0—,
(39)

where A, is a constant Grassmann parameter.
By applying the systematic BFV formulation, we have

shown that the Wess-Zumino term for the case a = 1 in
the CSM naturally appears in the effective action.

+eA (g"" e"")B„P—. (40)

The canonical momenta corresponding to Ao, A, , and p
are

IV. CSM INTHE CASE a &1

In this section, we consider the CSM Lagrangian densi-
ty in the case of a & 1 as follows:

'Fq„F" + ,'—ae—A„A "+—,'d„pB"P—

+e A, (g"" e" )8„4+—ee""(B„8)A

+ A ~a„B—
—,'~(B)'—a„Ca~C ], (3g)

where we have redefined the fields P, 8 into 4—:P —8, and
used the relation N =e0. This action is invariant under
the BRST transformation

n'=o,
II'=F' =O'A —A ',
II~=Q+e(A + A '),

and the primary Hamiltonian is

(4l)
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a, = fdx(II, A'+ll, j—Z),
=fdxt —,'(ll') + —,'(11~) + —,'(B,P)

—e(II~+8,P)( A + A ') —A B,H'

2[( A 0)2 ( A 1)2]+ ] 2( A 0+ A 1)2]

(42)

should add fdx[1/2(a —1)](II&) to H, Similarly, the
constraint 02 can be made consistent by adding another
term

fdx[ —,'e 8 + —,'(a —1)(Bi8) ] .

As a result, we obtain the following first-class Hamiltoni-
an:

The primary constraint is Q, —:II =0, and its time stabil-
ity gives the only secondary constraint

Qz=B, II'+e(II&+8,P) —e A'+(a —1)e A . (43)

H =H + dx (II ) +—,'e 8
2(a —1)

+ —,'(a —1 }(8,8) (4g)

1.= —a, ~'—
a —1

(44)

The constraints Q„Q2 are second class, and the multi-
plier field v is fixed as follows: According to the BFV formalism in the extended phase

space, let us introduce the ghosts and antighosts along
with auxiliary fields as follows:

Then, the canonical Hamiltonian is given by
(C', P;), (P, C;), (N', B; ), (49)

a, =a, f—dx a, A'+, 11' 11',1
(45)

[Q„H, ]=iQ~,
(46)

and the relations between the canonical Hamiltonian and
the constraints are

where i =1,2. The nilpotent BRST charge Q, the fer-
mionic gauge-fixing function 4', and the minimal Hamil-
tonian H are

Q= fdx[C'0, , +C'fl, +P'B, +P'B, ],
4'= f dx [C,y'+ C ~ +P,N'+P~N ], (50)

2

H. =a f dx P,C—'+P, a, a'C' — ', P, C'

As before, we introduce two BF fields 0, H&, and then the
modified constraint algebra forms a first-class system
with the following constraints:

Q, =Q, +e(a —1)8,

02=02+eHg .
(47)

And also, requiring the constraint equations in the ex-
tended phase space to be maintained, we can construct
the first-class Hamiltonian so as to have the involutional
relations with 0, and Qz. For the constraint 0, one

I

where y'= A, y =B,A '+(a/2)B2, and a is an arbi-
trary parameter. Then, the effective action is given by

S„=fd'x[II, A'+II, A'+II,j+n,8+B,N'

+P,C'+P2C +C~P ]—H„„, , (51)

where H„„~=H i [Q, V—], and also BiN+C iP' terms
could be suppressed as in Sec. III. The fields B„N', C „
P', P„C', A are eliminated, and integration of IIO gives
the 5 functional through Gaussian integration. Then we
obtain

S„=fd'x 11,A'+ 11,j+11,8+BN+PC+ CP—,'(ll')' —
—,'(ll, )' ——,'(a, y)'+e(II, +a,y) A '

——'ae (A ') ——'e (A') —e(a —1)8B,A' —e811'— (lI&) —
—,'e 8

2 2 2(a —1}

—
—,'(a —1)(Bi8) —¹liil'—eN(II& B+&P) e+NA ' eNIIe B(d, A '+—,'aB ) ——B CBi'C —PP, —(52)

with N =N, B2 ——B, Cz—= C, C =—C, Pz—=P, and P =P. Using the variations —of II', Ilz, II&, P, and P, we obtain the
following relations:

A
&

—e+~, N

IIt, =(a —1)(8—eN),

II~ =/+ eA ' eN, — (53)
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and identifying X= —A, we finally get the covariant effective action

S,s= J d x [
—,'F—„„F"+ ,'e —aA„A"+,'—r)„pd"P+eA„(ri"" —e" )d„P+ ,'—(a—1)B„8r}"8

+eA, [e" +(a —1)ri""]d„8+A "d„B—
—,'a(B) —B„C8"6], (54)

which is invariant under the BRST transformation

5~ A„=——AB„C, 5sp=)(.8, 5~8= —8,1

8

5sC =0, 5sC = B, —5sB=0.
(55)

In Eq. (54) we see that the auxiliary BF field 8 is exactly
the well-known Wess-Zumino scalar [2—4].

U. CONCLUSION

The generalized Hamiltonian formalism of Batalin and
Fradkin for quantization of systems with second-class
constraints is based on the idea that any second-class
constraint can be made effectively a first class one in an
extended phase space. On the other hand, in the I.a-
grangian formalism it has been realized that a broken
gauge symmetry can be restored by extending the original
configuration space. With this point of view, the derived
covariant effective actions (38) and (54) of the bosonized
CSM with a = 1 and a & 1 are the BRST gauge-fixed ver-
sions in the extended phase space, showing that BF fields
turn into the Wess-Zumino scalar.

Following the BFV formalism, we obtained the BRST-
invariant action, which is equivalent to the original

I

anomalous action. Although the BRST-invariant action
is superficially different from the original one, the physi-
cal contents are the same. That is a merit of the BFV for-
malism. It exhibits the freedom of gauge fixing and we
may analyze the anomalous gauge theory in terms of a
BRST-invariant theory. This is related to the renormal-
ization program, although we did not discuss this issue.
For a = 1 in our analysis, the constraint structures resem-
ble those of four-dimensional chiral gauge theory. Thus
further study in this direction may be interesting.

In order to successfully carry out this program, we
have pointed out the importance of the gauge choice, and
have stressed the use of the minimal number of BF fields.
We may add that even if one takes BF fields different
from ours, one may obtain effective covariant actions like
Eqs. (38) and (54).
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