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Lo~-lying states of the six-dimensional fractional superstring
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The K = 4 fractional superstring Fock space is constructed in terms of Z4 parafermions and free
bosons. The bosonization of the Z4 parafermion theory and the generalized commutation relations
satisfied by the modes of various parafermion fields are reviewed. In this preliminary analysis, we
describe a Fock space which is simply a tensor product of Z4 parafermion and free boson Fock
spaces. It is larger than the Lorentz-covariant Fock space indicated by the &actional superstring
partition function. We derive the form of the fractional superconformal algebra that may be used
as the constraint algebra for the physical states of the fractional superstring. Issues concerning
the associativity, modings, and braiding properties of the fractional superconformal algebra are also
discussed. The use of the constraint algebra to obtain physical state conditions on the spectrum is
illustrated by an application to the massless fermions and bosons of the K = 4 fractional superstring.
However, we fail to generalize these considerations to the massive states. This means that the
appropriate constraint algebra on the fractional superstring Fock space remains to be found. Some
possible ways of doing this are discussed.

PACS number(s): 11.17.+y

I. INTRODUCTION

String theory [1] is the only known theory with the po-
tential for describing all matter and forces in nature in a
unified way. In particular, the superstring and the closely
related heterotic string entail many structures, includ-
ing gravity, Yang-Mills fields, and chiral fermions, that
are central to our present understanding of the world.
However, their critical space-time dimension is ten, and
though there are numerous proposed mechanisms to re-
duce the number of observable dimensions, there is no
known compelling reason why the superstring theory
should have only four large space-time dimensions. While
it is important to search for dynamical and/or symme-
try reasons explaining how our world could be realized
in the heterotic or superstring framework, we would like
to ask instead if other string theories with lower criti-
cal dimensions exist, for they could provide more natural
descriptions of the world.

Recently strong evidence has been presented for the
existence of such string theories [2]. Since string theo-
ries are characterized by the local symmetries of a two-
dimensional conformal field theory on the string world
sheet, it is natural to try to construct string theories with
smaller critical space-time dimensions by changing the
world-sheet symmetry. It is well-known that fractional-
spin fields exist in two-dimensional theories. One can
imagine new local symmetries on the world sheet which
involve fractional-spin currents (replacing the spin-3/2
supercurrent of the superstring) and which lead to string
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propagation in space-times with dimensions less than 10.
In Ref. [2], string theories, called fractional superstrings
(FSS's), with spin-4/3 and -6/5 currents on the world
sheet were found to have potentially interesting phe-
nomenologies in 6 and 4 critical space-time dimensions,
respectively. In this paper, we discuss in detail the spec-
trum and physical state conditions of the 6-dimensional
FSS. Although the results obtained are unsatisfactory
(or, at best, incomplete), we believe the analysis pre-
sented below illuminates some of the main issues that
are involved in understanding the FSS.

The basic idea behind the FSS is to replace the world-
sheet supersymmetry of the superstring theory with a
world-sheet fractional supersymmetry parametrized by
an integer K ) 2. Such a fractional supersymmetry re-
lates world-sheet bosons not to fermions but rather to
world-sheet par afermions. The world-sheet fractional su-
perpartner of the space-time coordinate X" is a field e"
of spin 2/(K+ 2). This field is the so-called "energy op-
erator" of the ZK parafermion theory [3]. The fractional
supersymmetry is generated by a generalization of the
supercurrent, a new chiral current G [4—8] whose con-
formal dimension is (K+ 4)/(K+ 2). This new current
transforms X" to the fractional-spin field e~.

By demanding that the FSS's have only transverse
propagating modes, a generalization of an argument of
Brink and Nielsen [9] implies that the critical dimensions
of such string theories should be [2]

D = 2+16/K .

The case K = 2 (D = 10) corresponds to the superstring.
The new theories are those with K & 2; for K = 4, 8,
and 16 we have the integer critical dimensions D = 6, 4,
and 3, respectively.

In this paper we will concentrate exclusively on the
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simplest case after the (K = 2) superstring, the K = 4
FSS. The reasons for this are twofold. The first is that
the complexity of these theories increases considerably
with increasing K. Although the world-sheet fractional
supersymmetry algebra is nonlocal, the Z4 parafermion
fields that appear in the K = 4 FSS can be simply rep-
resented by free bosons, which enables the calculations
to be simplified tremendously. This is not the case in
the K = 8 and K = 16 theories [10, 11]. Furthermore, a
close examination shows that the appropriate world-sheet
fractional supersymmetry algebra for the K = 8 theory
contains two spin-13/5 currents in addition to the spin-
6/5 current [ll], which further complicate the analysis.
The second reason for our emphasis on the K = 4 FSS
is because it is potentially the most interesting one from
the phenomenological point of view. As argued in [12,13],
the requirements of quantum mechanics, Lorentz invari-
ance, and locality suggest that the K = 4 FSS may be
automatically compactified from six to four space-time
dimensions. Furthermore, as argued in [12], the com-
pactification from the critical dimension 6 to the natural
dimension 4 offers the possibility of the construction of
heterotic type K = 4 FSS models that have chiral space-
time fermions. This is encouraging, since the K = 4
FSS, because of its relative simplicity, affords the best
prospect for detailed examination in the near future.

I et us highlight some of the similarities and differences
between the K = 4 FSS and the superstring. In the su-

perstring, the world-sheet superpartner of the space-time
coordinate boson X" is a Majorana fermion g". g is the
primary field of dimension 1/2 in the Ising model, the
c = 1/2 minimal unitary conformal field theory (CFT)
[14]. This theory has two other primary fields: the iden-
tity IL and the spin Geld o., which play specific roles in the
construction of the superstring Fock space. All Neveu-
Schwarz (space-time bosonic) states can be generated by
the action of the modes of the Majorana fermion field on
the identity, and all states in the Ramond sector (space-
time fermions) can be generated by the action of the
modes of the Majorana fermion on the spin field.

In the K = 4 string, on the other hand, the world-sheet
fractional superpartner of the space-time coordinate bo-
son is the dimension-1/3 energy operator e", a primary
field in the Z4 parafermion theory. This CFT has central
charge c = 1 and an infinite number of primary fields.
In Sec. II we develop a Fock-space description of the Z4
parafermion theory, and show how the states are divided
into sectors that close under the action of the energy op-
erator modes. Different sectors will be seen to correspond
to space-time bosons and fermions, in analogy to the
Neveu-Schwarz and Ramond sectors of the superstring.
The analysis of the Z4 parafermion theory is made easier
by the fact that the Z4 parafermion theory can be real-
ized as a free boson P compactified on a circle of radius
2 [where the boson is normalized by (p(z) p(0)) = —s2lnz]

[15]. Nevertheless a number of technical issues having
to do with the modings of fractional-spin operators on
the world-sheet will have to be unraveled. In this pa-
per we consider the simplest case, where the Fock space
of the open K = 4 FSS is described as the D-fold ten-
sor product of the Z4 parafermion Fock spaces and free

coordinate boson Fock spaces, with D the dimension of
space-time.

At a fundamental level, the superstring is described
by its world-sheet gauge invarianc" two-dimensional su-
perconformal supergravity. Classically, the gauge-fixing
constraints in the superconformal gauge consist of the
vanishing of the energy-momentum tensor T(z) and the
supercurrent G, (z) = @i'MC„. Upon quantization, these
constraints are realized weakly on the space of physical
states of the superstring:

r(z)lx) = (ylG, (z)l&) = 0 (1 2)

for all physical states P and y. By writing T and G, in
modes, these conditions can be factorized into the famil-
iar physical state conditions, in which the positive modes
of T and G, annihilate physical states. We have no un-
derstanding at present of the classical world-sheet gauge
invariance of the K = 4 FSS. However, there does exist a
natural analogue of the supercurrent G„ the dimension-
4/3 fractional supercurrent G of the form

G(z) e"t9X„+ (1.3)

The precise expression for G(z) will be explored in
Sec. III, where we will also discuss some aspects of the
algebra satisfied by G. A basic assumption that will be
made in this paper is that there exists some sort of "frac-
tional superconformal gauge" whose classical constraint
equation is the vanishing of G (and T, of cours" we still
require two-dimensional reparametrization and Weyl in-
variance). One goal in this paper is to formulate and
solve, at the massless levels, the resulting FSS physical
state conditions.

In Sec. IV, we begin our exploration of the FSS con-
straint algebra by solving the physical state conditions for
the massless propagating modes of the open K = 4 FSS
in the space-time fermion sector. We show how space-
time spinors are naturally described in the FSS Fock
space, and that the massless state is a Weyl fermion. We
find that there exists a natural left-right pairing of mas-
sive states in the fermionic sector necessary for Lorentz
invariance. The existence of this pairing for all mass lev-
els follows from a counting argument relying on the Euler
pentagonal number theorem.

We turn to an examination of the physical states in the
bosonic sector in Sec. V. The open FSS massless propa-
gating modes turn out to describe a massless vector par-
ticle. A novel feature compared to the superstring is
the existence of normal-ordering constant ("intercept")
for the fractional supercurrent physical state condition
in the bosonic sector.

Section VI describes two problems that appear upon
solving the physical state conditions at higher mass lev-
els of the open FSS Fock space. These are, firstly, that
the tensor-product Fock-space description of states is
Lorentz noncovariant above the massless level, and, sec-
ondly, that the physical state conditions do not remove
nearly enough states to agree with the counting of states
in the FSS partition function. We do not have a clear
resolution of these problems; however, they suggest that
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the tensor-product Fock space described in this paper is
larger than the Lorentz-covariant space of states implied
by the FSS partition function. One can either search for
a direct way of reducing the tensor-product Fock space to
one in which the physical state conditions have a Lorentz-
covariant action, or modify and/or supplement the phys-
ical state conditions to reduce the number of propagating
degrees of freedom and cancel the Lorentz-noncovariant
terms in the equations of motion.

In Sec. VII we remark on two features of the K = 4
FSS which may provide useful hints for finding a com-
plete and correct description of the FSS space of states.
First, we discuss the possible equivalence of the K = 4
FSS with the spin-4/3 string introduced in Ref. [8]. The
critical central charge of the spin-4/3 string, unlike the
K = 4 string, can be calculated by constructing ex-
tra towers of null states using the algebra of physical
state conditions. A representation of the spin-4/3 al-
gebra would then give a non-tensor-product realization
of the FSS space of states. However, the representation
theory of this algebra is not well understood, and thus a
direct comparison of its spectrum of physical states with
the K = 4 FSS partition function cannot be made yet.
Second, we show that a chiral closed K = 4 FSS must
have extra massless scalars in its spectrum if gravita-
tional anomalies are to cancel.

We have collected some of the more technical or tan-
gential discussions in a series of appendixes. Various chi-
ral associative solutions to the Z4 parafermion theory
are constructed using cocycles in Appendix A. A review
of the derivation of the generalized commutation rela-
tions satisfied by fractional-spin fields, based on exam-
ples taken from the Z4 parafermion theory is presented
in Appendix B. Appendix C discusses the representa-
tion theory and associativity constraints of the fractional
superconformal algebra. In Appendix D we review the
construction of the modular invariant partition function
for the closed K = 4 FSS. This makes the analog of the
Gliozzi-Scherk-Olive (GSO) projection [16] in the FSS
apparent, and aids in the identification of bosonic and
fermionic states in the FSS Fock space. Finally, in Ap-
pendix E we discuss the physical state conditions and
null states of the spin-4/3 string.

II. THE K = 4 FSS FOCK SPACE

Each space-time dimension of the K = 4 FSS cor-
responds to a free coordinate boson X" and a Z4
parafermion theory on the string world-sheet. In this sec-
tion we will construct a free-field representation of the Z4
parafermion theory, first pointed out by Yang [15]. We
use this representation to compute the operator-product
expansions (OPE's), mode expansions, generalized com-
mutation relations, and characters of primary fields in
the parafermion theory. In this way we will be able to
build up a Fock-space realization of the space of states
for each dimension of the FSS. We assume that the total
Fock space is a tensor product of D of these individual
Fock spaces. This tensor-product structure will be the
subject matter of later sections.

A. Review of Z4 parafermions

The operator content of the chiral Z4 parafermion the-
ory can be realized by the SU(2)4/U(1) coset model [3].
The chiral SU(2)4 Wess-Zumino-Witten (WZW) theory
[4] has central charge cwzw = 2 and consists of holo-
morphic primary fields 4~ (z) of conformal dimension

j(j + 1)/6. The indices j, m C Z/2 label SU(2) repre-
sentations where 0 & j & 2 and ~m~ & j with j —m E Z.
When we factor a U(1) subgroup out of SU(2)4, we cor-
respondingly factor the primary fields as

o'-(*) = i"-(~) ex& {~—,~(~)) (2.1)

Here p is the free U(1) boson normalized so that
(y(z)y(zu)) = —21n(z —ui). The P~(z) are Virasoro pri-
mary fields in the Z4 parafermion theory with conformal
dimensions:

(~, )
j(j+ 1)

m 6

m2
for ~m~ & j. (2.2)

The central charge of the Z4 parafermion theory is then
c = cgrzw —c~ = 1. This is an indication that the
Z4 parafermion can be realized by a free boson. The
definition of the gP fields can be consistently extended
to the case where ~m~ )j by the rules

=0'+4=0 2 (2 3)

With these identifications, an independent set of fields

can be taken to be Ps, /~i, /~i(z, Ps, Qi, /~i(z, and Po.p p 1/2 y y 3/2 2

The fusion rules of the parafermion fields follow from
those of the SU(2)4 theory:

(2.4)

J+ =2@ie
J' =i,ay,
J—

2y i e-iy/2
(2.5)

where the parafermion currents @g = Pz ——Pz 2 and
Q g

—= @4 g have conformal dimensions I(4 —E)/4 in ac-
cordance with (2.2). It follows from the fusion rules (2.4)
that the current blocks [Qg], l = 0, 1, 2, 3 form a closed al-
gebra, namely, the Z4 parafermion current algebra. Note
that Qi acting on a field P increases the m quantum
number by one but does not change the SU(2) spin j.

Another special field, the one that will play the central
role in the construction of the FSS Fock space to follow, is
the energy operator e = Psi of dimension 1/3. Operating
on a field gP with e preserves the m quantum number
but yields sectors with j quantum numbers j —1, j, and
j+ 1, when permitted by the fusion rule (2.4).

Before plunging into the detailed construction of the

where r = min{ji + jz, 4 —ji —jq). The sectors [P ]
include the primary fields P& and a tower of higher-
dimension fields (with dimensions difFering by integers)
defined as in (2.1) from current-algebra descendants of
the 4~~. Indeed, the SU(2)4 currents factorize as well:
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parafermion Fock space, we can already make some
important remarks concerning the roles the various
parafermion fields can be expected to play in the FSS.
The energy operator e, as the fractional superpartner of
the coordinate boson field X, will play a role analogous
to the one the Majorana fermion field Q plays in the su-
perstring. There, the Neveu-Schwarz sector is built from
the action of g on the identity. From the fusion rules
(2.4) we see that e acting on the identity can create all
parafermions with m quantum number zero. Thus, we
expect that the set of fields ([gPO]) will be the analogue of
the Neveu-Schwarz sector in the FSS. Just as the Ramond
sector is generated by the action of Q on another field, we
should look for other sectors in the parafermion theory
that close under the action of e. Because of the identifi-
cations in (2.3), there are only three such other sectors:

([/~+i&z]} and j[gPi]). These are formed by the action of
e on the so-called "spin" fields of the parafermion the-

ory, a~i = /+i 2 and o2 = Pi, respectively. The ar-1

guments of Appendix D indicate that the m = 1 sector
plays the role of the Ramond sector in the FSS, while the
m = +1/2 sectors do not enter into the FSS Fock space
at all. The fusion rules (2.4) show that it is consistent
to project out the half-odd integral spin states since the
integral spin states do not close on them; Appendix D
shows that this projection is required by modular invari-
ance.

a
~(~( ))

3 (2 9)

Comparing to the conformal dimensions of the
parafermion fields (2.2), we make the identifications

~"""(z)=4' (z)

i~p(z) = 4o(z)

(= ~),
(= ~2)

(= ~),
(= 0+i),
(= ~.),

d, =o,
6 = 1/12,

6 = 1/3,
6 = 3/4,
6=1,

(2.10)

(Z) E(b)(QJ) = (z —i')20b/3 &(~+b)(i')

(z —~) C).( +b)
a+6

+ 1 ~ ~ (2.11)

where we have also given in parentheses the correspond-
ing spin-field, energy operator, or parafermion current
symbol. The identification of fields in the free boson the-
ory with Z4 parafermion fields is discussed in more detail
in Appendix A.

The OPE's of these fields are easily computed to be,
for a+5/0,

or, if a+6=0,
B. Bosonization of Z4 parafermions

2
(p(z) p(ui)) = ——»(z —ui)

3 (2 6)

With this choice of normalization, the energy-momentum
tensor is given by

T.(z) = —4: [&p(z)]': (2.7)

If we take this boson to be compactified on a circle of ra-
dius 2 [in the units implied by (2.6)], so that p = p+4vrn,
n ~ Z, the Virasoro primary fields include the dimension-
1 field iBp(z), higher-dimension fields built from it, and
the infinite set of fields

,(~)(z) = ..&'«(') a q Z/2,

with conformal dimensions

(2.8)

The spectrum of the c = 1 Z4 parafermion theory is
the same as that of the Zz orbifold of a boson on a circle
of a certain radius [15]. In line with the above discussion,
we will ignore the parafermion fields with spin j e Z+ 2
which correspond to the twist fields in the orbifold the-
ory. Therefore we will just be interested in a free boson
taking values on a circle. This bosonization will allow
us to easily construct the Fock space of the parafermion
theory and to derive a simple form for the parafermion
characters as sums over the winding modes of the com-
pactification,

Consider a chiral boson p(z) satisfying

= (z —iv) ' ~ )l + a(z —u~)imp(i')+

and

(2.12)

&p()"'( )=- c)g(~) (ii)) +. . .
3 Z —QJ a

(2.13)

A special feature of the free boson representation is its
Z3 symmetry. We can associate a Z3 charge q with the
e(') fields by the rule

q—:—2a (mod 3), a C Z/2 . (2.14)

Thus the parafermion sectors [gV ] with j = 0 or 2 have
Z3 charge q = 0, while the j = 1 sectors have q = +1.
From the OPE's it follows that this charge is additive
under fusion. We will see below that its occurrence makes
for important technical simplifications. Note that the Z3
symmetry of this free boson representation has nothing
to do with the Z4 symmetry of the parafermion current
algebra —its existence is "accidental" in the sense that
there do not in general exist Z~ symmetries of the whole
spectrum of other Z~ parafermion theories.

The Fock space of a free boson compactified on a circle
is usually built up by the action of the modes of the boson
field. The (chiral) mode expansion of p(z) is
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-1
p(z) = rp —isp lnz+ i) —s„z

n
n+p

(2.15)

where the modes satisfy the commutation relations fol-

lowing from (2.6):

2i
[io so] = —,

3 '
2n

[s„,s ] = —6'„+
3

(2.16)

The Fock space is built with the p(z) creation operators
from the vacuum l0) satisfying s ]0) = 0 for ni ) 0.
Because p(z) is compactified on a circle of radius 2,

rp ——rp + 4+n, ngZ. (2.17)

In the zero-mode sector the allowed sp eigenstates are,
therefore,

la) = e' "'[0),
satisfying

ac Z/2, (2.18)

2G
sola) = —la) .

3 (2.19)

Clearly, these states la) are created from the vacuum by
the vertex operators e(')(z):

n(q) = q'~" (1 —q")
~ h ~

n=1
(2.21)

is the Dedekind rl function. Here q = e2 ', where 7 is
the complex modulus on the torus. Since the character is
defined to be Trq~' over each sector, the factor of rl(q)
must be multiplied by q+ where 6 is the dimension of
each winding state la+ 3n) appearing in [gP ]. Thus, we
find the characters

(2.20)

The rest of the Fock space is built up by acting on the
la) states with the s modes with )7i ( 0.

From this description of the Fock space, and the iden-
tifications (2.10) of the parafermion operators in each
sector, we can easily derive an expression for the char-
acter Z~ of the parafermion sector [P~ ]. Indeed, each
parafermion sector [P~] consists of the primary field gV~
and its parafermion and Virasoro descendants whose di-
mensions difFer by integers. In the bosonic Fock space,
these sectors correspond to the "momentum" state la)
identified in (2.10), its associated winding states la + 3n),
and all their descendants created by the action of the
s~ modes. The counting of the s~ descendants simply
contributes a factor of the free boson partition function
i)(q)

i to the parafermion character, where

q1/3
Zo

q3/4
o o+1 +-1

9

3 +2

Q

&=0 )

C. Mode expansions and commutation relations

Though the description of the Z4 parafermion Fock
space given above is complete, it is not expressed in the
right language for our purposes. We will need to define
the mode expansions of the e( ) fields and derive the com-
mutation relations these modes satisfy in order to state
and solve the FSS physical state conditions. Because the
parafermion fields have fractional spin, the usual contour
deformation argument [14] for deriving commutation re-
lations of modes from the OPE of the fields must be
modified. For fields that satisfy Abelian braid relations,
as the e( ) do, Zamolodchikov and Fateev [3] have in-

vented the necessary modifications. Their construction
is reviewed in Appendix B. The result is that Abelian
braided fields satisfy generalized commutation relations
(GCR's) which involve infinite sums of terms in place of
the usual commutator or anticommutator.

First, though, we must introduce the mode expansions
of the e(~). From the OPE's (2.11)—(2.13) we see that, in
general,

"( ) (o) =): " "','"',.(o) (223)
n&Z

where )(q represents any field with Zs charge q, and q,
is the Zs charge of e(~). The y +q fields are all the
primary and descendant fields that appear on the right-
hand side of the OPE. From (2.23), the dimension of

)((+)q is h(yq(+)q ) = b, (yq)+n+a(a —q)/3, where we have

used A(e( )) = a2/3. Following the usual convention that
the subscript on a mode operator is the negative of its
dimension, we define the e(') modes by

Xq+q. (0) = (-' '„+
(q )ysyq(0) . (2.24)

Thus the general OPE (2.23) can be written

t (z) Pq(0) = ) z E + ( )ys gq(0) 1 (2,25)

or

(2.26)

These characters will form the basis for our discussion of
modular invariance of the closed K = 4 FSS in Appendix
D.

&o+&o =-
l

)
1/12 (~1 q W sn +n

)
(2.22)

where p is a contour encircling the yq(0) insertion
once. Because the OPE (2.23) describes Abelian braiding
(there is only one cut on the right-hand side) it was pos-
sible to choose the integrand in (2.26) so that the contour
of integration closes. In the case of non-Abelian braiding
this is not in general possible.
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From the OPE's of the fields we can now derive their
GCR's following the discussion in Appendix B. However,
as explained there, there are actually an infinite number
of these relations which can be obtained from a single
OPE depending on how many terms on the right-hand
side of the OPE are included. Of course, these GCR's
are all consistent, but those encoding more terms of an
OPE contain more information. We will find in the fol-
lowing analysis that only the first few terms of the Z4
parafermion OPE's are sufficient to determine all the
mode relations in the parafermion Fock space.

We can choose in deriving these relations to select only
the first term on the right-hand side of the e( ) e(b) OPE's
(2.11) and (2.12) by multiplying them by the factor (z-
u)) with n = —1 —2ab/3. Then, following the procedure
outlined in Appendix B, we obtain the GCR

() () (b)
C

n g ]+ «- '- ) m+g+l+'«-')
E=O

following from the definition of the modes. Note that the
definition of the "momentum" states (2.20) implies

e ,,/, lo) = la) .(a) (2.31)

Starting from (2.30) and (2.31) the GCR's (2.27)—(2.29)
are suKcient to build up the whole Fock space of the Z4
parafermion theory using e( ) modes.

To translate between the description of the Fock space
in terms of the s~ modes presented in the last subsec-
tion, and the e( ) modes being discussed here, we need
to derive a relation of the form

e( )
lb) = P„( ) (s) la+ b), (2.32)

where P(' (s) is a polynomial in the boson creation
modes sm with m & 0. Then, using the sm —e„commu-
tation relation (2.28), an arbitrary e state can be trans-
lated to the s Fock-space description:

+,(b) (a)
m —e+'« ' " n+S+ " ' N

e)"~~ap) = P(8) Q, 0 a, ), (2.33)

= ~(+ ) . (g.27)
+ (a+b)(g —a —f )

3

2a, ( )
m+a(q —a)/3 3 n+m+a(q —a)/3 ' (2.28)

As we will see, it turns out that this relation is insufficient
for our analysis. We will also need the GCR correspond-
ing to keeping one more term in the pt OPE:

) (a) (a)
m+8+1+a(q —a)/3 m —/+a(q —a)/3 n+~

E=O

2a'A 1 a/ (a)
n+m+a(q —a)/3 '

The c& are the binomial coefficients defined by (]. —

x) = P& 0 c& 2:r. The above expressions are under-
stood to be valid only when acting on a state with Zs
charge q. Note that for a + 6 = 0, the right-hand side

is c„+ ——b„+~. From the pe OPE (2.11), a standard
commutator is obtained:

( +2/)/3 lb) = o(a)

( +2/)/31b) = I& + b)(a)
(2.34)

Now consider the s~—e, GCR (2.29) acting on the state
lb). By the Zs charge assignments (2.14) q = 2b, and if-
we choose n = 0 and m = —k ( 0, we obtain

() )) ()$ a+1 k a(a+2b)—/3 —
~ I k a(a+2b)/3— —lb) + e s

ke=o

k 2b) (,)—+
3 I

& i. .(.+2/)/31b) (2 35)

for some definite polynomial P.
We will now use the GCR's to derive a recursive for-

mula for the polynomial P( (s) in (2.32). This will also
serve as an example of the use of the GCR's. Consider
the GCR (2.27) with m = —1 acting on the vacuum 10),
so that q = 0. Using the vacuum properties (2.30) and
(2.31), we obtain

(2.29)
Using (2.34) and the fact that lb) is an so eigenvector
so lb) = (2b/3) lb), this implies

Note that (2.28) can be derived from (2.29).
These generalized commutators may seem complicated

and difBcult to use due to the infinite summation. How-
ever, when acting on any given state only a finite number
of terms from the infinite sum contributes. This occurs
because, as the summation index 8 gets larger, the dimen-
sion of the right-most operators in the GCR's become
more and more negative, so that eventually they annihi-
late any given state. For example, the vacuum satisfies
the properties

k —1

X+1—k —a(a+2b)/31 ~ a —k —a(a+2b)/3 ~

e=o

If we define the polynomial P&~
) (s) by

~ ), .(.+2i,)/slb) =PA: (s)l~+b),(a) (a)

then (2.36) becomes the recursion relation

(2.36)

(2.37)

,/s10) =0, n & 0,

s„lo) =0, n&0,
(2.3o) Pk = — S E—1Pk ]

E=O

(2.38)
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e ,/, Io)
(+1)

s-ilo)

e 4/slo) , s ie »slo)
(+2) (+1)

level 0,
1

level —,
level 1,

4
level —,

(2.39)

The initial condition for this recursion, Pp' = 1, is pro-

vided by (2.34). The first few solutions are Pi ——as(+)

and Pz ——~(s z+ as is i).
To conclude this discussion of the Z4 parafermion Fock

space, we write down all the low-lying states, since they
will be useful for building the low-lying FSS physical
states. Consider first the states in the parafermion sec-
tors with SU(2) quantum number ni = 0. This is the sec-
tor analogous to the superstring Neveu-Schwarz sector-
it consists of all states generated from the vacuum by
modes of the energy operators &&+i&. The complete set
of independent states for the lowest levels of the rn = 0
sector can be written as follows:

e—i e i/» Io) = +s-i e i/» Io)
(+1) (+1/2) (y1/2) (2.47)

Note also that if we had only used the standard com-
mutator (2.28) as the defining commutation relation,
rather than the GCR (2.29), we would not have found
the correct counting of states. For example, the relation
(2.41) would have been absent.

D. The coordinate boson field

( X(z) X(ip) ) = —ln(z —ip),

from which follows the energy-momentum tensor

(2.48)

To complete the description of one dimension's worth
of the FSS Fock space, we must tensor the parafermion
theory with a free boson X, which will have the inter-
pretation of a space-time coordinate field. We will only
consider the left-moving (holomorphic) part of this boson
on the world sheet. We set its normalization by

e—Q/3 e i/31o) —+s-ilo)(+1) (W1)

8 i E i/3 Io) +E 4/3 lo)
(+1) (+1)

(2.40)

(2.41)

The counting of states here agrees with that implied by
the characters ZpP+Zpz and Zpi obtained previously. Note
that the GCR's given in Eq. (2.27) have been used to
eliminate states that are dependent on the ones listed.
Indeed, it is easy to solve the recursion relations (2.37)
and (2.38) to the first few levels to obtain the identities

Tx(z) = ——:[c&X(z)] (2.49)

The primary fields are

V (z) . iPxiz&. (2.5o)

1
X(z) = zp —inp ln(z) + i ) —n„z ",

ng0
(2.51)

of dimension A(V„) = p /2. Because X is not compact-
ified, the momentum p can take on any real value. The
mode expansion of X is

e—i 'e —i/S I o) = e 4/31o)
(~1) (+1) (2.42)

[xp, ap] = i, [cia) &m] = n4+m . (2.52)

where the modes satisfy the standard commutation rela-
tions

Similarly, the analogues of the Ramond sector are the
rn = +1 sectors built up by a~+i& modes acting on the

spin fields. The complete set of independent
states for the lowest levels are

The Fock space is built up by these modes from the vac-
uum lo) satisfying a„lp) = 0 for n & 0. The highest
weight states

(1/2) (—1/2)
-i/iz lo)

'""lo) " ""lo)

1
level —,

12 '

1 2
level —+ —,

12 3'
(2.43)

lp) = V~(0)lo) = ""*'Io) (2.53)

satisfy eip Ip) = pip) and o,„lp) = 0 for n ) 0.
Upon tensoring the Z4 parafermion theory with the

coordinate boson, we obtain a CFT with central charge
cp ——2, and energy-momentum tensor

s—ie i/italo) ~
s—ie i/iz I0) level —+ 1,

12 T(z) = Tx(z)+Tp(z) . (2.54)

~+'& ~+'/
&lp) = &+'/

&lp)—1/12 —1/12

&+'& &+'/'&]0) = &+s/'&]0)—2/3 —1/12 —3/4

(2.44)

(2.45)

(+1) (+3/2) (+1/2)
—i/3 —3/4 Io) = +s-i ~—,/» Io) (2.46)

These states can be written in other ways using the iden-
tities following from the GGR's:

Defining the Virasoro modes in the usual way by T(z) =
Qz " zL„, we find

1 - 3= —):ice~ -e:+—):ses -e: .
e

(2.55)

Note that T(z) is not the energy-momentum tensor for
the full FSS, but instead corresponds to only one dimen-
sion of the FSS. We take the full K = 4 FSS Fock space
to be the tensor product of D copies of this cp ——2 CFT,
where D is the number of space-time dimensions. The
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full L„'s will then obey a Virasoro algebra with central
charge c = Dcp. In Sec. III we will derive expressions
for the fractional supercurrent G(z) in the co = 2 and
c = Dco Fock spaces.

The Z4 parafermion fields e~~l(z) and the coordinate
boson field BX(z) are primary fields with respect to
T(z) with conformal dimensions a2/3 and 1, respectively.
Their modes satisfy the usual comutation relations with
the L„:

[L„,a ] = m—n„~
(2.56)

III. THE FRACTIONAL SUPERCONFORMAL
ALGEBRA

In this section we construct the fractional supercur-
rent, G(z), of the K = 4 FSS. This current is the ana-
logue of the dimension-3/2 supercurrent of the super-
string. We argue that it is a dimension-4/3 chiral pri-
mary field in the CFT describing the FSS, and find its
explicit form in the free boson representation introduced
in Sec. II. This current G(z) and the energy-momentum
tensor T(z) together generate the fractional superconfor-
mal algebra. By analogy with the superconformal gauge
of the superstring, in which the energy-momentum tensor
and supercurrent generate the physical state conditions,
we discuss the physical state conditions that follow from
the fractional superconformal mode algebra.

It is important to note that the real justification for
singling out the dimension-4/3 field as the fractional su-
percurrent, and for taking its modes as generators of FSS
physical state conditions, rests in showing that a sensible
spectrum results. In Secs. IV and V we will succeed in
doing this for the massless states in the spectrum, but
will fail for the massive states.

A. Constructing the fractional supercurrent

We start by constructing the fractional supercurrent
in the CFT corresponding to a single dimension of the
K = 4 FSS. Later we will tensor together D components
to get an expression for the full fractional supercurrent.

Recall the form of the supercurrent in a single dimen-
sion of the usual superstring:

G, = @BX. (3.1)

In terms of a Z2 parafermion description, the Majo-
rana fermion field @ is the Virasoro primary field in the
j = 1, m = 0 parafermion sector [/&i]. By analogy with
this construction, we might naively expect the fractional
supercurrent to have the form G Poi BX, where Poi

stands for a Virasoro primary in the [Poi] sector of the Z4
parafermion theory. However, as we have seen in Sec. II,
the Z4 parafermion sectors (unlike the Z3 case) contain
an infinite number of primary fields. In particular the
[Poi] sector consists of a tower of primary fields e~s"+il of

dimensions (3n + 1)2/3 for n E Z. The lowest-dimension
fields are the so-called energy operators e~+ } with di-
mension 1/3, implying the fractional supercurrent has
dimension 4/3. Note, however, that there are also Vira-
soro primary fields @~+2' in the [Poi] sector with dimension
4/3. In general, if we demand that the algebra generated
by the fractional supercurrent and the energy-momentum
tensor close, we will find that both the e~+ } and ~~+ }

fields will have to be included in the definition of G.
Another difference between the fractional supercurrent

and the usual supercurrent (3.1) stems from the fact that
the [Po] sector appears with multiplicity two in the free
boson representation of the Z4 parafermion theory de-
scribed in Sec. II. This means that the fractional su-
percurrent G will be naturally split into two currents,
G+(z) and G (z). Indeed, demanding that two spin-4/3
currents and the energy-momentum tensor built from a
boson field X and Z4 parafermion fields form a closed
operator product algebra, one discovers the expressions

G+(z) = '
~~'l(z)iBX(z) + -' .~-'l(z),

2

(—s} 1 (2}G-(z) = e~-'l(z) iBX(z) + -e~'l(z),
2
1 3

T(z) = ——:BX(z)BX(z):——:Bp(z)Bp(z):,2' 4

(3.2)

which satisfy the algebra

G (u)) 3BG (ui)G+(z)G+(~) =
(, „),/, + (', „),/,

G+(u)) 2BG+(ui)G (z)G (ui) =
/

+

4 T(u))
G (z)G (~) =

( )s/3+ ( )2/3

(3.3)

In the above OPE's, only the singular terms (i.e. , those
with negative powers of z —ui) have been included, The
normalization of the right-hand side of the G+G OPE
does not completely fix the normalization of the G+
currents separately. This extra freedom was used to
make the structure constants appearing in the G+G+
and G G OPE's equal. We have also fixed the trivial
symmetry which takes all e~~l (z) to 2: e~ l (z) for z some
complex number, corresponding to a shift in the origin
of the p(z) boson.

This split algebra (3.3) is a special case of the spin-4/3
algebra studied by Zarnolodchikov and Fateev [17]. An
important property of the split algebra is that its cur-
rents, G+ and G, inherit definite Z3 charges, q = 1
and —1 respectively, from the parafermion representa-
tion. This is reflected in the fact that G+ satisfy Abelian
braiding relations. In terms of their OPE's, this means
that only one kind of cut appears on the right-hand side.
For example, the terms in the G+G+ OPE are all pro-
portional to (z —ui)"+2/3 where n in an integer. Because
of this, we will be able to derive generalized commuta-
tion relations satisfied by the current modes, following
the discussion in Appendix B.

The full fractional superconformal current G(z) of the



46 LO%'-LYING STATES OF THE SIX-DIMENSIONAL. . . 4541

FSS is defined in the D-fold tensor product space of co-
ordinate boson plus Z4 parafermion theories. I et us re-
name the currents in (3.2) associated with the pth di-
mension G(»+ and T(». Then the algebra generated by
the fields

G(z) = ) (Gizmo+(z)+ Gizmo (z))
p=o

D—1

T(z) ) T(~) (z)
p=o

is the full fractional superconformal algebra:

T( )T( )
D 2T(u)) BT(m)

(z —u))4 (z —u))~ z —u)
'

T()G(-) = '"' ."",
(z —u)) 2 z —u)

G(z)G(zz) =
ziz + 2(z —zz) T(zz))

3D

1 1+ zi G(w) + —(z —z)()G(m) ) .

(3.5)

B. Fractional superconformal mode algebra

We now turn to the mode expansions and generalized
commutators following from the fractional superconfor-

It is this nonlocal, non-Abelianly braided algebra which
we will take as the generator of the physical state condi-
tions for the K = 4 FSS. It will play a role in the FSS
analogous to that played by the super-Virasoro algebra
in the superstring. The representation theory of the frac-
tional superconformal algebras (3.3) and (3.5) is similar
to that of the super-Virasoro algebra in that both have a
discrete series of minimal unitary representations. How-
ever, the fractional superconformal algebras have some
qualitatively new properties arising from their nonlocal
nature (the cuts in their OPE's). The representation the-
ory of the fractional superconformal algebras is discussed
further in Appendix C.

mal algebra. We noted above that the split algebra (3.3)
has a Z3 symmetry and is Abelianly braided. Therefore
the arguments of Appendix B can be directly applied in
deriving the GCR's following from the split algebra. The
mode expansions for the full superconformal current can
be built from the split algebra pieces.

The Pock space of split algebra representations fall into
sectors 'Hq labeled by their Z3 charge. The currents G+
and G have Zs charges q = +1 and q = —1, respectively,
and act on the Fock space sectors according to the rules

G+:'Mq ~'Hq~i, G:'Hq ~'Hq i, (3.6)

where the Z3 charge is defined mod 3. With these ac-
tions, the mode expansions of G+ and G are defined

G+(z)Xq(0) =) z" G+i
n, (i q)/3)~q(0),

G (z)yq(0) = ) z"+ G-i-~-(i~q)/3 q(0)

(3.7)

where )(q is an arbitrary state in 'Rq. These mode expan-
sions can be inverted to give

)/3X (0) =
2

z + G+(z)&q(0)
4z

dZ
G„- („,)„X,(0) = . "-"G-( )X,(0)

(3.8)

Here, p is a contour encircling the origin once, where

)(q(0) is inserted.
From the argument reviewed in Appendix B, the

GCR's for the current modes of the split algebra (3.3)
can be derived. As explained in Appendix B, there are
many GCR's that can be derived from a single OPE, de-
pending on how many terms on the right-hand side of
the OPE one wishes to include. We will include only the
singular terms, shown in Eq. (3.3). With this choice, the
split algebra GCR's become [17]

(—2/3) Gy G+ G~ G+$+n;t ~+& q~qg &s+m-i! 2+& q~qg
e=o

1
(n —m) G, ,—

2 '+,"onym '

) (—&/3) 0— g—
G)

— @-
fan E~— y qg —$ ym —I. — —

e=o
(3 9)

(—&/3) G+ G
—

G
— G++ +n —g —+ +m+g —+ + —g &+q+ +g n+m+ 8

+ + + n+m ~8 3 3

where these expressions are understood to be acting on a
state in 'Mq. For completeness, we also write down the Vi-
rasoro algebra and the standard commutators following
from the fact that G+ are dimension-4/3 primary fields:

1[L,L„]=(m —n)L g„+ —(m3 —m)b ~„,

)L,G„+ =
]

-m —r
/ G++„,

(3.10)



4542 PHILIP C. ARGYRES, EDWIN LYMAN, AND S.-H. HENRY TYE

where the moding r is the one appropriate to whichever
Z3 sector the G+ currents are acting on. The Virasoro
algebra has central charge cp ——2, corresponding to one
dimension of the full K = 4 FSS.

It is useful to have expressions for the 0+ modes in
terms of the Z4 parafermion and coordinate boson modes
that we used in Sec. II to construct the Fock space of FSS
states. Using the explicit form for the currents (3.2) and
the parafermion and boson mode expansions (2.25) and
(2.51), we express the current modes as

"qD-) gJ qO «
~ ~ «qy, 1 « ~ ~ ~ «qD —1)

( )
n {1—q)/—3 +2

I' 4 n+4 (1 q)—/3 —
2 n (1—q)-/3'

fEZ
(3.11)

(1+q)/3 ~2 ~ —N n+8-(1+q)/3 2 n (1+q)-/3.
EgZ

The analogous formula for the energy-momentum modes
I„hasalready been given in Eq. (2.55). From these
expressions and the parafermion and boson commutation
relations derived in Sec. II, one can verify the current
commutators (3.9) and (3.10).

The G(z) current of the full fractional superconformal
algebra (3.5) is a sum of one copy of G+ and G for
each space-time dimension. The full Fock space can be
decomposed into Z3 sectors for each dimension, which we
denote by 'R&q l where p = 0, 1, . . . , D —1, and D is the
space-time dimension. Since the action of G mixes these
sectors,

D—1

n —(1—q)/3 n —(1—q)/3
(1) p (1) (3.15)

where the e( ) matrix is in the pth position. Similar com-

ments appiy to the general parafermion mode ~„'"and
the coordinate boson modes n"„. With this convention,
we can write the general formula for the mode G„ in
terms of boson and parafermion modes from the expres-
sions (3.11):

D—1

Gr = ).~ ) (~ g)p &—r+4 +&r+g
(1) ~ (-1) ~

,=o & eez

~(-2), (9) + ~(2), (p) (3.16)

When we apply the physical state conditions, we will
be interested in acting with a given moding of the full
current G(z) on states which are not in a definite Fock-
space sector. We can define such a mode operator as
follows. Write the Fock-space states as a 3D-dimensional
column vector with elements labeled by the set (q„) of
their Z3 quantum numbers in each space-time dimension.
Then the action of G(z) on this state can be represented
by a 3 x 3 matrix of operators with G{")+ being its
various (off-diagonal) elements. We can think of the co-
ordinate boson and Z4 parafermion modes as matrices
in a similar way. Thus, if, for example, there were only

one space-time dimension, the e„(1 )/3 mode would be
represented by a 3 x 3 matrix with one nonzero element,
namely the mode itself, in column (q) and row (q+ 1).
For D dimensions, e„'("1 )/3 would be the tensor prod-
uct of D 3 x 3 matrices

fqo, ...,q„+1,. ..,qD

(3.12)

it will have no definite moding when acting on states in
these sectors. However, we can define mode operators for

G(z) acting between two specific sectors:

G(i)+ . ~ 8(qO« ~ ~ ~ «qp ««qD —1) (qO«" «qp+ «" «qD —1)

(3.13)

The moding r is determined (up to an integer part) by
the initial and final sectors. In other words, because of
its non-Abelian braiding, the moding of the currents de-

pends not only on the Fock-space sector upon which it
is acting, but also on the sector it maps to. The mode
expansion of G(z) can thus be written

D —1

p=O nEZ

for an arbitrary moding r c Z/3. The matrix notation
we have introduced to write (3.16) may be more easily
utilized by noting that it is formally equivalent to adopt-
ing the convention that when a parafermion mode oper-
ator has the wrong moding to act on a given sector, it
vanishes.

Note that we have embellished the boson and
parafermion modes with an extra superscript p, denot-
ing which of the D tensored copies they act in. In
the case of the coordinate boson modes a", we inter-
pret this superscript as a space-time Lorentz-covariant
index. Lorentz invariance of the fractional supercurrent
then implies that the index on the e(+ ) ~ fields is also
Lorentz covariant, and that a factor of the Minkowski
metric should be understood in the first term of (3.16).
By the same token, the index on the t

(+ ) (~) fields can
not be Lorentz covariant. This should not be surprising,
since, by the parafermion GCR (2.27) any e(+2) mode
can be written in terms of two t

(+1) modes: for example,

+ n+q„/3~( )-
—1—n —(1+q~)/3 (3.14) E' (2) {~) (—5/3) (1) p (1) p

n+m+(2q —1)/3 C n —1—&+ ~ m+1+8+ '
E=O

when acting on an arbitrary state in Q(q ) From our
construction of the fractional supercurrent from the split
algebra currents (3.4), it is clear that the modes G(&)+

are just 0+ for the pth Z4 parafermion plus coordinate
boson CFT in the full D-fold tensor product CFT of the
FSS.

+~(1),p ~(1),p,

m —1 E+g n+i+g—+ & —'

(3.17)

Replacing the Q„e„'" terms in (3.16) with the above

expression (and including a factor of the Minkowski met-
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C. Physical state conditions

In the usual superstring, the physical state condi-
tions are constraints following from gauge fixing the lo-
cal world-sheet symmetry. Classically these constraints
in the superconformal gauge are given by the vanishing
of the energy-momentum tensor and superconformal cur-
rent: T(z) = G, (z) = 0. The full local world-sheet sym-
metry of the K = 4 FSS is unknown, though it should
include reparametrization and Weyl invariance. We will

assume that some analogue of the superconformal gauge
exists in the FSS, giving rise to an algebra of constraints
generated by the vanishing of T(z) and the fractional su-
perconformal current G(z). In other words, we assume
that the fractional superconformal algebra is the quan-
tum version of some classical constraint algebra. Thus,
although we do not know of any classical local symmetry
on the world sheet that gives rise to a spin-4/3 current as
a constraint upon gauge fixing, we nevertheless assume
the weak physical state conditions

(41:&(z):14}= (@I:G(z):14}= 0, (3»)
for any physical states ~P) and [Q). The normal-ordering
symbols are there to remind us that there may be nor-
mal ordering constants in the quantum definition of the
currents.

The energy-momentum constraint is "factorized" by
expressing T(z) in terms of its mode operators,

r(z) = ) L„.-"-', (3.20)
n

and, using the mode algebra following from the constraint
algebra OPE's,

[L,L„]= (m —n)L +„+—(rn3 —rn)b +„,6
(3.21)

ric to tie the indices together), we recover a space-time
Lorentz covariant interpretation of the index p.

The G„modes (3.16) of the full fractional supercur-
rent satisfy no simple GCR's such as those satisfied by
the component modes G„" in (3.9). The reason for

this is that for p P v, G„" and G," satisfy simple
(anti)commutation relations which can not be combined
with the GCR's in (3.9) to form expressions involving
only the full G„modes. This is simply a reflection of
the fact that the G(")+(z) currents satisfy Abelian braid
relations, whereas the full current G(z), does not.

The energy-momentum tensor and its mode expansion
for the full D-dimensional FSS is built up in a similar
manner from pieces acting between Fock-space sectors.
However, since the L„moding is always integral (equiv-
alently, the L„modes act diagonally on the Fock-space
sectors), there is never any need to keep track of the sec-
tor indices q and /i. So, in the matrix notation, these
modes satisfy the usual commutators

[L,L„]= (rn —n) L p„+ (ms ——m) 6 +„,
(3.18)

[c,a,]=(— .)a +, .—

as well as the Hermiticity conditions

(L„)i =L „, (3.22)

to factorize the quantum constraints into the usual phys-
ical state conditions

LOI4') = &[4')
(3.23)

L„[$)=0, n & 0.
Here v is the intercept, a normal-ordering constant in
the definition of T. This is a consistent set of constraints
because the positive modes form a closed subalgebra of
the Virasoro algebra generated by the two modes L~ and
Lg.

Let us mimic this discussion in the case of the frac-
tional superconformal constraint. In our matrix notation,
between two physical states, G(z) will have the mode ex-
pansion

IV. LOW-LYING STATES OF THE
FERMIONIC SECTOR

In this section we construct the full space of states in
the fermionic sector of a D-dimensional open K = 4 FSS.
The ground state of this sector forms a representation of
the D-dimensional Clifford algebra. We then solve for

(@I:G(z):14) = ). z" "'(@I:G"I&) (324)
7 CZ/3

From the explicit formula (3.16) for the current modes
and the Hermiticity properties of the Z4 parafermion field
modes

(&(a))t &(-&) (3.25)

it follows that the fractional superconformal current sat-
isfies the Hermiticity condition

(G„)~=G „. {3.26)

This makes it plausible to take, as physical state condi-
tions factorizing the G(z) quantum constraint (3.19),

Gold} = &14'}

(3.27)

G„ig) =0, r &0,
where P is an undetermined normal-ordering constant.

Prom the GCRs for the fractional supercurrent com-
ponents (3.9), it is not hard to see that the physical state
conditions (3.27) are consistent with themselves and with
the Virasoro conditions (3.23). In particular, from (3.9)
and (3.18), it is not possible to derive an identity of the
form

G-.G. I&) = G.—.I&} (3.28)

for r & 3 & 0, or similar relations with L „replacing the
G' „mode. Because of the infinite sums that appear in
the GCR algebra, it is unclear in what sense, if any, the
positive modes of G can be said to form a closed subalge-
bra of the constraint algebra. However, from the L —G„
commutator (3.18), we can generate all the conditions
(3.23) and (3.27) from the set (Lo, Li, Go, Gi/3 GQ/3).
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the subset of states at the massless level that satisfy the
physical state conditions. They obey Lorentz covariant
equations of motion as well as a sufficient number of con-
straints to eliminate all unphysical degrees of freedom.
The number of propagating modes at these levels can be
halved by a chirality projection analogous to the GSO
projection [16] in the Ramond sector of the superstring.
We derive, using a counting argument involving the Eu-
ler pentagonal number theorem, the explicit form of the
chirality operator at all levels of the fermionic sector.

(3)

q=O

(2)
0

A. Fermionic ground state and ClifFord algebra

q=-t q=+/

In Sec. II and Appendix D we have argued that
the fermionic sector of the FSS Fock space consists
of all states obtained by successive applications of the
dimension-1/3 el+i& "(z) paraferrnion fields and the co-
ordinate boson fields BXi'(z) on the ground state:

FIG. 1. The action and modings of the parafermion fields
on the Fock-space sectors of Z3 charge q. The parafermion

field winding number (superscript& is understood mod 3, and
its mpding (subscript) mpd 1.

\

p,=O
(4 1)

Here el+i~zl "(z) are the two dimension-1/12 parafermion
spin fields associated with the pth space-time dimension.
At a given momentum p, the n index of the ground state
labels its 2+-fold degeneracy. We will show that the
zero-modes of the &&+i&" fields naturally form the D
dimensional Clifford algebra when acting on (4.1).

Let us start by considering the CFT corresponding to
a single space-time dimension. For the sake of notational
simplicity, we rename the dimension-1/3 parafermion
fields

E. 0r '
(01

I2)—= I

I )
I

.

0

E, &n 0 r
AQZ. (4 6)

(In terms of the matrix notation for the parafermion
modes described in Sec. III, (4.6) is simply the statement
2„=e„+e „.) From (4.4) we learn

Acting on this space we can define the operators e„ in
the following way:

~
—~(+~)

and the spin states

~t — (—&) (4.2) eo col~& = l~&, (4 7)

which can be rewritten as the one-dimensional Clifford
algebra

I+) —= e igizlo)
(+&/2)

(4 3)
{ep,ep) lcr) = 2lci) (4 8)

Note that the states lk& have Zs charge q = pl.
From the discussion of Sec. II, the allowed modings

r of e and et when acting on lk) are either r = n or
r = n —2/3, where n 6 Z. The integral modings map
between states with Zs charge q = +1 and q = —1,
whereas the other modings map between q = kl and
q = 0 states. In particular, by Eq. (2.44) we find that

col+) =
I
—),

"oI—
&
= I+& .

(4.4)

Figure 1 summarizes the allowed modings of the integral
winding-number fields e( ~, a ~ Z, on the different Z3
sectors.

We can think of I+& as basis vectors in a two-
dimensional space of ground states ln), o. 6 {1,2): ~~ —jl. g. (m~ (3. . (31 (4.10)

Thus we can identify ep with the gamma matrix of the
Clifford algebra when acting on the ground state ln&.

Now we turn to the tensor product theory. In the
D-dimensional tensor product theory, the (reducible)
ground state of the fermionic sector is represented by

D —1

l~& = |3 l~"& (4 9)
p, =O

where lni'& is the fermionic ground state of the pth
component of the tensor product theory and a
{a~,. . . , n ). (Note that p, in these expressions is not
a Lorentz index but simply a dimensional label. ) ln)
spans a 2D-dimensional vector space. Ultimately we will
reduce this space to obtain an irreducible spinor repre-
sentation of the Lorentz group.

We define the e~ modes acting on this space in the
obvious way:
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B. Massless physical states

We now wish to obtain the set of physical states at
the massless level. These states are a subset of the
states spanned by the level 0 state Ia, p). As discussed
in Sec. III, physical states should satisfy the conditions
(3.23) and (3.27):

Lp I vphys) v14 phys)

Go lgphys) = Plvphys)

L„lg»y, ) =0, 0 & n c Z,
G„l@»y,) = 0, 0 & r E Z/3 .

(4.14)

Here v and P are the as-yet-undetermined normal-
ordering constants ("intercepts") of the fermionic sector.

Let us impose the physical state conditions (4.14) on
level-0 states. Consider the general state at level 0:

where ~„ is in the pth position in the tensor product. If
we now consider the algebra of the e~p modes, we find

(4 4) Io') = 21~) . (4.11)
The modes i& and ip can be chosen to anticommute for

p P v by an appropriate choice of Klein factors [18].
Combining the p = v and y, P v cases we find the D
dimensional Clifford algebra

(C ~o)l~) = 2g" l~) (4.12)

so again we have, on the ground state,

Cl~) = ~"I~). (4.13)

Here we take g"" to be the Minkowski metric. We can
define In), the ground state of the fermionic sector in the
tensor product theory, so that it furnishes an irreducible
spinor representation of the Lorentz algebra SO(D —1, 1).
The dimension of this representation is 2+i . All of the
states in this representation can be constructed from lin-
ear combinations of the states Io.) defined by Eq. (4.9).
This state must be multiplied by a momentum p ver-
tex operator made from the coordinate boson X& zero
modes, to form the full ferrnionic sector ground state
l~, p)

It should be clear that so far this discussion closely
parallels that of the Ramond sector of superstring theory.
However, we must remark upon an unusual feature of the
FSS Fock space. Because the i" modes satisfy GCR's
instead of simple commutation or anticommutation rela-
tions, the Lorentz-covariant meaning of their space-time
index p is unclear. We have shown from the structure
of the GCR's that the ip modes satisfy the Clifford alge-
bra when acting on the ground state. However, this will
not be true in general when they act upon excited states
in the Fock space. Thus we are not free to replace the
t p modes with gamma matrices unless they are acting
on the ground state. More generally, by taking a tensor
product structure for the FSS Fock space, we have only
ensured a permutation symmetry among the different di-
mensions, but not necessarily the rotational symmetry of
the Lorentz group.

IA) = l~ &)u (p), (4.15)

where u~(p) is a spinor polarization. The I„and G,
modes for r ) 0 automatically annihilate Igp), since it is
the ground state of the fermionic sector. Thus the cor-
responding physical state conditions are identically sat-
isfied.

Because In, p) has conformal dimension ~z + iz for
the D space-time dimensional FSS Fock space, the Lp
physical state condition is equivalent to

(Lo-v)lgo) =0 pa D—+ —= v
2 12

(4.16)

fixing the mass of the physical state in terms of the in-
tercept v.

As follows easily from the expansion of the fractional
supercurrent modes (3.16), the action of the Gp mode on
I@p) is

1
Gp14o) = (~o'o) l~ p)u

2
= l~, p)ku. (4.17)

Since sp acts on the ground state, we have replaced it
with a p matrix. Thus the Gp physical state condition is
equivalent to

(Go —p)IA) = o
1

~u(p) = pu(p) (4»)

Comparing the Lp and Gp conditions shows that the two
intercepts are related by

D
p =v ——.

12
' (4.19)

D
GpGp ——Lp ——.

12
' (4.20)

Thus if Ig) is a physical state with intercept v = D/12,
then Iy) = Golf) also obeys the physical state condi-
tions with the same intercept. Iy) is thus both physical
and spurious, and therefore null. This whole argument
is precisely analogous to the familiar argument for the
Ramond ground state of the usual superstring [19].

With the critical intercepts

Since the Gp mode, when acting on the ground state,
is the simple product of an Xi' mode and a parafermion
energy operator mode, it is hard to see why the normal-
ordering constant P should appear at all. (When the
modes of the e~+zl fields in the fractional supercurrent
contribute, as can happen, we will see, in the bosonic
sector, then P could naturally be expected to be nonzero. )
Setting P = 0 implies that v = D/12 and that the level
zero physical states are massless. Indeed, this value of
the intercept is the critical value, because a tower of extra
null states appears in the FSS spectrum when v = D/12.
In particular, the fractional superconformal algebra (3.9)
implies when acting on physical states with every space-
time component in the ground state sector (i.e., with Zs
charge q =+1), that
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D
V

12 ' P=0, (4.21)

the Gs condition (4.18) implies that u (p) satisfies the
massless Dirac equation. For space-time dimension D =
6, the number of complex degrees of freedom of the spinor
representation is 2 / = 8. Since the ground state is a
massless spinor, and the space-time dimension is even,
we can impose a Weyl condition, reducing this number
to eight real degrees of freedom, of which only four prop-
agate, since u~(p) is the solution to a Dirac equation.
This matches the counting of massless fermion propagat-
ing degrees of freedom found from the study of the parti-
tion function in Appendix D. The Weyl condition on the
massless states is the analogue of the GSO projection [16]
in the Ramond sector of the superstring.

C. Fermionic sector Fock space

&n —2/3IX+i) ~ n —2/3IX+i)

&n, —2/3 I X—1) &n —2/3 I X—1)
(4.22)

Note that, unlike the i„modes, the ~„2~3 modes map

q = +1 states to q = 0 states.
In Eq. (2.43) we wrote down a basis of states in the

parafermion theory for the first three levels. Adding in
the coordinate boson field, and tensoring D copies to-
gether, we find all the states in the fermionic sector for
these levels:

l~, p)
~"2/31~ p)

~" il~, p) + ~"il~, p)

level 0,
level 2/3,

level 1,
(4.23)

2

The states at level E have conformal dimension ~2+ z&+l.
Note that, using the identities (2.44)—(2.47), these states

In order to consider higher-mass states in the fermionic
sector, we will now derive a basis of states for all inte-
gral levels of the fermionic sector Fock space. We build
the fermionic sector of the FSS Fock space by the action
of the coordinate boson modes n„"adnthe parafermion

energy operator modes e( ) on the ground state spinor(+~)

lo. , p). In Sec. II we showed that in the single space-
time component theory, the action of the energy opera-
tor modes on the spin field states

I 6) correspond to the
parafermion sectors [/~i] and [@i]. Recall that [/~i]
consists of the set of fields e(3"+ / ) of conformal dimen-
sions Z+1/12 and Zs charge kl, whereas [@i]consists

of the g(3"+3/3) fields of dimension Z+3/4 and Z3 charge
zero. We will call [P+~&] the ground state sector, since it
includes the ground state (4.1). The states in [gP+i] we
will refer to as "projection sector" states for reasons to
be made clear later. From the moding rules summarized
in Fig. 1, we see that we can define an operator, e„
similar to the ~m deo, but which has fractional moding
on the q = +1 sector:

~, ln, p), n, n, ln, p), ~",~, ln, p),
~"i"il~ p) ~"31~ p)

p)

for the states in the ground state sector, and

(4.24)

—g/3 —3/3 —3/31~ P)
p -v -(2)A
—3/3 —3/3 —3/31~ p)

-(2)~ -(2)X
~—3/3 ~—3/3 ~—3/31~& p) &

-(2)p, -(2)v -(2)A
~—3/3~ —3/3 ~—3/31~~ S') ~

for /igvgA, (4.25)

for the projection sector states. Note that we have intro-
duced the new notation, paralleling (4.6) and (4.22):

and

(&) ( 0
~n, =

I (2)
,(+&) q'"0

)I
ngZ ) (4.26)

-(2) ,(+&)„,/, IX+i) = ~„,/3IX+i),

-(2) (-2)~„,/3IX-i) = ~„,/3IX-i),
(4.27)

following from the mode actions of e(+ ) on the q = +1
sectors (see Fig. 1). Note that each of the states in (4.25)
have three of their D-fold tensor product components in
the projection sector. They will therefore contribute to a
term of the form (cd)+ 3(cd)3 in the partition function.

can be written in many other equivalent forms.
Each of the D-fold tensor product components of the

integer level states in (4.23) are in the ground state sec-
tor. Thus, in the string function notation of Appendix
D, these states will contribute to a term (c2) in the
(light-cone) partition function. Indeed, such a term (for
D = 6) certainly appears in the A block of the FSS par-
tition function (Dll). The level-2/3 state in (4.23), on
the other hand, has one component in the projection sec-
tor. It would therefore contribute to a term (cz)+ 3(c34)
in the partition function; however, no such term appears
in (Dll). This is analogous to the GSO projection in
the Neveu-Schwarz sector of the superstring, where whole
levels of states in the Fock space are projected out. Of
course, in the superstring this does not happen in the Ra-
mond sector since all modes automatically have integral
moding there. In the FSS, due to the nonlocal nature
of the operator algebra (the cuts in the e(') OPE's), in-
teger as well as kl/3-moded operators appear in both
the bosonic and fermionic sectors. It is thus natural to
expect that a GSO-like projection removing whole levels
of states will occur in both sectors.

Since the partition function found in Appendix D has
contributions from states only at integral levels, we will
concentrate solely on such states below. Though there is
nothing preventing us from applying the physical state
conditions to, say, the level-2/3 states, presumably such
states will decouple from all scattering amplitudes. We
do not address the issue of scattering amplitudes in this
paper.

A basis of states at level 2 is
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(3e+&)
g(M+i)&-mx ' &—m o' nx-' 'o' ram—lo') p) ~ (4.28)

where E, rn, , n, E Z, rn, , n; ) 0, and the sets
(mi, . . . , m~ j and (ni, . . . , nA;) are "dictionary" ordered.
The e(~) notation is the obvious generalization of the
tilde notation we have used for other modes above. Note
that in this notation e( ) =—e( ~). The state in (4.28)
has winding number k(38 + 1/2) in the parafermion
Fock spac- in other words, it is a descendent of the
-(3e+1) (+(3e+1/2) )~ g(san+i)l&) = ~ r(M+i) iyiz[0) state [20]. Indeed, an
alternative basis of states, used in Sec. II to derive the
parafermion characters (2.22), is, for the one-component
ground state sector,

-(3e+&)
p(sp+$) s—ml s—mp +—Al +

TLAT l~~ p—) (4.29)

The recursion relation (2.37) and (2.38) can be used to
express the (4.28) basis elements in terms of the (4.29)
basis elements.

A basis of states for the single component projection
sector can similarly be written as

(se+i)
sg(/+i) g/se —my ~—mi +—Ag +—Ag ~~r5 p) (4.30)

The general fermionic state is then a linear combina-
tion of tensor products of (4.28) or (4.30) states for each
space-time dimension. Note that the (4.30) basis actu-
ally overcounts states by a factor of two. For example,
E 2ys~n) and e z&s~o!) are actually the same state by the-(2)

Such a term does indeed appear in the A block (Dll).
In a similar manner, a basis of states for any integer

level can be built up from the a"„and ef modes acting
on the ground state ~n, p). For example, using the mode
algebra derived in Sec. II, a basis of states in the one-
component ground state sector can be written

rule (2.34) derived in Sec. II. Thus (4.25) has 2s copies
of each independent state. This overcounting could be
rectified by restricting E ) 0 in (4.30). However, allow-

ing f to run over the negative as well as positive integers
(and thus allowing the doubling of states in the projection
sector) will turn out to be necessary for the construction
of a Lorentz-invariant GSO-like chiral projection in the
fermionic sector.

D. Chiral projection

From experience with the superstring we expect that
we will have to implement a GSO-like projection halv-
ing the number of degrees of freedom at all ferrnionic
mass levels in order to have space-time supersymmetry.
We will be able to do this if we can define an analogue
of the (—1)+ operator in superstring theory, which we
will call (—1)', that will enable us to generalize the Weyl
condition on the massless states to all massive levels. A
straightforward generalization from the (K = 2) super-
string case leads one to guess the form

(4.31)

where N(~) is the number operator for the i modes. How-
ever, this prescription does not tell us what signs to as-
sign the winding modes. We will deduce below, from
general arguments, the form of the (—1)' operator which
is correct for all levels. It will turn out that the existence
of such an operator consistent with Lorentz invariance
follows from a counting argument relying on the Euler
pentagonal number theorem.

Consider the general state in the ground state sector
of the fermionic Fock spac—the D-fold tensor product
of the basis states given in Eq. (4.28):

l(~&) {m p) (n +))a =
(D 1—

-(3eg+1) A -pg -pg vg v
g„(Sg„+i) &-m~ ' ' ' &—m, &-n~ ' ' '&-n~ I&) P)

&io
"" )

(4.32)

(We will consider states with components in the projec-
tion sector later. ) We can determine the prescription
for counting the chirality of the winding modes i(s~+i) "
from the requirement that there be an equal number of
states with (—1)' = +1 eigenvalue built on positive- and
negative-chirality (aD~i eigenvalue) states, ~n, p)y, at
each massive level of the Fock space. This is a necessary
condition for the states at these levels to provide massive
representations of the Lorentz group. For example, at the
second mass level excluding the one winding mode state,
there are 2Dz + D states satisfying (—1)' = +1 built on
the positive-chirality ground state [the states on the first
line in Eq. (4.24)], but only D2 + D states built on the
negative-chirality ground state (the second line). Thus
we must assign negative chirality to the minding mode
operator ~(2)" in the D states on the third line of (4.24)
in order to have left-right pairing. We can generalize this
counting argument to arbitrary level and winding mode
as follows.

2D/2 —i ~ ) qs& +r

)
(4.33)

mhere the factor 2 ~ takes into account the dimen-
sion of the ground state, as well as the GSO-like pro-
jection. Note that this corresponds to only the term
2D~2 i(cd) 2 in the A block partition function (Dll)
of the fermionic sector, since we are not considering the
projected sector states yet. The terms in the expres-

Recall that the ground state sector of the fermionic
Fock space is made up of a D fold tensor p-roduct of the
free coordinate boson theory with partition function rI

and the [Pii] parafermion fields with character Zii given
in (2.22). Thus the character of the ground state sector
1S

D

(, ( )
—2»z-i

~
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sion (4.33) for t g could have been read off directly from
the basis of states (4.32). The two factors of g

1 per
dimension come from the boson modes o, n and the
parafermion energy operator modes ~" . The summa-

tion is the contribution of the winding modes ~( e+ ) ~.
Define now the chiral index n=l

(1-q") = ).(-1)'q'" ""', (4.37)

where f(E) is the (unknown) chirality of the ~use+1~ wind-
ing modes.

Recalling the Euler pentagonal number theorem [21],

I = 2'- ~'& '&a+1 9 (4 34) we see that if we make the choice

which gives at each level the difference in the number
of even and odd chirality states (with the ground state
multiplicity normalized to one). If this difference is zero
for massive levels (as it must be in order that the states
furnish good representations of the Lorentz group at all
levels), then the massless ground state will be the only
state to contribute to the chiral index. Thus we must
choose the chiralities of the winding modes so that the
chiral index I = l.

The ground state sector character Cz can be rewritten
as

f(&) = (—1)' (4.38)

then the chiral index is

1

m=1
(1 2m) —D

E

n=l
(1 2n) D (4.39)

Thus the correct (—1)' operator for the ground state
fermionic sector is given by

g ( ) 2D/2 1(]— n,
)
D—

n=l (-1)' = ~ (-1)""(-1) '" {4.40)

oo (
(1 m)-D ) - se'+e

m=1 ke )
(4.35) where we formally define the winding mode number op-

erator by

(1 —q") (1+q") ):f(~)q" "
m=1

oo (
(] q2m) D) f (I)qae

—+e

n=l

m=1
(4.36)

where we have substituted the definition of the Dedekind
ri function il(q) = q ~ Q 1(1—qm). Since all the states
contributing to this character (by hypothesis) satisfy the
GSO-like condition (—1) = +1, the chirality of a given
state will follow from the product of the chiralities of
the parafermion fields. In particular, since each energy
operator mode ~~ was found earlier to have chirality —1,
we should flip the sign of the qm terms in the il 1(q)
factor corresponding to the e modes. This reflects the
fact that in the (—1)' = +1 sector, states built on the
ground state In, p) with an even number of e excitations
have even chirality, and states with an odd number of e

excitations have odd chirality. Thus, the chiral index I
is given by

N(E) l(Eg), (m, y), (n, v)) g

/D 1—
=

I ).&~ l(&~) (m V), (n, ~))g (4.41)
&~=o

on the basis of states of the ground state sector given in

(4.32).
We now turn to the states in the projection sector.

As noted earlier, all these states are massive. There-
fore, by the argument outlined above, the chiral index
must be zero in the projection sector to be consistent
with Lorentz invariance. In other words, at each mass
level there should be an equal number of left- and right-
chirality states. Recall that the full projection sector is
the tensor product of D —3 one-component ground state
sectors and 3 one-component projection sectors. Using
the one-component bases of states, (4.28) and (4.30), we

can easily write down a basis of states for the full projec-
tion sector:

I (E, A), (m, p), (n, v))„
(D 3—

(3e;+l),x,
, . ... ~-e, ise;+i) '

( D

!

E,='D

-(3e,+1),A, p, p,~ 3e, (e,.+l) 2(3 ~—m, ~ —'m, —'n,
)

{4.42)

where together the D A,s span the set (0, 1, . . . , D —1) of space-time indices. The partition function for the projection
sector is given by a similar argument as above:

g()D2 11 — —lt D2 1 se—+e'q 3+ii
)

(4.43)



46 LOW-LYING STATES OF THE SIX-DIMENSIONAL. . . 4549

This corresponds to the term 2 ~2 i(czar)+ s(2c4)s in
the A block partition function (Dll). The first sum-
mation comes from the winding modes in the D —3
one-component ground state sectors, while the second
summation comes from the winding modes in the 3 one-
component projection sectors. Computing the chiral in-
dex using the definition of (—1)' derived above, we find

I = 8q
I

m=1

(4.44)

(445)
&,=i

on projection sector states. We emphasize that the
existence of this GSO-like projection compatible with
Lorentz invariance was by no means guaranteed. Indeed,
we have seen that it works only through the use of the
nontrivial identity (4.37).

where we have used the fact, derived above, that I = 1

for each of the D —3 ground state sector components
separately. Thus the summation in (4.44) is over the
winding numbers of the operators e&s~+il contributing
to the three projection sector components. If we take
the same prescription for the chirality of these winding
modes as we took in the ground state sector, namely

f(E) = (—1)~, it is easy to see that the chiral index (4.44)
vanishes due to the symmetry / ~ E —1 o—f the sum,
which is the desired result.

To summarize, the correct form of the (—1)' projection
operator consistent with Lorentz invariance is given by
Eq. (4.40) for the fermionic sector of the FSS, where the
winding mode number operator N(l) is defined by (4.41)
on ground state sector states, and by

N(E) l(E, A), (m, p), (n, v))„

V. THE BOSONIC SECTOR

A. Bosonic Fock space

We build the bosonic sector of the FSS Fock space by
the action of the coordinate boson modes a,p' and the
parafermion energy operator modes e„on the ground(+&)

state

Ip)
. iP x(al.

I0) (5.1)

In Sec. II we showed that in the single space-time com-
ponent theory, the action of the energy operator modes
on the identity operator (vacuum state) IO) correspond
to the parafermion sectors [$0], [$0], and [$0]. Recall
that [$00] and [Psz] consist of the set of fields e~s"l and Bp
with integer conformal dimensions and Z3 charge zero,
whereas [pai] consists of the e~s"+il fields of dimension
Z+ 1/3 and Zs charge +1. The allowed modings and
actions of the integral winding-number fields e~'l, a c Z,
on different Zs sector fields in the bosonic sector is also
summarized by Fig. l.

In Eq. (2.39) we wrote down a basis of states~in the
parafermion theory for the first four levels. Adding in the
coordinate boson field, and tensoring D copies together,
we find the complete list of states in the bosonic sector
for these levels:

In this section we construct the full space of states
in the bosonic sector of a D-dimensional open K = 4
FSS. We then solve for the subset of states at low-lying
mass levels that satisfy the physical state conditions. The
ground state is found to be tachyonic, while the first ex-
cited state is a massless vector particle. The partition
function for the closed FSS derived in Appendix D im-
plies that the tachyonic state is removed by an analogue
of the GSO projection.

~ il»+ ~ zgs ~,gs I»+ ~,g,~,g,~,gsl»
(+~)P (+~)P Pi P2 P3

(+&)p v (+1)P (+1)P (+1)P, P, ~ P2 P,3 Pr4~,g, ~ ilp) + ~ i ~,g, lp) + ~ 4g, Ip) + ~,ps~, g,~,g,e,g, l»

level 0,
level 1/3,
level 2/3,

level 1,
level 4/3

(5.2)

The mode operators in the e"'i&s .e""i&sl» states in

(5.2) are to be understood to be either e~+ &"* or e~

modes, independently for each factor, and that in these
terms p, g p~. Thus, for example, e"'i&se"'&&se"'i&sip)

represents 8(s) independent states for fixed p". The
2

states at level 8 have conformal dimension ~2 + E. Note
that we have used the identities (2.40)—(2.42) to write
these states in terms of e(+~) modes only. Using the ma-

I

chinery developed in Sec. II, this can be done for the
whole bosonic Fock space.

We can now make a correspondence between these
states and the light-cone spectrum of the D = 6 FSS
found in Appendix D. Recall that the ground state, corre-
sponding to a term (c0) in the partition function does
not appear in the A block of the FSS partition function
(Dll). This is a reflection of a GSO-like projection in
the FSS spectrum. In general, only the level Z+ 3 states
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survive this projection. Thus, the 2D states at level 1/3
in (5.2) contribute to the (D —2)(coo)~ (czo) term in the
partition function. We will see below how the physical
state conditions reduce the multiplicity of this state from
2D to D —2. At level 4/3, the first three states in (5.2)
contribute to the same term in the partition function as
the level-1/3 state; the last state, however, contributes
to the (coz)4 term in (Dll). This is one of the "internal
projection" states in the bosonic sector.

B. Physical state conditions and the massless
vector particle

Now we wish to impose the physical state conditions

(L, —v)14) =0,
(Go-P)le) =0,

n&0.

p'~ —]/3 + v6 —&/3 P ) 5 8

since on this state there is no contribution from the e(+ )

terms in the current. Now, the expression

~ i/3 ~—i/sip)
v (5 9)

is only well defined, with respect to the moding rules
given in Fig. 1, for p = v. For p, g v, the moding is
inappropriate, since t ~&/3 is acting on the vacuum state
with Zs-charge 0 for the pth component, and thus has
the wrong moding. However, recall that in Sec. III we
learned how to deal with this problem —the lesson being
that "wrong" moding operators should be formally set to
zero. With this understanding, we can give a covariant
meaning to the expression (5.9):

~'i/s ~ i/sip) = g""Ip) (5.10)
We will determine the intercepts v and /9 by demanding
that extra sets of null states appear at their critical val-
ues. Note that, unlike in the usual superstring case, both
integer and fractional moding of the currents are allowed
in the bosonic sector.

Let us start with the general level-zero state

14o) = ((p)lp) (5.4)

where ((p) is an arbitrary (scalar) wave function. Clearly
only the Lp and Qp conditions are potentially nonvan-
ishing on Igo). From the moding diagram, Fig. 1, it
is also easy to see that Golgo) = 0. Finally, since

Lo lgo) = ~& lgo), the physical state conditions on Igo) are
v = p /2 and P = 0. We will show belowthat P g 0 at its
critical value, and thus that the tachyonic state must de-
couple. Note that this is different from what happens in
the usual superstring, where the physical state conditions
by themselves do not remove the tachyonic states. (The
GSO projection is only required at the string loop level. )
This new situation is clearly related to the fact that in
the FSS the bosonic sector admits integral moding of the
fractional supercurrent.

We now consider the general level-1/3 state:

141/3) (/.
'

3—1/3 + /: 3 —1/3) 13 ), (5.5)

where („and (i are polarization vectors, and we have
introduced the notation

E' + and (5.6)

(Lo —v) ldi/s) = p'
v = —+—

2 3
(5 7)

Using the mode expansion of the G current (3.16) we
can write the action of the Gi/s mode on I/i/s) in terms
of component Gelds as

Acting on this state, the nontrivial physical state condi-
tions are Lp, G'p, and Gq/3. The Lp condition is easily
seen to give

where g" is the Minkowski metric. Here we have used
the one-component commutation relations for the p, = v
case. Thus

1
Gl/314'1/3) = &o (&i/s + & i/s)

2

x(( . i/s+(' "-i/s)lp)
1

,p (( + (')lp), (5.11)

where all other terms vanish by either using the single-
component GCR's, Eq. (2.27) for the cases where p = v,
or the annihilation property of "wrong-moding" opera-
tors for p, g v. The Gi/s physical state condition then
gives

Gl/314'i/3) p (C+&') =0
Finally, let us compute the Go condition on I/i/3).

From (3.16) we have

&3)l//«3) =).( ) n. ,3(3."+3/'.)

+- (33+""+ 33 '") ))l3)3/3) (5 &&)

The first term vanishes since el" for n g Z has the
"wrong" moding for all the components of I/i/s) (see

Fig. 1). However, the second term, involving the eo
(+2)~

modes, does not vanish. Recall that we can write the
e~+ i modes in terms of the e and et modes (3.17), so
that

) (+2)p i (—5/3) (+~)~ (+~)~
t-'p = gp~ g Ce E'

1

eely+

e=o

+ (+~)p
4 ~4+ —~—e ~+e (5.14)

when acting on a state with Zs charge q = +1. (By
Fig. 1, eo does not act on states with q = 0.) Now, by
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1
Gold'i/s) = —(e i/s . ei/s + e -i/s e i/s)

&& (( ~-i/s+( ' ~ -i/s) I&)

1=-((' ~ i/s+( ~' i/s) Is), (5.15)

where we have used the Z4 parafermion identities

,/sl0) = Io)
(+~) (+~) (5.16)

simple dimensional considerations, all e„' modes annihi-
late lgi/s) if n ) 1/3. This drastically reduces the sum
in (5.14), so that we have

A. Lorentz noninvariance

We constructed the FSS Fock space by tensoring to-
gether D copies of the Z4 parafermion conformal field
theory, with the aim of describing the FSS spectrum in
D flat spacetime dimensions. However, a priori, taking
the tensor product only ensures a permutation symme-
try among the dimensions, and not the full rotational
Lorentz symmetry.

A concrete realization of this point is encountered at
the first massive level in the fermionic sector. In partic-
ular, we will impose the physical state conditions (3.23)
and (3.27) on the level-1 states, and show that the re-
sulting equations of motion are not Lorentz covariant.

Consider the general state at level 1:
which follow from (2.34). Therefore the Gp physical state
condition implies IVi) = ~"il& &)&;(&)+&" il» p)-~;(p) (6 1)

(Go —P)14'i/s) = 0
1

and P= —.
(5.17)

Thus the physical state conditions (5.7), (5.12) and
(5.17) reduce the original 2D components of the (& and
(i polarization vectors to only D 1 indepe—ndent compo-
nents. In addition, there is a critical value of the intercept
v for which an additional degree of freedom is removed.
In particular, when

(5.16)

by the Lp condition (5.7), we find that p2 = 0, so that
I P] /3) describes a massless vector particle. Thus, the
state with polarization („Ix p& has zero norm, and there
are only D —2 physical polarizations.

where u~ and io~ are spinor wave functions. The L„and
G„modes for n, r ) 1 are easily seen to identically anni-
hilate lgi). In addition, by Eq. (3.18), the Gi condition
is not independent of the Li and Gp conditions, and the
G2/3 condition identically annihilates lgi). Thus, the
only physical state conditions that need to be checked
are those corresponding to Lo, L~, Go, and Gqg3. The
Lp and Li conditions are Lorentz covariant. In particu-
lar, since lgi) has conformal dimension p /2+ D/12+1,
the I 0 condition, with the value of the intercept derived
in Sec. IV, gives

(Lp —D/12) I/i) = 0 (6 2)

Thus the level 1 physical state corresponds to particles of
mass m = v 2. Using the commutators (2.56), one also
finds that

Lil@) = 0
1

:- p'(p)+-30(p) =0, (6.3)

VI. HIGHER MASS LEVELS

So far in this paper we have constructed the Fock space
of states for the (open) K = 4 fractional superstring, and
have shown that the simplest guess for the physical state
conditions provides the correct equations of motion for
the lowest-lying states in the fractional superstring spec-
trum. Also, demanding the presence of extra null states
(or, equivalently, demanding massless vector and spinor
particles with the same number of propagating degrees of
freedom as in the partition function), fixed the intercepts
in the space-time bosonic and fermionic sectors. This is
all in agreement with the K = 4 FSS partition function,
whose derivation is reviewed in Appendix D.

The next step is, clearly, to examine higher mass lev-
els in the FSS Fock space. However, at these levels we
run into two separate problems, which may or may not
be related: Lorentz noninvariance and the failure of the
physical state conditions to implement the internal pro-
jection. We will describe below in some detail how these
problems arise, and then we will briefly outline a few pos-
sible ways in which they may be resolved. We would like
to point out at the outset that we do not have a clear
resolution of these problems.

I ~o ~—i + —~—iC I 1~~P) = 0
~3

(6.4)

The Go physical state condition can now be evaluated:

1
Golgi) = [~i .~i+ ~o ~o+ ~-i ~i]IA)

2

o! i ($AL + sBI) + E i (B —/tv)
2

+i~) ~" a "~"~")l~n)-,(6.5)

where we have replaced ef with p" when acting on the
ground state ln, p).

To evaluate the other physical state conditions, we
must use the generalized commutation relations (GCR's)
of the 2' fields. The GCR of i" and i" is given by the
single-component relation (2.27) when Si = v. When
p g v, however, all modes simply anticommute. In par-
ticular, when acting on the ground state ~& and ~"

&
sat-

ls
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or, GOI@i) = 0 implies that

2
Ptl g + —

%UP = 0 3

2 /'

~ —-A —-
I ) p"w

3 P 3 ( )
&v P

(6.6)

Compatibility of these equations with the Io condition
implies the Lorentz-noncovariant constraint

(6 7)

Note that even though the Gi physical state condition
is not independent of the Gt) condition, since [Ii, Go] =
3Gi, it does, however, give rise to a Lorentz-covariant
constraint:

Gil@i) = o
2

3
'I)t+ —p'u) = 0

Similarly, the G&y3 condition can be evaluated using
the fact that, on the ground state,

&1/3e i I
cr3 p)

I &i/3s —i+ 3e—2/3eo I I» p) —"3

(6.9)

Gi/3 I @1)
2

B)/, + 9 2iUp —
, $/WI/, —0—. (6.11)

The only solution to the physical state conditions is
iU„= u„= 0. So, not only are the L„and G„physical
state conditions Lorentz noncovariant at the first massive
level, but they are also too strong; they allow no propa-
gating states, even though the partition function predicts
32 such states at this level (see Appendix D).

B. Internal projection

A second problem that arises at the higher mass lev-
els concerns the presence of extra cancellations between
states of the FSS Fock space, which have no analogue in
usual superstring.

Recall from the discussion in Appendix D that we can
identify the form of the vertex operators for space-time

Thus

1
/ 3/3lkl) )3— 3'~3/+~3' l/33)3+ 3/33 '3l) l3'/3)

2

—2/3 ill/, + v 261& ——p / iU Io& p) 32- . 3

(6.10)

where we have used (3.1'7) to rewrite the i»3 term as-(2)

an expression quadratic in e~ l modes. It is clear from
(6.10) that the Gi/3 condition gives rise to the same
Lorentz-noninvariant piece found in the Go condition.
Using (6.7), the Gi/3 physical state condition becomes

bosons (D13) or fermions (D14) in the A block of the
partition function on the basis of a statistics selection
rule. By matching Z4 parafermion quantum numbers,
we can easily identify the bosonic and fermionic pieces of
the A block partition function, which we write separately
as

Ab = 4(co + co) (co) 4(co)

Af =4(c2) —32(c2)(c2)
(6.12)

so that A = A3 —A/. The puzzling feature of these
identifications is that not all the terms contributing to
space-time bosons have positive coefficients, and likewise
not all space-time fermions have negative coefficients. By
the supersymmetric vanishing of A (D12), as functions
of the modular parameter q we have Ab = Af. It turns
out [13] that the fermionic (or bosonic) piece satisfies the
identity

oo
1 ~3 4

f =4 3
~

»

~~ ~
4

t
1 qA)n=1

(6.13)

which gives the same counting of physical degrees of free-
dom as the Ramond sector in 6 space-time dimensions.
Since the coefficients in the q expansion of the right-hand
side are all positive, we are led to view the minus signs
in At, and Af as "internal projections" (or cancellations)
of degrees of freedom in the fractional superstring.

The problem with implementing the internal projec-
tions in the framework of this paper can be described as
follows. Note that the internal projection occurs only at
or above the Brst massive level in the bosonic sector and
the second massive level in the fermionic sector. For ex-
ample, consider the Fock-space description of the states
at the first massive level in the bosonic sector:

14'i) = ( l
"

4/3 + l . "i&" i/3 + l . "
i

+ ."- "i/3 "-i/3 i/3"- / )

where' can stand for either e~+il or e~ il, p, g v g p j o.

in the last term, and A, B,C, D are polarization tensors.
The first three terms in (6.14) all correspond to contribu-
tions from terms with positive coefficients in Ag (6.12),
while the last term, since it involves four s's, corresponds
to the projection term —4(cs2)4 in A3. Thus, even though
the last term adds more states to the FSS Fock space,
once the physical state conditions are implemented they
must actually subtract states. This implies that the phys-
ical state conditions must, at least, mix the states in the
Fock space corresponding to the "ground state" and "pro-
jection" sectors.

However, the general form of the physical state condi-
tions, assumed in Sec. III, is, schematically, in terms of
the a and e modes,

) (n o,„+e e„),
(6.15)

Gr ~ ) (o'm ' &r m+ &m ' &r m)— —
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It is easy to see that operators of this form can never
mix the first three terms with the last one in ~Pi). This
statement holds generally for all the higher mass levels
in the FSS Fock space as well.

Note that the counting of degrees of freedom after the
internal projection implied by (6.13) is precisely that of
D —2 pairs of world-sheet bosons and fermions, similar
to that of the usual superstring. Thus the asymptotic
degeneracy of states in Ag or Ay corresponds to the ef-
fective central charge

3cg = (D —2)-, (6.16)

or c,g = 6 for the K = 4 FSS where D = 6. Since each
dimension in the FSS Fock space corresponds to a CFT
with central charge cc = 2, we see that, with the internal
projection, the physical state conditions must remove the
equivalent of thee dimensions' worth of states, and not
just the timelike and longitudinal ones expected from a
large critical string gauge invariance.

C. Possible resolutions

We will now describe possible modifications of the
framework presented in this paper, which may solve the
above-mentioned problems. First, we will discuss some
of the assumptions which underlie the discussions of the
last two subsections. The most important is Lorentz in-
variance. Clearly, if one were willing to give up Lorentz
invariance, the occurrence of noninvariant physical state
conditions would not be a problem. Similarly, the ex-
istence of the internal projection was based on an iden-
tification of space-time bosons and fermions from their
statistics selection rules. Without Lorentz invariance,
this argument also has no force. So, it is a logical pos-
sibility that the above-mentioned problems are simply
an indication that we have to give up Lorentz invariance
above the massless level of states. (String interactions
will presumably then give Lorentz-noninvariant contri-
butions to the effective action for the massless states as
well. )

However, the fact that there does exist a Lorentz-
covariant description of the massless state, that the A
block of the partition function admits a separation into
pieces satisfying statistics selection rules, and that the
chiral counting argument described in Sec. IV D works,
all hint that a Lorentz-covariant interpretation of the
K = 4 FSS should exist. Two possible ways in which such
an interpretation could be realized are to either change
the physical state conditions or to change the Fock space
on which they act. We will describe below how these
proposals can be systematically explored.

The idea behind changing the physical state condi-
tions is to add terms to the G„ that cancel the Lorentz-
noncovariant pieces in the equations of motion they gen-
erate. One could do this level by level in the FSS Fock
space. For example, we saw above that the Go condition
gives rise to Lorentz-noncovariant terms in the equations
of motion of the first massive fermion states. An example

of the kind of modification that could cancel those terms
1s

Gp '- Go = Go + KG iysGiys + (6.17)

where e is a parameter to be fixed by the requirement of
Lorentz invariance. Note that the new mode operator Gp
has the same action on the massless states as did the old.
The Gs proposed in (6.17) is just meant to be illustrative
of this idea; in fact there are many more terms that con-
tribute at the first massive level and conceivably could
contribute to (6.17), since there is no reason that Gc
must be manifestly covariant. All we require is that the
Lorentz noncovariance of the tensor-product Fock space
cancels against appropriate noncovariant physical state
conditions.

The modified G„must satisfy other conditions in ad-
dition to the requirement that they yield covariant equa-
tions of motion. In particular, they must implement the
internal projections described above, and must give rise
to extra towers of null states, indicative of the critical
string gauge invariance. There is at least a hope of im-
plementing the internal projection, since the modified
G„'s can now include terms that mix the projection and
ground state sectors, and an extra condition (or perhaps

Gip) could lead to the associated reduction in the effec-
tive central charge. The existence of towers of null states
at the critical dimension depends on the structure of the
chiral algebra of the G, 's. The form of this world-sheet
symmetry algebra is, of course, one of the main myster-
ies of fractional superstrings. Some speculations on what
this algebra may be will be discussed in Sec. VII A.

Note that the resolution described above gives up
manifest Lorentz covariance, and only demands covari-
ance in the final step —the equations of motion. It is
possible that a manifestly covariant formulation of the
constraint algebra and states requres the introduction of
the Becchi-Rouet-Stora- Tyutin (BRST) ghost system, as
in the fermionic sector of the usual superstring.

Another possible resolution aims at preserving man-
ifest Lorentz covariance at all stages. Referring back
to the first massive fermionic level calculation, we see
that the noncovariance first appeared in the mode GCR's
(6.4). One could try to maintain manifest covariance by
modifying the commutation relations for p P v. This
means that we are no longer simply taking the direct ten-
sor product of Z4 parafermion theories. Instead, we are
"deforming" this tensor product to obtain a new CFT.
Since we are changing the GCRs among the modes, we
are effectively changing the Fock space.

This program can be made systematic in the following
way. Working level by level in the Fock space, one covari-
antizes the GCR's of the modes, which leads in general
to the introduction of many free parameters. These pa-
rameters are fixed by then demanding that the resulting
GCR's are associative (a necessary condition for them to
describe a consistent two-dimensional field theory). One
then has to check that this new Fock space provides a rep-
resentation of the Virasoro algebra, as well as construct
the new fractional supercurrent G.

The deformed tensor product approach is in general
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VII. REMARKS

In this section we describe two features of the K = 4
FSS which, though not directly related to the open string
physical state condition calculations described above,
may nevertheless play a role in the ultimate solution to
the problems raised in the previous section.

A. Connection to the spin-4/3 string

A crucial issue in the understanding of the FSS is the
determination of its critical space-time dimension D. We
described in Appendix D an argument that determines
the K = 4 FSS critical dimension to be D = 6. However,
this argument is indirect in that it does not determine D
from the consistency condition (anomaly cancellation) for
the world-sheet gauge invariance. By solving the physical
state conditions we can in principle check this determi-
nation of D—it should be the largest dimension in which
a no-ghost theorem holds. This critical dimension is sig-
nalled by the presence of extra towers of null states in the
spectrum. Because the generalized commutator algebra
(3.9) for the components of the fractional supercurrent
G on the tensor-product Fock space cannot be combined
into a single algebra for the modes of G itself, we cannot
construct these null state towers.

In light of the discussion of Sec. VIC, however, we
should consider modifying the algebra of physical state
conditions. A particularly simple algebra is the one-
component spin-4/3 algebra (3.3), but with arbitrary
central charge [17]:

A(c)G (nr) ~A(c)BG (ut)

(Z —BJ) /3 (Z —Bl)1/3

A(c) G+(m) 2 A(c) BG+(~)
( ) ( )

( )Q/3 ( )]/3 t

(3c/8) T(~)G'(z)G (~) =
( ),/, +

( ),/„ (7 1)

much harder to implement than the previous idea of
changing the physical state conditions. There are many
reasons for this. One reason is that in the former ap-
proach one has to solve the associativity conditions at
each mass level. Another is that since the Fock space has
been changed, a comparison to the partition function can
only be made after solving the physical state conditions
and removing the null states at each mass level. Note,
however, that the two approaches outlined above may in
principle be equivalent: the extra "physical state condi-
tion" which implements the internal projection on the
original Fock space could be a weak operator realization
of the tensor product deformation which reduces the Fock
space to a manifestly covariant one. Indeed, one expects
such a picture to hold if the deformed tensor-product ap-
proach is to reproduce the partition function derived in
Appendix D.

It is entirely possible that the use of the tensor-product
Fock space as a starting point for the understanding of
the K = 4 FSS is incorrect. There are other possibilities,
to which we will now turn.

s
G+ (m) BG+ (m)

Z —tU Z —tU

(c/2) 2T(w) BT(w)
Z —8) Z —8) Z —QJ

The structure constant A(c) is fixed by the condition of
associativity of this algebra (see Appendix C):

A (c)= (7.2)

16
D =2+-

K ' (7.3)

and the central charge co per dimension is thought to
correspond to that of a Z~ parafermion theory plus a
free coordinate boson: i.e. ,

2(K —1) 3K
cp = +1=K+2 K+2 (7.4)

On the other hand, the effective central charge for the
light-cone degrees of freedom (from the FSS partition
functions) is [13]

3cg=(D —2)-.2' (7.5)

Thus we could expect the total critical central charge to
be

6K 24
C = Ceff + 2CO = +-K+2 (7.6)

But these c are precisely the critical central charges ob-
tained in Ref. [8] for the spin-(K + 4)/(K+ 2) strings,
by demanding towers of extra null states. In particu-
lar, when K = 4 we find c = 10, corresponding to the
spin-4/3 case calculated in Appendix E.

Unfortunately, the representations of the spin-4/3 al-

gebra at c = 10 are not well understood, and in particular
no representation with a flat target space-time interpreta-
tion is known. Thus, a direct construction of the spin-4/3
string and comparison to the K = 4 FSS partition func-

We will call the hypothetical string theory with (7.1) as
its constraint algebra a "spin-4/3 string. "

A straightforward calculation, presented in Appendix
E, shows that the spin-4/3 string has towers of extra null
states at the critical central charge c = 10. This result
was obtained earlier by an examination of the Kac deter-
minant formula [8]. This value of c is different from the
central charge c = 2D = 12 of the K = 4 FSS discussed
above. However, as mentioned in Sec. VI B, the effec-
tive central charge for the light-cone degrees of freedom
of the K = 4 FSS is c,g = 6 by the partition function,
instead of the expected c,g = 8. This suggests that the
correct covariant space of states might be a c = 10 rep-
resentation of the spin-4/3 string algebra (7.1), instead
of the c = 12 tensor product representation of the FSS
constraint algebra (3.5).

Indeed, some numerical evidence can be adduced to
support this supposition. As mentioned in the Introduc-
tion, the general-K FSS has critical space-time dimension
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tion is not yet possible. However, it is possible that string
theories with fractional world-sheet supersymmetry em-
bedded in curved backgrounds can be constructed, and
may prove interesting to study. A suggestive example of
an affine Lie algebra whose Wess-Zumino-Witten theory
has central charge c = 10 and has the correct field content
to construct a dimension-4/3 group-invariant current is
SO(5,1)s. This conformal field theory is thus a candidate
representation of the spin-4/3 string constraint algebra
(7.1) at c = 10.

We should point out that the c = 12 FSS may be com-
patible with the c = 10 spin-4/3 string in the following
sense. Partial gauge fixing of the c = 12 FSS may re-
duce to a c = 10 theory with the spin-4/3 algebra as the
remaining constraint algebra.

B. Chirality and anomalies in the fractional
superstring

In the preceding sections, we discussed the massless
spectrum of the open K = 4 FSS, which contains a min-
imal Yang-Mills supermultiplet (A„,Q~), where A& is a
vector field and Q~ is a left-handed Weyl spinor field in
six dimensions. The massless spectrum described by the
partition function of the closed FSS follows in a sim-
ple way from that of the open string theory. In the
closed FSS there are supermultiplets corresponding to
both the left-moving and right-moving sectors, so to ob-
tain the spectrum we must take the tensor product of
these two supermultiplets. There are two possibilities for
doing this, which we will call type IIA and type IIB, in
analogy to the ten-dimensional superstring. In the type
IIA model, the two supermultiplets are chosen so that the
corresponding spinor fields are of opposite chirality. Tak-
ing the tensor product, we see that the type IIA closed
FSS contains an N = 2 supergravity multiplet:

(A, Ql') g (A, gii) =,+ BI. + Ba + gi + QR

+4&„+@'+g" + P, (7.7)

where g» is the graviton, B„are (anti-)self-dual an-
tisymmetric tensor fields, Q„ is the gravitino, Q is a
spinor field, and P is a scalar field. I and R denote
left- and right-handedness, respectively. This spectrum
clearly shows that the Type IIA closed FSS is nonchiral,
exactly as in the ten-dimensional (K = 2) case.

The second possibility, Type IIB, is realized by choos-
ing spinors of the same chirality in the two supermulti-
plets. In the ten-dimensional superstring, the spectra of
the two types of closed superstrings are diferent, but the
counting of states in each model is the same and they
therefore have the same partition function. In addition,
both models yield low-energy efFective theories which are
free of gravitational anomalies.

Let us naively try to obtain the chiral supergravity
multiplet for the Type IIB FSS:

(&p @') (~~, 0') = gp. + 5B„'.+ B„".+ 2@„'

+24" +54 (7 8)

We will refer to this chiral N = 2 multiplet as the o. multi-

piet. It is easy to check that the resulting six-dimensional
effective low-energy theory containing the a multiplet
has gravitational anomalies. To cancel the anomalies, we

may try to extend the theory by adding additional mul-

tiplets to the a multiplet. There are some constraints
that must be satisfied. Since there is only one modu-
lar invariant partition function for the K = 4 closed FSS
(without any compactification), Z in Eq. (D10), the only
possible way to accommodate additional massless states
in the spectrum is to multiply Z by an integer; this in-
creases the number of massless states by this integral fac-
tor. We do not want to increase the number of gravitons
or gravitinos in the theory, however, so we cannot obtain
these states from tensoring extra vector supermultiplets
(A&, Q~~+). The only other option is to form these ex-
tra multiplets, to be called P multiplets, from tensoring
chiral (scalar) supermultiplets (Q~~R&, 4P):

(Q, 4P) g (Q, 4P) = 4B„+8Q + 20$ . (7 9)

One can easily verify that the only anomaly-free chiral
supergravity multiplet is given by adding five copies of
the P multiplet to the a multiplet, which yields the par-
ticle content

gq~ + 5B„„+2Qq + 21Bq~ + 42/ + 105$ . (7.10)

This six-dimensional chiral supergravity multiplet was
first constructed in the Ks compactification of the usual
superstring [22]. The number of massless states in this
chiral model is exactly six times that of the nonchiral
model. Thus this counting of states implies that the par-
tition function for the chiral model is

Z(chiral) = 6 Z(nonchiral) . (7.11)

To obtain five P multiplets in this model, the left- and
right-moving sectors must each have at least three chi-
ral multiplets. How can this theory account for all these
extra states? One possibility can be found by recalling
that there is more than one possible realization of the Z4
parafermion theory. In the bosonization given in Sec. II,
we see that each parafermion field is realized by two fields
e&+ l with the same conformal dimension. This splitting
mechanism can be carried out further with the introduc-
tion of cocycle operators, thus increasing the number of
copies of a particular field. In Appendix A, we discuss
the introduction of cocycle operators in the parafermion
theory.

It is clear how this construction can increase the num-
ber of fermion fields in the model, by choosing a cocy-
cle subalgebra which increases the number of spin fields
o.z, for example. However, the origin of the scalar fields
which are the superpartners of these additional fermions
is harder to ascertain, since we did not have scalar fields
originally in the spectrum of the open string FSS. One
possible solution to this problem is to reintroduce o.~q,
the Z4 parafermion spin fields of dimension 1/16, men-
tioned in Sec. II. States in the sector generated by these
fields did not appear to contribute to the partition func-
tions given in Sec. III. However, if we consider the fusion
rule [o.i][o i] [IL] + [e], we see that the e field appears.
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In the tensor product theory, the fields oy~ acquire a
vector index p, and thus we may be able to regard some
of the t fields as Lorentz scalar composites of these spin
fields, in a manner similar to the way that P„e(+2)'" is

realized as a scalar composite of e(+i) "'s in eq. (3.17). In
this way we may be able to obtain the required scalars.
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APPENDIX A

In this appendix we discuss representations of the Z4
paraferrnion theory [or SU(2)4/U(1) coset theory] that
can be constructed in terms of cocycles and the free bo-
son p(z) introduced in Sec. II. These alternative represen-
tations could, in principle, be the correct building blocks
for the K = 4 FSS Fock space, instead of the free bo-
son representation discussed in the body of this paper.
For this reason it is important to explore the space of in-
equivalent representations of the Z4 parafermion theory.

Restricting ourselves just to those that can be con-
structed with a free boson plus cocycles, there is already
an infinite number of representations. By further re-
stricting our inquiries by ad hoc simplifying assumptions,
we will construct a few inequivalent representations, and
point out their main properties. In particular, some of
these representations have structure constants for their
operator algebra different from those of the free boson
representation. In other representations the OPE's no
longer satisfy Abelian braiding relations as (2.11)—(2.13)
do. This makes the physical state conditions technically
more difficult to implement. It is for these reasons that
the discussion in the body of the paper has been limited
to the free boson representation without cocycles.

Since the free boson p(z) CFT is associative by itself,
any cocycles that are attached to it must also be asso-
ciative if the combined theory is to be. Thus, we expect
the cocycles to form a finite-dimensional associative al-
gebra including the identity. Inequivalent examples of
such cocycle algebras are the algebras of n x n matrices
with real, complex or quaternionic entries. By taking
the direct product of these algebras with the free boson
OPE algebra, we obtain an infinite number of inequiv-
alent representations of the Z4 parafermion theory. In
the construction that follows we will restrict ourselves to
the simplest cocycle algebras: 1 x 1 real matrices (i.e. , no
cocycles) and 2 x 2 real matrices.

We start with the free boson representation without
cocycles used in the body of this paper. By comparing
the OPEs (2.11)—(2.13) of the free boson primary fields to
the parafermion fusion rules (2.4) we can identify which
primary fields belong to each parafermion sector [(t&~ ]:

[(C]o=( (3"&+'-'"&, n &o),
[op]D = ((op; ~&'"& —' '"&, ~ & o)
[ol] (~(3 +1/2)

)
(,(~--'/~)

)
[o'] =(.('"+'&

)
[ox[ = (

(s--o j
[~'[ + [~',[.= (

'""'"
)

(A1)

where n runs over the integers in the specified ranges.
The subscript zero is to identify the representation. Note
that the [$0] and [(t&i] sectors each appear twice in this
representation of the parafermion theory. This is clear
from the identifications of the energy operator e and the
spin field o.2 in (2.10), where they each have multiplicity
two: 6 can be represented by either e~+ & or e~ ~, and cr2

by either e(+ /'2) or e( '/ ). Also, the parafermion current
sectors [@i] cannot be separated in a way consistent
with the fusion rules (2.4). This property implies that
this Z4 parafermion representation is not really a faithful
representation of the SU(2)4 fusion rules (2.4). This is a
reflection of the fact that in (2.11)—(2.13) only a single
cut occurs on the right hand side of any given OPE. This
situation is called Abelian (or sometimes parafermionic)
braiding.

We can form a representation with single multiplicity
for the [(t&oi] and [(t ii] sectors by considering only the sym-
metric subalgebra of the 0 representation (Al):

[(&,'], =(~""&+~(-'"), n& o),
(~(~ +'/2) +~(—& —&/&))

(A2)
[ol] (

(3 +o+ (—3 —o)
[ao] (Sn,+Sj2) + (—Sn —S/2)~1)&— n & 0)

This representation satisfies non-Abelian braiding rela-
tions. In particular, upon braiding the fields in this rep-
resentation we introduce new fields (on the next Riemann
sheet). The set of all fields on all three sheets just re-
produces the field content of representation 0, though
the field content on each sheet separately is that given
in (A2). Representation 1 has single energy and spin-
field multiplicity, but has zero spin-2 multiplicity (i.e. ,

the [$02] sector does not appear). This latter property
implies that representation 1 is no good for FSS building
since the arguments of Appendi~ D show that the spin-
2 parafermion fields enter into the FSS spectrum. Note
that this representation is a faithful representation of the
SU(2)4 fusion rules (with only spin-0 and spin-1 fields)
but, since the spin-2 fields decouple, cannot realize the
Z4 parafermion current algebra, and therefore also can-
not realize the SU(2)4 Kac-Moody current algebra via
Eq. (2.5).

The algebra of 2 x 2 real matrices is generated by the
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which satisfy the algebra

—b2 —O

2ab = 1+c,
bc= —cb=b,

c2

2ba= 1 —c,
ca= —ac =a.

four elements
t'0 11 &0 0')
] 0 0) ' (1 0)

o ) /1 ol
o 1&l &0 1)'

(AS)

(A4)

[Nt]3 =

[&o]3 =

[&i]3=

[4'i]3 =

[4'o]3 =

[4o]3 =

[4'i]3 =

(kn6 3n+1) + k n6 3n —1)

(kn+1$(3n+1) + k—n —1$~-3n

kn (3n+3/2) + k—n (—3n —3/2) ~ 0

(k"1«(3"+3/2) y)E-"(3(—3"—3/2) c & p)

(A7)

(k"e( n) +k "e( n) n & 0

k((P/I) . k"+ 3( ) yk — —3(— ) c & P)

(
(3n+1/2) k-n (-3n-1/2)16 + jE

kkn ~ (3n+1/2) I —n ~ (—3n —1/2)k j6 +k lf

If we take a direct tensor product of the c = 1 free boson
theory with this set of cocycles, we simply obtain a new
c = j. theory with four times as many fields. The point,
however, is that this new theory has closed subalgebras
which could not be realized in the free boson theory alone.
We will construct two inequivalent such representations
of the Z4 parafermion sectors with multiplicities less than
or equal to those of the 0 representation.

The first is

](C)2 = (1 (E( ) + E( )), Il, & P}

]()3]2= (c((()P); c (3( ") —3( ")), c & P)

[~1) b (3n+1/2) + a (—3n —i/2)aE'

]pl] (c (3 +I) p b (—3 —I))

]y«] —(1 (E(3 +3/2) y «(
—3 —3/2)) c & p)

—(c (E(3"+3/2) 3(—3"—3/2)) „&p)

It is easily checked that this set of fields forms a closed
algebra under fusion. This representation is also non-
Abelianly braided, but has single multiplicities, and is a
faithful representation of the SU(2) 4 fusion rules (with all
spins). However, it has no e(72oz=ciii coupling (i.e. , no
coupling between the [Poi] and two [Pii] sectors), which im-
plies that representation 2 is not suitable for FSS build-
ing, since, as will be shown in Sec. IV, this coupling is cru-
cial for the description of space-time spinors in the FSS
Foek space. Note that the spin-2 sector OPE's (involv-
ing the [Po] and [&/+i] fields) do not have a Z4 symmetry
and thus do not form a representation of the parafermion
current algebra.

It is easiest to write the second representation with
cocycles in terms of the basis (1,i, j,k) where i = —a —b,
j = c and k = a —b. They satisfy the relations

Note that k = —k. This representation is non-
Abelianly braided in general but has a Z4 symmetry in its
parafermion current sector. Thus the parafermion fields
(too, /~+i, and (t)o form an Abelianly braided subalgebra.
Of the four Z4 parafermion representations presented in
this Appendix, this is the only one to have the defining Z4
symmetry, and, consequently, the only one which allows
a realization of the SU(2)4 current algebra by adding a
boson. Note Chat this representation has the same multi-
plicities as the free boson representation (representation-
0), and forms a faithful representation of the SU(2)4 fu-
sion rules (2.4) with double spin-1 multiplicities. A pri
oui, representation 3 is just as good as representation-0
for building the FSS Fock space. In practice, it has the
technical disadvantage that the Z4 symmetry only ex-
tends to part of its spectrum, unlike the free boson case,
where its Z3 symmetry includes all its fields. This Z3
symmetry is a major simplifying feature of the analysis
presented in the body of this paper.

There exist many more representations that can be
found by taking larger cocyele spaces. It is possible
that some of these other representations have subalge-
bras with low multiplicities which are not equivalent to
representations 0—3 constructed above. Also, one can
build other, essentially free, representations of the Z4
parafermions by orbifolding the free boson p(z) of the
above representations. It is found [15] that the twist
fields introduced by a Z2 orbifolding correspond to the
half-odd integer spin sectors of the parafermion theory,
which include the dimension-1/16 spin fields. We have
not considered orbifolds in this paper because the argu-
ments of Appendix D show that the half-odd spin sectors
do not contribute to the FSS partition function. See how-
ever the discussion of chiral fermions in Sec. VII B where
these twist fields may play a role.

APPENDIX B

i =j = —k =1, ij = —ji=k,

jk= —kj = —i, ki = —ik = —j .

A closed algebra is composed of the sectors

(A6)

In this appendix we will review the argument of
Zamolodchikov and Fateev [3] which leads to the deriva-
tion of generalized commutation relations (GCR's) for
Abelianly braided operators. We will do this by an ex-
ample: we derive the GCR's for Che Z4 parafermion fields
e(+ ) and e( ). The general procedure should be clear
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from this example.
The Z4 parafermion Fock space falls into sectors 'Rq

labeled by their Z3 charge q. The dimension-1/3 energy
operators t

~+ & and e~ ~ carry Z3 charges q = +1 and
—1, respectively. To simplify notation, we will denote
e~+ ~ by t and e~ ~ by et. They act on the Pock space
by the rule

(&+2/3)) Cg Cm+p 4+ q+z 6 ~+it q+1 Xq(0)
e=o

Z can also be evaluated in another way, by first de-
forming the p contour so that it lies inside b. Upon per-
forming this deformation, one picks up in the usual way
two contributions

Rq ~ Rq+1 &
6:Hq ~ Rq-1 (Bl) + Zp (B8)

where the Z3 charge is defined mod 3. Their mode ex-
pansions are defined, as in Eq. (2.25), by

e(z))iq(0) =) z" c „+(, 1)/3)(q(0),

e (z)yq(0) = ) z"+ e „—(q+1)/3Xq(0),

(B2)

where yq is an arbitrary state in 'Mq. The mode expan-
sions can be inverted to give

Z n —1+ /3
(q ] )/3)(q (0) — z + c(z)Pq (0)

~ 2%i

n-1-q/3 t(q+1)/3&q(0) = .z t (Z)gq(0)
~ 2%i

(B3)

where p is a contour encircling the origin once, where

)(q(0) is inserted.
The OPE of e with e't is given by [see Eq. (2.12)]

1
E(Z)C (Bl) = + (Z —Bl) ic)p(iii) +

(z —ii~)2/3

(B4)

Z' — m-1+q/3 n —1—q/3( )
p+2/3dZ dtU

27l l $ 27cl

x e(z)et(ii~))(q(0), (B5)

where m, n and p are arbitrary integers. The contour

p encircles b, which in turn encircles the origin. The
fractional parts of the exponents in the integrand are
chosen so that the whole integrand is single valued in
both the z and m planes. This is possible only because of
the Abelian nature of the met OPE (B4). We can evaluate
this integral by letting b shrink down to a small circle near
to the origin. In this limit we can expand the (z—ur)"+2/3

factor as

~)p+2/3 Zi+2/3 i -,(x+2/3)
ce

e=o
(B6)

where ce are the appropriate binomial coeKcients. In-
serting this expansion into Eq. (B5), and using the mode
definitions (B3), we find

Now we will derive the generalized commutation relations
that the e and et modes satisfy as a result of this OPE.
Consider the integral

corresponding to the same integral 2' with p and b in-
terchanged, and the new contribution Zo where the p
contour encircles the et insertion at the point m on the
z plane. 2' can be evaluated in the same way as I' was,
after interchanging e(z) and et(iii) as well as z and iii in

the (z —iii)"+2/3 factor. Taking care to perform these in-
terchanges along equivalent paths in the complex plane
gives an overall phase e'~( / ) e'~(&+ / ) = (—].)&. Thus

Z I
( 1)y m —1+q/3 n —1-q/3

/ 27l l QI 27l4.( — )""/'"(-) ( )X,(0)

=(- ) ) g .+p g ,4+ —qo»-- (s+2/3) t

e=o

(B9)

where we have again used the mode definitions (B3).
Note that the Abelian braid property of the eat OPE
was important in performing the analytic continuation
needed to define the integrand of Z'. Because only one
kind of cut appears in (B4), under the analytic continu-
ation which interchanges z and iii, e(z)et(u) only gains a
simple phase. Indeed, this property can be taken as the
definition of Abelian braiding.

The contribution 2'p is the same as Z except that p,
instead of circling the origin, now only encircles the point
m in the z plane. Letting this contour shrink to a small
circle around iii, we can replace c(z)et(iii) by their OPE
(B4). The value of the integer p in the integrand controls
the number of terms in the OPE that contribute. For
example, taking p = —1 gives

n 1—q/3 -m-1+q/3
o 27l l 27rl

x ((z —w) '+ ))(q(0)

~n+m 2~ O $ ~ 0 B)O

These expressions for 2, 2', and Zp can be combined
according to Eq. (B8) to give a generalized commutation
relation for the ~ and et modes:

) - (-~/3) t
Ce E g e+0+1 E +e 4+

e=o

+6 n —y —e—q 16m+e+~ & —Un+m —lit
3

(B11)
understood to be acting on any state )(q c 'Rq. Alterna-
tively we could have chosen p = —2, which would pick
up a contribution from the Bp(iii) term in the nt OPE,
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to give the GCR

Z
s = . io)p(z) z

2%i
(B13)

It is clear that by letting p take more negative values,

more complicated GCR's involving more terms from the
eat OPE can be obtained. By conformal invariance, this
tower of GCR's is consistent. Indeed, the GCR obtained
with p = po can be derived from the GCR with p = po —1

using the binomial coefficient identity

) - (-4/3)
m —2—E+ + n+E—3 3

E=O

t
m+g+3 3

Q
rn —1+ — beam —i. + sn+m —z 2 (B12)

3

where we have used the mode expansion of the p(z) field

in the form

A(co)G (u)) 2A(co)BG (u))

(z —u))4)(3 (z —u))lls

A(co)G+(u)) 2A(co)BG+(u))

(z —u)) & (z —u)) &3

G+(,)G-(„) (3~/8) + T(~)
(z —u))s)' (z —u))2&3 '

(C1)

where we have only included terms on the right-hand
side with negative powers of (z —u)). A(co) is the unde-
termined structure constant of this algebra. (The other
coefficients are determined by conformal invariance. ) We
found by explicit construction in Sec. III that A(2) = 1.

Because the operator algebra (Cl) is Abelianly braided
(that is, only a single cut appears on the right hand side
of each OPE), we can derive a Ward identity relating
correlators with a G+G pair to ones with the pair re-
moved. Following Zamolodchikov and Fateev [3, 17], we
can then solve for the structure constant A by imposing
the associativity condition on the four-point function

() () (+i)
ce —ce-i = (B14) g(z, ) = (G+(zi)G+(Z2)G (zs)G (z4)). (C2)

It should also be clear that the argument reviewed here
works equally well for deriving GCR's from any Abelianly
braided OPE.

Actually, we will derive a simpler Ward identity which
is valid only for the four-point function g. Consider the
function P(z;) defined by

APPENDIX C

In this appendix, we discuss the representation the-

ory and associativity (or consistency) conditions of the
fractional superconformal algebras. We begin with the
split algebra (3.3). The explicit form for the currents of
this algebra in the coordinate boson plus Z4 parafermion
CFT is given in Eq. (3.2). This CFT has central charge

co = 2. We can generalize the split algebra (3.3) to the
case of a CFT with arbitrary central charge co [17]:

Because of the Abelian nature of the spin-4/& alge»a, &
is a holomorphic function of zi with a first-order pole at
zz and second-order poles at zs and z4. Also, since by

-S/3
conformal invariance g ~ zi as zi ~ oo, in the same

limit & 1./zi ~ 0. Thus E is completely determined

by the residues of its poles, which are emily read off from

Eq. (C3) and the OPE's (Cl) [23]. The resulting Ward

identity for g is

g = (Zi —ZZ) (Zi —Z3) (Zi —Z4)

X A Zg Zg ZQ Z3 ZQ Z4 G ZQ G Z3 G Z4

——(Zi —Z3) 3(Zi —Zs) —(ZZ —Z3) + 2(Z3 —Z4) (ZZ —Z3) (Z3 —Z4) (G (Zz)G (Z4))

——(24 z4) 3(22 —z4)
' —(z2 z4) 2(22 z4) (z2 z4) (zz —zz) (G (z2)G (zz))I. (C4)

8 —cO

6
(C5)

A crucial assumption that enabled us to integrate the

The remaining two- and three-point functions can be di-
rectly evaluated from the spin-4/3 OPE's to give a closed
form expression for g. Associativity can then be checked
by taking, say, the limit as z~ —+ z3 in this expression,
and checking that the residues of the poles match those
determined by the OPEs. This fixes A as a function of
co .'

Ward identity was that no fractional cuts not allowed by
our Abelian braiding assumption occur on the right-hand
side of the OPE's (Cl), even among the "regular" terms.
We present an example below of how the associativity
condition (C5) may be modified by the inclusion of new

cuts among the regular terms.
Much work has been done to understand the represen-

tation theory of this algebra (and related nonlocal alge-

bras) [17, 5—7, 10, ll, 24, 25]. In particular, it is known
that the split algebra (Cl), as well as the algebra formed
from it by adding together G+ and G, have a series
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of unitary minimal representations. These can be real-
ized by the coset models SU(2) 4SU(2) I./SU(2) I.+4 with
central charges

24

(L + 2)(L + 6)
for L = 1, 2, . . . .

where k~ are coefficients to be determined, and we have
defined the combinations

A = (zi —zq)(z3 z4),
8 = (zi —zs)(zz —z4),
C = (zi —z4)(z2 —z3).

(C9)

In order for g to have the right behavior as its arguments
approach infinity, the exponents must satisfy, for each j,

Note that the central charge of these minimal models has
an accumulation point at cp = 2, the central charge of
the free CFT we are using in the construction of the FSS.
This is analogous to the role played by the free represen-
tation of the superconformal algebra with central charge
3/2 in the superstring theory. However, there are impor-
tant difFerences between the representation theory of the
spin-4/3 algebras and that of the spin-3/2 superVirasoro
algebra of the superstring. In particular, the supercon-
formal algebra has no parameters other than the central
charge, whereas the split algebra has the structure con-
stant A.

It is easy to see that if we have two representa-
tions of the split algebra with currents and constants

{G,+, T, , c, , A, }for i = 1 and 2, then we can form a new
representation of the split algebra by tensoring them to-
gether only if Ai = Az. The tensor-product algebra has
currents and constants given by {G+ = Gi + Gz, T =
Ti+ Tz, c = ci+ cz, A = Ai = Az}. If the A, and c, are re-
lated by (C5), then the new A and c of the tensor-product
algebra will satisfy an appropriately modified relation.
The argument leading to (C5) breaks down because the
tensor-product algebra is not Abelianly braided. In par-
ticular, new fractional powers appear among the regular
terms of the OPE's. For example, the first regular term
not shown in the G+G+ OPE of Eq. (Cl) is

G+(z)G+(ur) (z —ui):G+, G2: (u)) . (C7)

This term and its descendants all have integer powers of
(z —ui). Though this is not a "cut," it nevertheless is
a new fractional power, not included among the allowed
exponents necessary for Abelian braiding,

Using a simple anzatz for the four-point functions of
the tensored currents G+(z) and G (z), we can show

explicitly how the appearance of this new "cut" relaxes
the Abelian associativity condition (C5). First, we will

assume this "cut" does not occur, and we will show how
a simple algebraic argument recovers (C5).

By SL(2,IR) invariance [14],we can write the four-point
function (C2) without any loss of generality as the sum
of terms

(C8)

r~+ s~+ t~ = —8/3. (C10)

Since only A vanishes as zi ~ z2 or zs ~ z4, its ex-
ponent is determined by the G+G+ or G G OPE in
Eq. (3.3), so that the rz must belong to the set {—4/3+n}
where n is an integer. Similarly, the exponents of 8
and C are determined by the G+G OPE, implying
s~, t~ E {—8/3+ n}. We make the anzatz that the inte-
gers n in the above sets satisfy n & 0. This assumption
is not necessarily true in general; in the present case it
can be verified using the Ward identity (C4). With this
assumption, there are 15 solutions for {r~,s~, t~ }in these
sets satisfying (C10). Because A, 8, and C are related
by A —8+ C = 0, there are only five independent terms
in our expansion for g:

3cp „ /'Ab

8 q8)
+l

i

—
i +mi —

i8) (8)

+ni -
i +pi -

iPr (C11)

Now if we take the limit zs ~ z4 and compare the
residues of the poles with those predicted by the OPE's
(Cl), we find

A =k,
2A2 = 8k + 3l .

(c12)

The limit z2 ~ z4 implies

3cp/8 =p,
0 = 3n+ 8p,

12 = 9m+ 24n+ 44@,

and the remaining limit zi -+ z4 implies

3cp/8=&+ t+m+ n+ p,
0 = —4k —l + 2m + 5n+ 8p,

12 = 2k —l + Gm + 20n + 44@ .

(c13)

(C14)

This overdetermined set of equations has a solution

k = s(8 —cp), t = —si(8 —cp),
m = s(8+5cp), n = —cp, p = 3cp/8, (C15)

only if A satisfies the Abelian associativity condition
(C5).

The crucial assumption that enabled us to restrict the
exponents {r~,s~, t~} to certain sets was that no frac-
tional cuts other than those occurring in the singular
terms on the right-hand side of the OPE's (Cl) appear
among the "regular" terms. This, of course, is just the
assumption of Abelian braiding.

Let us now consider the tensor product algebra with
currents G+ = G~ + G2, discussed above. New terms
such as (C7) appear in the OPE's; these terms and their
descendants all have integer powers of (z —ip). Though
this is not a "cut," it nevertheless is a new fractional
power, not included in our earlier set of allowed values
for the exponents {r~,s~, t~}. Allowing r~, s~, and t~

to take on non-negative integer values (by our anzatz)
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A = A:+q. (C16)

implies that one new term appears in the expansion of g
in addition to the five in Eq. (Cl1): (3co/8)qC s/s. This
results in a change in only the first residue equation in

(C12) to

and one Z4 parafermion theory per space-time dimen-
sion. From this description we can readily deduce the
form that the partition function for the K = 4 fractional
superstring must take. Each propagating bosonic world-
sheet field X" contributes to the total one-loop partition
function a factor

With this change, the residue equations have the same
solution (C15), but now with each boson

~~~ n(q) n(q)
(D1)

8 —cp +q. (C17)

Thus by varying q, we can achieve any value of A and
still have an associative four-point function.

Similar observations hold for the full fractional super-
conformal algebra

3co/4 T(~)
G(z)G(w) =

( )s/s +
( )~/

+ +AG(is) i ABG(tu)

(z ~)4/s (z uj) i/s ' (C18)

This algebra is non-Abelianly braided since it has (z-
ur)" 2/s and (z —ur)" /s cuts apparent among its sin-
gular terms. Thus, the relation derived above between
the structure constant and central charge (C5) will not
necessarily be valid. Indeed, one of the alternative free
boson plus cocycle representations of the fractional su-
perconformal algebra (C18) constructed in Appendix A
violates (C5), having co = 2 but A = 0. Also, when we
tensor together copies of the algebra (C18) as in the dis-
cussion of the last paragraph, we also add in new "cuts"
among the regular terms of the form (z —tU)o+".

In summary, we have learned that the data necessary
to specify a nonlocal chiral algebra consists not only of
the singular pieces of the OPE's, but also of a list of all
the fractional parts of the exponents of (z —ts) that may
appear in the "regular" terms, as well. The Abelian na-
ture of the split algebra (Cl) allowed us to perform the
analytic continuation necessary to derive a Ward identity,
which in turn allowed us to relate the structure constant
and the central charge. The nonsplit or tensored algebras
have non-Abelian braiding properties and do not, in gen-
eral, satisfy any particular relation between A and c. In
principle, though, if the exact form of the (non-Abelian)
braiding of the currents were known, one could solve the
associativity conditions to find new relations between A

and c. (For an example of this approach, see Refs. [10,
11].)

Here g(q) is the Dedekind g-function defined in (2.21),
q = e ' and 7. —= ri + imp is the torus modular pa-
rameter. Note that this factor includes the contributions
from both holomorphic and antiholomorphic (or left- and
right-moving) components. The factor contributed by
each world-sheet parafermion is

each parafermion :- &'(q) (D2)

(the above is for left-moving parafermions; right-moving
parafermions contribute the complex conjugate). Here
Z~ (q) are the parafermion characters whose expressions
were derived earlier (2.22).

It is convenient to introduce the string functions [26]
c~(q) by

&' (q)
—= n(q) a' (q) (D3)

2j(j+ 1) —1
hg,

7n2

4
for ~rn~ & j . (D5)

Under the group of modular transformations generated
by T: 7 ~ 7 + 1 and 8: r —+ —1/7. , the string func-
tions mix among themselves, forming a closed set. From
Eq. (D5) it follows that the string functions are eigen-
functions under the T modular transformation, while the
S transformation is given by [26, 27]

4 4

c~(—1/7. ) =(—24i~) ' ) ) e' " /

L=O N= —3

From the parafermion field identities (2.3) and the ex-
pressions (2.22) for the parafermion characters, we see
that the string functions obey

c2 (q) = c"2 (q) = c2 —4 (q) (D4)

Thus we can take as a basis of string functions the set

(co, cc, cc, ci, ci, c~, c2). Also, the string functions have

power series expansions in q starting with cz (q)
q"~~ l(1+ ) where

APPENDIX D

In this appendix we will build the modular-invariant
partition function for the closed K = 4 FSS. This will
primarily be a review of results obtained in Refs. [2, 13].
We will use the partition function to predict the crit-
ical space-time dimension, to identify the bosonic and
fermionic states of the FSS, and to determine the ana-
logue of the GSO projection.

We have argued in the body of this paper that the
K = 4 FSS consists of one free coordinate boson theory

7r(8+1)(L+ 1)xsin
6

c~ ~. D6

To construct the modular-invariant partition function
for the closed FSS, we impose the conditions that there
be a graviton in the closed string spectrum, and that no
tachyonic states appear in the spectrum. Since the time-
like and longitudinal polarizations of a massless graviton
are not propagating degrees of freedom, we expect the
partition function for the massless level to have contri-
butions from only D —2 transverse dimensions. In order
for the FSS partition function to have a chance of be-
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ing modular invariant, it must be composed of products
of the string functions which we have seen close among
themselves under modular transformations. Thus, if only
D —2 dimensions worth of states contribute at the mass-
less level, this must also be true of the whole tower of
massive states in the FSS.Therefore, for the closed K = 4
fractional superstring, the propagating world-sheet field
content consists of D —2 coordinate bosons and D —2
each of left- and right-moving parafermions. We there-
fore obtain the form for the total partition function:

( )
i D/—2 ) D 2-D —2—

(D7)

where c stands for any K = 4 string function. Note that
the rl-functions have canceled between the bosonic and
parafermionic contributions.

Consider for the moment the left-moving part of the
D-dimensional FSS. The term in its partition function
that includes the ground state is represented by the first
term in the expansion of

( o)D —2 —(D—2)/12 (1 + ) (D8)

(co) (co) q " (1 + ''') .0 D—3 2 1 (D —2)
(D9)

Since the graviton in closed string theory comes from
combining a left-moving and a right-moving vector par-
ticle, the masslessness of the graviton implies D = 6.
This is the basis of our claim that the K = 4 FSS has
critical dimension six.

Physically, we are only interested in string theories that
are tachyon-free. This requires that tachyons must be
projected out of the physical spectrum. Hence we are in-

terested in constructing a partition function Z for closed
string theories which contain the massless term (D9) but
no tachyonic term such as (D8). We find only one D = 6
modular-invariant partition function that satisfies these
conditions [2]:

(r2) /' 'Z(q) = ]A('+3(B(,
with

(D10)

A = 4(co + co) (co) 4(co) 4(c2) + 32(c2)(c2)
B = 8(co + co) (c2)(c2) + 16(co + co)(co)(c2)

8(c2)2(c2)2 (Dl1)

Equation (D5) implies that the leading terms in a power

as follows from the string function expansions (D5). In
the usual way, the power of q in the partition function
is interpreted as the mass squared of the state, while its
coefficient is the state's multiplicity (i.e. , the number of
bosons minus the number of fermions). In this way we see
that for D ) 2 the ground state of the FSS is tachyonic.
Now let us consider the first excited state built from the
ground state by the action of the parafermion energy op-
erators e~+ ~. This is the analog of the first excited state
of the Neveu-Schwarz sector of the superstring, which de-
scribes a vector particle. Thus, the vector particle in the
left-moving FSS partition function comes from the first
term in the expansion of

series expansion in q are A q and B q
/' . Thus

there are indeed no tachyons in this theory. The only
contributions to the massless states are from the terms
4(coo)sco2 —4(c2)4 in A. The first term we have already
interpreted as the massless vector particle. The num-
ber of degrees of freedom of a massless vector particle
in six dimensions is four, fixing the normalization of the
partition function. The second term, appearing with a
minus sign, must be interpreted as a space-time fermion.
It is composed of j = 1 spin fields in the parafermion
theory, commonly denoted o~2 = /+i. The normaliza-
tion of this term suggests that it is a massless space-time
spin-1 j2 Weyl fermion. In Sec. IV we will confirm this
identification.

It turns out that there is an additional remarkable
property shared by the expressions in (Dll). It can be
shown [2, 13] that each of these new parafermionic string-
function expressions vanishes as a function of q:

A(q) = B(q) = 0 . (D12)

This is interpreted as a sign of space-time supersymmetry
cancellations in the fractional superstring spectrum of
states.

From the expressions (D10) and (Dll) for the parti-
tion function, we can immediately deduce a number of
important properties of the full K = 4 FSS Fock space.

First, and most obviously, we notice that the set of
string functions cz~ which close on half-odd integer j
quantum numbers under the S transformation (D6) does
not appear anywhere in the partition function. We de-
duce that the corresponding parafermion sectors with
half-odd integer j are projected out of the full string Fock
space. Indeed, we have already assumed this fact in the
discussion of Sec. II.

Next, we notice that the term 4(coo)sco2 in the A block
of the partition function, identified as contributing to
a space-time boson state in the left-moving theory, has
the form of a product of parafermion sectors all with
quantum numbers m = 0. Thus it is natural to guess
that in the light-cone gauge space-time bosons will have
vertex operators proportional to

(D13)

where j, = 1 or 2. According to the fusion rules (2.4) the

where j, = 0, 1, or 2. Any of the parafermion primary
fields P may, of course, be replaced by one of their de-

scendant fields. Note that we are suppressing the world-
sheet boson (X") contributions to the vertex operators.
Since the world-sheet bosons only give rise to states with
space-time bosonic statistics, this suppression will not af-
fect the identification of the statistics of vertex operators.
By a similar argument following from the A block term
—4(c22)4, the fermions will have vertex operators propor-
tional to

D —2

(D14)
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parafermion rn quantum numbers add, so we see that
(D13) and (D14) are consistent with the spin statistics
connection. Indeed, these vertex operators satisfy the
selection rules under fusion:

bosonic ground state ~
D—1

~ ~

p,=0

D—1

(D16)

8~%,
8 8~8,

(D15)
fermionic ground state P

p, =o

which follow from m quantum number conservation and
the parafermion field identifications (2.3). These selec-
tion rules serve to confirm our guess of the form of space-
time boson and fermion states in the left-moving half of
the FSS. In particular, we have identified the m = 0
sector of the FSS Fock space as the analogue of the su-

perstring Neveu-Schwarz sector, and the m = +1 sectors
as the analogue of the Ramond sector. In Secs. IV and V
we will confirm these identifications by finding the equa-
tions of motion satisfied by the massless physical states
in each sector.

Note that not every state built by the action of e(+i& on
the bosonic or fermionic ground states (D16) appears in
the A block partition function. For example, the bosonic
ground state itself would contribute to the term (coo)4, a
tachyonic state, which does not appear in (Dll). This
projection, and similar ones at higher mass levels in the
FSS spectrum, are the analogue of the GSO projection
16] in the superstring. The A block partition function

has the general expansion A(q) PN™o aivq, whereas
if arbitrary states built by the action of the e(+i& fields on
the bosonic and fermionic ground states appeared in the
partition function, it would have the expansion A(q) ~

ia„q"/3. Thus, in general, the analogue of the
GSO projection in the K = 4 FSS removes 2/3 of all the
states from the bosonic and fermionic sector Fock spaces.
The effect of this GSQ-like projection on the low-lying
states is shown in Fig. 2.

In the A block of the FSS partition function, we have
noted that the states fall into space-time bosonic and
fermionic sectors. These sectors are built by the action
of the energy operators e(+i& E [Poi] on the ground states:

where ii E [po] is the identity and a+3 p [pii] are the
dimension-1/12 spin fields. In the A block, just as in the
usual superstring, no other "mixed" sectors appear, built
on ground states of the form

mixed ground state ~
~ \ l ~ ~

pGN vGR

IL"cr", (D17)

where N and R are disjoint sets of indices satisfying
NUB = (0, 1, . . . , D). This is another restriction placed
on the full FSS Fock space by modular invariance. How-
ever, unlike the superstring, a certain "mixed sector"
does appear in the B block states of the FSS. The pos-
sible implications of the presence of B block states are
discussed in [12, 13]. This paper is restricted to an ex-
amination of the A block states only.

APPENDIX E

We compute the critical central charge of a string the-
ory with world-sheet fractional supersymmetry generated
by the spin-4/3 currents G+ and G . These currents
satisfy the split algebra with arbitrary central charge c
introduced in Eqs. (3.3) and (Cl). Instead of rescaling
G+ and G so that the structure constants are equal, as
in Eq. (3.3), we will leave them free in this Appendix.
This will allow us to discuss the Hermiticity assignments
of the currents more easily. Thus, the split algebra is

A+G (ui) ziA+c&G (ui)

(z —uJ) /3 (z —ui) 1/3

A G+(ur) ZA c&G+(ui)
( ) ( )

( )4/3 ( )i/3 'I

CO CO CO2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

02 22
CO Co ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

CO 3 C2

(COJ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

4/3 ------- (l)'(l)'
1

2/3 .-.--"-- (c2)'(c2)
i/3

0 (C2)4
—1/3 8 —c

6
(El)

)G ( )
(3co/8) T(to)

(Z —~)"' (Z —~)'/'
The associativity condition (C5) for the split algebra then
becomes

Bosonic States MASS Fermionic States

FIG. 2. The low-lying mass levels for the A block states of
the K = 4 FSS, along with the corresponding combinations
of string functions which first get contributions from those
levels. The masses of states in each level are indicated in units
of the Planck mass. The mass levels removed by the GSO-like
projection (i.e., whose string functions do not appear in the
partition function) are indicated by dotted lines.

The modes of the G+ currents and the energy-
momentum tensor T satisfy the commutation relations

[L~, L„]= (m —n)L + + —(m —m)h'

(E2)

I G+ = —r G+

and the GCR's
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(—2/3) G+~ . e +)+~-e &+q+~+e +g+m-e 2+~+„+e
e=o

(n —m)G+„„

(E3)

~(
— / ) G+ G

— +G — g++ +n —g — + +m+g —++m —g + +n+g
= n+m+ 16

+ + + +
E=O

when acting on a state with Z3 charge q.
Following the discussion of Sec. III, the physical state

conditions derived from this constraint algebra are

(I —v) Igphy, ) =0,
)=0,

G.+Idph~ ) =o
n&0,
r) 0.

(E4)

14) = G+i/314'o) (E5)

It is built on a state with Z3 charge q = 0, satisfying

We can determine the critical values of the central charge
and intercept by demanding the appearance of extra null
states at those values of c and v. As in the bosonic string
and the superstring, extra null states can be taken as an
indication of an enhanced gauge symmetry in the string
theory.

Consider the spurious state with Z3 charge q = 1:

I

mode algebra (E2)—(ES) that other possible terms, such
as

—4 4/3 —4/3 —4/3 —4/3 ) I/ 4) (E10)

I, 1$) =0

Gi/3 IW) =o
:-0 = 5ce —4p+ 2A

0= n —2P+4A
Q=n —P+A p,

can be expressed as linear combinations of the terms in

(E8). From the first condition in Eq. (E9), 1$) has in-

tercept v = 1/3. It only remains to apply the rest of
the physical state conditions to 1$) to determine which
values of o., P, and p will give a new set of null states.

Using the commutation relations (E2) and (ES), one
can compute the action of the positive modes of the cur-
rents on 1$). Imposing the physical state conditions (E4)
yields the four independent conditions:

1
~41/)4) = (~

—
~

I I/)4)

L +ill) =G„++3/3IA) = o
G4/3 14') = 0

Gi 14') =0

('9c
:-0 =

I

——4
I
o. —1QP —7A

&4 )
;- 0 = 7A+o. + 4A+P + 3 (2c —7)p .

(E11)

If IP) is a physical state, it will be null, since it is by
construction spurious. The conditions (E6) imply that
1$) obeys all the physical state conditions (E4) except
one:

Gi/314) Gi/3G —i/314'o)

1
=Loldo) =

I
i) ——114o),3)

where the second line follows by use of the GCR (E3).
Thus, we find a series of null states if u = 1/3. Note that
there is a second series with Z3 charge q = —1, found by
exchanging G+ and G modes.

To fix c, we consider the series of spurious states with

q = 1, of the form

l4) = {~&+4/4 /)
+

4/4 "/ —4 —4/4) l&4—)—

This system of equations has the solution

n=2A p, P=SA p, c=l0, A+A = ——. (E12)
1

14'& = ~G+g/3 14'o)+ pG 2/3 l&o) (E13)

where Ipo ) are primary states with Z3 charges q = kl,
which satisfy

Thus, there are extra null states (since they are both
physical and spurious) at c = 10. Note that the associa-
tivity condition, Eq. (El), is automatically satisfied by
our solution.

At c = 10 there are extra null states with Z3 charge

q = 0, as well. Consider the state

(E8)

where Igo) now satisfies

Lo 14'o) = —14'o)

L +i IA) =G++2/3 IA) = o

{E9)

Eq. (E8) is actually the most general spurious state with

q = 1 built from Ipo), since it is easy to show using the

Io l&o &
= —

3 l&o )

Go 14'o) =b14'o)

1
Go ISO)=/, (14 —

~~& l&O)

L +i 14'o) =G++i/3 l&o &
= o

(E14)
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The Go intercept b is arbitrary. The Ga intercept follows
from the previous two equations and the mode algebra
(E3). The physical state conditions then give

(I) :
(II) :

(iii) :
(iv):

(G+)t = G-,
(G+)t = —G
(G+)t = G+,
(G+)t = G+,

(G-)t = G+,
(G-)t = -G+,
(G )t=G,
(G )t =G,

x+ =x-,
p+
p+
A+ = —A

A+
G~+/s [P) = 0:-0 = —(c+8) a + 2(c —4)P,

(E15)

Gris [P) = 0:-0 = (c —4)a + 12(A —b)P,

which when solved subject to the condition (El) again
give c = 10.

So far this discussion has made no reference to the Her-
miticity properties of the currents. However, as discussed
in Sec. III C the Hermiticity relations between mode op-
erators play an important role in translating the quan-
tum constraint equations into the physical state condi-
tions (E4). Also, it is natural to require the constraint
operators to be Hermitian, although there presumably is
an interpretation of non-Hermitian constraints as corre-
sponding to propagation in time-dependent backgrounds.

Let us assume, then, that G+ and t are related by
some hermiticity relations. It is not hard to show that,
up to rescalings of the currents, the algebra (El) admits
only four inequivalent hermiticity assignments:

(E16)

where in all cases A+ can be taken to be a postive real
number. When c & 8, Eq. (El) implies %+A ( 0, so
only the hermiticity assignments (ii) or (iv) are allowed.
In these cases we can still construct nonsplit subalgebras,
generated now by G = G+ —G . In both cases (ii) and
(iv), GG —1+,showing that such fractional super-
conformal algebras (FSCA's) are necessarily nonunitary.
The FSS involves copies of the FSCA at c = 2, so cases
(i) and (iii) apply. Indeed, the free field representation
at c = 2 constructed in the body of the paper satisfies
the hermiticity relations (i).

We have determined the critical intercept and central
charge of a spin-4/3 string to be v = 1/3 and c = 10.
Note that this whole calculation could have been per-
formed using the FSCA instead of the spin-4/3 algebra.
The physical conditions would have been generated by
the single current G = G+ + G . The same intercept
and central charge emerge, using the sum of the q = 1
and q = —1 null states described above. This result is
in agreement with that obtained by consideration of the
Kac determinant formula for the FSCA [8j.
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