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Monopoles and instantons in string theory
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In recent work, several classes of solitonic solutions of string theory with higher-membrane structure
have been obtained. These solutions can be classified according to the symmetry possessed by the soli-
tons in the subspace of the spacetime transverse to the membrane. Solitons with four-dimensional spher-
ical symmetry represent instanton solutions in string theory, while those with three-dimensional spheri-
cal symmetry represent magnetic-monopole —type solutions. For both of these classes, we discuss boson-
ic as well as heterotic solutions.

PACS number(s): 11.17.+y

I. INTRODUCTION

In recent work classical solitonic solutions of string
theory with higher-membrane structure have been inves-
tigated. These solutions can be classified according to the
symmetry the solitons possess in the subspace of space
time transverse to the membrane. In this paper, we dis-
cuss two classes of solutions, those with four-dimensional
spherical symmetry, which possess instanton structure,
and those with three-dimensional spherical symmetry,
which represent magnetic-monopole —type solutions in
string theory.

For both instantons and monopoles, we review solu-
tions in Yang-Mills (YM) field theory as well as axionic
solitonic solutions for the massless fields of the bosonic
string. In each case we combine the gauge-theory solu-
tion with the corresponding bosonic solution to obtain an
exact multisoliton solution of heterotic string theory [1].

We begin Sec. II with a review of the 't Hooft ansatz
for the Yang-Mills instanton [2—6]. We then turn to the
axionic instanton solution first mentioned in [7]. This
tree-level solution is extended in [8] to an exact solution
of bosonic string theory for the special case of a linear di-
laton wormhole solution [9,10]. Exactness is shown by
combining the metric and antisymmetric tensor in a gen-
eralized curvature, which is written covariantly in terms
of the tree-level dilaton field, and rescaling the dilaton or-
der by order in the parameter a'. The corresponding
conformal field theory is written down.

An exact heterotic multisoliton solution with YM in-
stanton structure in the four-dimensional transverse
space can be obtained [11,12] by equating the curvature
of the Yang-Mills gauge field with the generalized curva-
ture derived in [8]. This solution represents an exact ex-
tension of the tree-level five-brane solutions of [13—15]
and combines the gauge and axionic instanton structures.

In Sec. III we turn to the three-dimensional (monopole)
solutions. We first discuss a multimonopole solution in
YM field theory, which arises from a modification of
the 't Hooft ansatz for the four-dimensional instanton
[16,17]. We then mention the bosonic three-dimensional
solution obtained in [18]. We complete this section with
a review of the recently constructed exact multimonopole

solution of heterotic string theory [16,17], which now
combines the gauge and axionic monopole structures.
Unlike the heterotic instanton solution, this solution does
not lend itself easily to a conformal field theory (CFT)
description. An interesting aspect of this string mono-
pole solution, however, is that the divergences stemming
from the YM sector are precisely cancelled by those com-
ing from the gravity sector, thus resulting in a finite-
action solution.

We conclude in Sec. IV with a summary of these re-
sults and a brief discussion.

II. FOUR-DIMENSIONAL INSTANTON SOLUTIONS

A„=iX„ t)„lnf,

where X„=i)'"(cr'/2) for i =1,2, 3, where

p, v= 1,2, 3

= —5'", v=4

{2.2)

(2.3)

and where f 'Uf =0. The ansatz for the anti-self-dual

In this section, we discuss four-dimensional, or instan-
ton solutions in bosonic and heterotic string theory. We
first summarize the 't Hooft ansatz for the Yang-Mills in-
stanton, and then write down the tree-level bosonic ax-
ionic instanton solution of [7]. An exact extension of this
solution can be obtained for the special case of a
wormhole solution, and the corresponding conformal
field theory is written down [8]. Finally, an exact multi-
instanton solution of heterotic string theory is obtained,
combining the Yang-Mills gauge solution with the boson-
ic axionic instanton [19,11,12].

Consider the four-dimensional Euclidean action

1 f d x TrG„,G", p, v=1,2, 3,4 . (2.1)
2g

For gauge group SU(2), the fields may be written as
3„=(g /2i )cr'2 „' and G„=(g /2i )o'G„' (where o',
a=1,2, 3 are the 2X2 Pauli matrices). The equation of
motion derived from this action is solved by the 't Hooft
ansatz [2—6]
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solution is similar, with the 5 term in (2.3) changing sign.
To obtain a multi-instanton solution, one solves for f in
the four-dimensional space to obtain

N p.f=l+ g (2.4)
, )x—a, /'

'

where p; is the instanton scale size and a; the location in
four space of the ith instanton. We will return to the
't Hooft ansatz when we consider a superstring model
with YM coupling (the heterotic string [1]).

We now turn to the bosonic axionic instanton solution
considered in [8]. We first derive the tree-level solution
of [7] and then extend the single-instanton wornhole solu-
tion to O(a') in the massless fields. For this purpose we
use the theorem of equivalence of the massless string field
equations to the O.-model Weyl invariance conditions
(demonstrated to two-loop order by Metsaev and Tseytlin
[20,21j), which require the Weyl anomaly coefficients

P„,P„„,and P to vanish identically to the appropriate

order in the parameter a'. The two-loop solution ob-
tained by this method suggests a representation of the cr

model as the product of a Wess-Zumino-Witten (WZW}
[22] model and a one-dimensional CFT (a Feigin-Fuchs
Coulomb gas) [7]. This representation allows us to obtain
an exact solution.

The bosonic cr model action can be written as [23]
1I=, d x(&yy' B,x "Bbx "g„„+i@'B,x "Bbx "B„

(2.5)

where g„„ is the 0 model metric, P the dilaton, and 8„„
the antisymmetric tensor, and where y,b is the world-
sheet metric and R' ' the two-dimensional curvature.
The Weyl anomaly coefficients are given by [20,21]

((3„,=P„,+2a'V „V„(t(+V(„W„),

(2.6)

13 =g +a'(BP) + ,'W B((t(, —

where 13G, P„, and ((3 are the renormalization group P
functions and where H„&=B~„B &) and
W„= (a' /24)V„H —.

We first show that for any dilaton function satisfying
e ~Qe ~=0 with

g„=e ~5„, p, v=1, 2, 3,4,

We follow Metsaev and Tseytlin's computation of the
renormalization-group P functions for the general 0 mod-
el and combine dimensional regularization and the
minimal subtraction scheme with the following general-
ized prescription for contraction of e'" tensors [20]:

&ob&~d f(d}(5a~5bd 5ad5b~) (2.9)

+ ,'P („)p(H—)~]+ (H„„W(,—, (2.10)

P =—— [V P —2(BQ) + —,', H ]

&2

+ [2(K )""V„V (t(+R (,„„—", RHH—
+ ,', H + ", (H„—„)+ ',—VH VH]+—,'W d P, —

where VH VH—:V Hp &V H~~ . Unless otherwise indi-
cated, all expressions are written to two-loop order in the
P functions, which corresponds to O(a') in the action.
Also, all indices are in the curved four space, as it is clear
that the Qat dimensions do not contribute.

The crucial observation for obtaining higher-loop and
even exact solutions is the following. For any solution of
the form (2.7), we can express the generalized curvature
in covariant form in terms of the dilaton field
[8,9,11,12]:

R 'Jk(
=5;(V k V) (t' 5;k V ( VJp+ 5J(,

—V ( V; p 5J(V k V(p—
+ejk~ V(V~/+ e;,(~ V k V~/,

It follows from (2.11) that

(2.11)

where f(d)=1 f—)E+O(e ) and e=d —2. We note that
the precise form of the renormalization-group ((3 functions
at two-loop order is not scheme independent but depends
on the choice of f, . Here we set f, = —1, for which
Metsaev and Tseytlin obtain the following two-loop ex-
pressions for the Weyl anomaly coefficients [20,21]:

P„=a'(P(„)+2V„V ((())

&2

+ [R '(„P„).p,
—

—,'P ' (P„).p,2

+T(k („,)(((H } ~]+V(„W„),

P„=a'(P(„„)+H„„B((t()
&2

+ [R '(P „).~, ,'R "(P——,).~,

gab ~ab, a, b=5, . . . , 26,

H„„(„=+@„„(„BQ, (((,, v, A, , o =1,2, 3,4

(2.7)

+ ,'(H kH'( H (H—k ') . — .(2.8)

the O(a') Weyl anomaly coefficients vanish identically.
We define a generalized curvature R '

kI in terms of the
standard curvature R '~k( and H„& [24]

R ',k( R',„,=+ ,'(V(H', „V„H',;)—.—

R(„„)= —2V„VAI,

RI„)—0 .

It also follows from (2.7) that

V /=0,
H„.'a,y=o,
H =24(BQ)

(2. 12)

(2.13)

One can also define R'
kI as the Riemann tensor generat-

ed by the generalized ChristoFel symbols f'"&, where
f'~ =r~ —-'H~ .aP aP p aP'

From (2.12) and (2.13) it follows that the O(a') terms in
the Weyl anomaly coefficients in (2.10) vanish identically
for the ansatz (2.7). A tree-level multi-instanton solution



4528 RAMZI R. KHURI 46

is therefore given by (2.7) with the dilaton given by

N

e ~=C+ g
, =, /x —a, /'

' (2.14)

2P
2(1 —a'/Q)

(2.21)

where Q, is the charge and a, the location in the four
space (1234) of the ith instanton. We call (1234) the
transverse space, as the solitons have the structure of
(21+ 1)-dimensional objects embedded in a 26-
dimensional space time.

We now specialize in the spherically symmetric case
e ~=Q/r in (2.7) and determine the O(a') corrections
to the massless fields in (2.7) so that the Weyl anomaly
coefficients vanish to O(a' ). For this solution we notice

which corresponds to a simple rescaling of the dilaton. A
quick check shows that this solution has finite action near
the singularity.

We now rewrite P in (2.20) in the following suggestive
form:

I I

6p =[1+6a'(ap) ]+ 3 —6 +12
V„V /=0,

and therefore (2.11)

(2.15)
=4 (2.22)

R'
I,I=0, (2.16)

2$0e
r2

02P
gv =e

Hpvk —Gy~g~a fp '

(2.17)

It follows from (2.17) that H =24(asap} =24/Q and thus
W„=O. It follows from (2.16) that P„„and P„, vanish
identically to two-loop order and that

and we have what is called a "parallelizable" space
[20,21]. To maintain a parallelizable space to O(a') we
keep g„, and H pz in their lowest-order form and assume
that any corrections to (2.7) appear in the dilaton:

0 =0p+&'0i+
Ii=, J d x[Q(au ) +a'R' 'P]

1

4m.a' (2.23)

is the action for a Feigin-Fuchs Coulomb gas, which is a
one-dimensional CFT with central charge given by
c, = 1+6a'(aP) [25]. The imaginary charge of the
Feigin-Fuchs Coulomb gas describes the dilaton back-
ground growing linearly in imaginary time and I3 is the
Wess-Zumino-Witten [22] action on an SU(2) group man-
ifold with central charge

The above splitting of the central charge c =6P suggests
the decomposition of the corresponding 0. model into the
product of a one-dimensional CFT (a Feigin-Fuchs
Coulomb gas) and a three-dimensional WZW model with
an SU(2) group manifold [7,20,21]. This can be seen as
follows. Setting u =1nr, we can rewrite (2.5) for our solu-
tion [7] in the form I=Ii +I3, where

p =—+a' (aQ) ——D, 2 1

6

3k 6 12C3= 3 + + 0 ~ ~

k+2 k
(2.24)

&2

16

+ —", (H„, ) + ', VH VH] . — (2.18)

We use the relations in Eq. (34) in [20] for parallelizable
spaces and the observation that (H„„) =2H =192/Q
for our solution to get the identities

where k =Q/a', called the "level" of the WZW model, is
an integer. This can be seen from the quantization con-
duction on the Wess-Zumino term [22]

lI z=
4 ~

d'xf"a. x"abx B4m'' as,

I d'x~'"'a x~a x"a x'H. ,l

12m+'

2 l 4R kpvp 8H =2''l
CX

(2.25)

RHH =
—,'H

VH-VH=O .

(2.18) then simplifies further to

p =—+~ (ay) ——+2D, , 1 a'
6 Q

(2.19}

(2.20}

e2&=
r &4/( 1+2a' /Q)

(2.26)

Thus Q is not arbitrary, but is quantized in units of a .

We use this splitting to obtain exact expressions for the
fields by fixing the metric and antisymmetric tensor field
in their lowest-order form and rescaling the dilaton order
by order in a'. The resulting expression for the dilaton is

The lowest-order term in P is proportional to the central
charge and the O(a') terms vanish identically. With the
choice VP, = —(1/Q)Vpp, the O(a' ) terms also vanish
identically. The two-loop solution is then given by

We now turn to the heterotic multi-instanton solution
of [11,12]. The tree-level supersymmetric vacuum equa-
tions for the heterotic string are given by
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5$ =(V —
—,'H~zsr" )e=0,

5X=(r"a„y—
—,'H„„rA")e=o,

5y=FABI " =0,

(2.27)

(2.28)

(2.29)

where g~, A, , and g are the gravitino, dilatino, and gaugi-
no fields. The Bianchi identity is given by

dH =a'(trR h R —
—,', TrF R F ) . (2.30)

gab Iab

H„„,=+ „„,.a y

(2.31}

The (9+ 1)-dimensional Majorana-Weyl fermions
decompose down to chiral spinors according to
SO(9, 1)DSO(5, 1)NUTSO(4) for the M '—+M 'XM
decomposition. Let p, v, k, o.= 1,2, 3,4 and
a, b =0,5, 6, 7, 8,9. Then the ansatz

2Pg~.——e S

N

f=e 'e ~=1+ g
, =, fx —a, /'

'
p

(2.38)

3k'
k'+2 (2.39)

where p, is the instanton scale size and a, the location in
four space of the ith instanton. An interesting feature of
the heterotic solution is that it combines a YM instanton
structure in the gauge sector with an axionic instanton
structure in the gravity sector. In addition, the heterotic
solution has finite action.

Note that the single-instanton solution in the heterotic
case carries through to higher order without correction
to the dilaton. This seems to contradict the bosonic solu-
tion by suggesting that the expansion for the Weyl anom-
aly coefficient P terminates at one loop. This contradic-
tion is resolved by noting that for a supersymmetric an-
satz the bosonic contribution to the central charge is
given by [29]

A,oFi ~= —,el, F~~ . (2.32)

An exact solution is obtained as follows. Define a gen-
eralized connection by

with constant chiral spinors e+ solves the supersymmetry
equations with zero background Fermi fields provided
the YM gauge field satisfies the instanton (anti-)self-
duality condition

where k'=k —2. This reduces to

6
c =3——

k
6a'3— (2.40)

g AB ~AB+H AB
+M M — M (2.33)

+5 „V„V„P—5 „V„V„P

epmna aVvk—+ vmnaVa IJO &

from which it easily follows that

R(Q )„+,"=+ ,'e„„R(Q+)P". —

(2.34)

(2.35)

fhus we have a solution with the ansatz (2.31) such that

embedded in an SU(2) subgroup of the gauge group, and
equate it to the gauge connection A„[26] so that dH =0
and the corresponding curvature R ( 0+ ) cancels against
the Yang-Mills field strength F. As in the bosonic case,
for e ~Oe ~=0 with the above ansatz, the curvature of
the generalized connection can be written in the covari-
ant form [8]

R(Q+)„„"=5„„VV„Q 5„„V V,P—

which indeed terminates at one-loop order. The exact-
ness of the splitting then requires that c& not get any
corrections from (B@)2so that c, +c3=4 is exact for the
tree-level value of the dilaton [11,12,19].

III. THREE-DIMENSIONAL MONOPOLE SOLUTIONS

In this section we review the solutions with three-
dimensional spherical symmetry, and which have mono-
polelike structure. We begin with a simple modification
of the 't Hooft ansatz [16,17] which leads to a mul-
timonopole solution in field theory, not in the
Bogomoln'yi-Prasad-Sommerfield (BPS) limit [30,31] and
in itself is far less interesting than the BPS solution. We
then note that a tree-level bosonic multisoliton solution
with monopolelike structure can be written down [18].
Finally, we combine the gauge solution with the bosonic
solution to obtain an exact heterotic multimonopole solu-
tion [16,17].

We now return to the 't Hooft ansatz and the four-
dimensional Euclidean action

Fmn —R(~ )mn
py + py (2.36} S=— d x TrG„„G"', p, v=1, 2, 3,4 (3 1)

1

2g

A„=iX„,B lnf .

For a multi-instanton solution f is again given by

(2.37)

where both F and R are (anti-)self-dual. This solution be-
comes exact since A„=Q+„ implies that all the higher-
order corrections vanish [26—28, 11,12, 19]. The self-
dual solution for the gauge connection is then given by
the 't Hooft ansatz

with gauge group SU(2). We obtain a multimonopole
solution by modifying the 't Hooft ansatz

A„=iX„,B lnf (3.2)

as follows. We single out a direction in the transverse
four space (say x4) and assume all fields are independent
of this coordinate. Then the solution for f satisfying
f 'Hf =0 can be written as
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m, -f=l+ g
, /x —a, f

' (3.3)
& m, (x—a;)B(x)~ g as r~ ~ .

[x—a, /'
(3.10)

=G G +2Dk@'Dk+', (3.4)

which has the same form as the Lagrangian density for
YM plus massless scalar field in three dimensions.

We now go to 3+1 dimensions with the Lagrangian
density [signature (

—+ + + ) ]

X= ——'G' G""' 'D O—'D—"4'
4 p& 2 P (3.5)

and show that the above multimonopole ansatz is a static
solution with A o =0 and all time derivatives vanish. The
equations of motion in this limit are given by

D Giia g&abc(D j@b)@c

D.DID~=0
(3.6)

It is then straightforward to verify that the above equa-
tions are solved by the modified 't Hooft ansatz

—+ 5 8 N
1

(3.7)
BjCOk

where co=lnf. This solution represents a multimonopole
configuration with sources at a; i =1,2, . . . , N. A simple
observation of far-field and near-field behavior shows that
this solution does not arise in the Prasad-Sommerfield
[31] limit. In particular, the fields are singular near the
sources and vanish as r~~. This solution can be
thought of as a multiline-source instanton solution, each
monopole being interpreted as an "instanton string" [32].

The topological charge of each source is easily comput-
ed (4'=4'/~4~) to be

(3.8)

The magnetic charge of each source is then given by
m; =Q/g= 1/g. It is also straightforward to show that
the Bogomoln'yi [30] bound

Gij ~ij k Dk 4 (3.9)

is saturated by this solution. Finally, it is easy to show
that the magnetic field B; = ~ e;&kF~" (where

F„—=@'G„' —(1/ )e'"'N'D„4 D N' is the gauge-
invariant electromagnetic-field tensor defined by 't Hooft
[33]) has the far-field behavior of a multimonopole
configuration:

where m, is the charge and a; the location in the three
space (123) of the ith monopole. If we make the
identification 4=—A4 (we loosely refer to this field as a
Higgs field in this paper, even though there is no ap-
parent symmetry breaking mechanism), then the La-
grangian density for the above ansatz can be written as

Gp Gp Gj Gj +2Gk4Gk4

g„=e ~5„„, p, v=1,2, 3,4,
g.b

—q.b a, b =0,5, 6, . . . , 25,

H
&

=+e
& "r)„P, a, P, y, @=1,2, 3,4,

(3.1 1)

where x = (x „x2,x 3 ) is a three-dimensional coordinate
vector in the (123) subspace of the transverse space. m;

represents the charge and a; the location in the three
space of the ith source.

By singling out a direction x4 and projecting out all the
field dependence on it, we destroy the SO(4) invariance in

the transverse space possessed by the instanton solution

[8]. However, (3.11) is an equally valid solution to the
string equations as the multi-instanton solution, since in

both cases the dilaton field satisfies the Poisson equation
e ~ e ~ =0. The projection is necessary to obtain the
three-dimensional symmetry of a magnetic monopole.

Although the above bosonic multisoliton solution
(3.11) lacks the gauge and Higgs fields normally attribut-
ed to a magnetic monopole in field theory, one can think
of the dual field in the transverse four space
H* —=—'e 0 ~r as the magnetic-field strength of a mul-«Prv
timonopole configuration in the space (123) (note that

H4 =0).
Unlike the four-dimensional solutions, the three-

dimensional solutions do not easily lend themselves to a
CFT description, and it is therefore difficult to go beyond
O(a ) in obtaining stringy corrections to the tree-level
fields. In [8], the O(a') correction was worked out for
the special case of a single source with C =0. As in the
four-dimensional case, the metric and antisymmetric ten-

As usual, the existence of this static multimonopole solu-
tion owes to the cancellation of the gauge and Higgs
forces of exchange —the "zero-force" condition.

We have presented all the monopole properties of this
solution. Unfortunately, this solution as it stands has
divergent action near each source, and this singularity
cannot be simply removed by a unitary gauge transforma-
tion. This can be seen for a single source by noting that
as r~0, Ak~ —,'(U 'Bk U), where U is a unitary 2X2
matrix. The expression in parentheses represents a pure
gauge, and there is no way to get around the —,

' factor in

attempting to "gauge away" the singularity [34]. The
field-theory solution is therefore not very interesting
physically. As we shall see later in this section, however,
we can obtain an analogous finite-action solution in
heterotic string theory. As in the previous section, we
first consider a monopolelike solution in bosonic string
theory.

If we again single out a direction (say x4) in the trans-
verse space (1234) of the bosonic string and assume all
fields are independent of x4, then the tree-level bosonic
multisoliton solution to the string equations of motion
with the ansatz (2.7) is given by [18]

m,
e ~=C+ g

, fx —a,
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sor are unchanged to O(a'), but the dilaton is corrected:

e&=—1—m a'
r 8mr

(3.12)

H„„i=+@„„i8 P,
e'&=e 2P

(3.13)

A„=iX„B„lnf,
where in this case

X
f=1+ g

, /x —a, /

' (3.14)

where m,. is the charge and a; the location in the three
space (123) of the ith monopole. If we again identify the
Higgs field as 4—= A~, then the gauge and Higgs fields

may be simply written in terms of the dilaton as

A'= ——e'"~B P
ak

k j
(3.15}

for the self-dual solution. For the anti-self-dual solution,
the Higgs field simply changes sign. Here g is the YM
coupling constant. Note that $0 drops out in (3.15).

The above solution [with the gravitational fields ob-
tained directly from (3.13) and (3.14)] represents an exact
multimonopole solution of heterotic string theory and
has the same structure in the four-dimensional transverse
space as the above multimonopole solutian of the YM
plus scalar-field action. If we identify the (123) subspace
of the transverse space as the space part of the four-
dimensional space time (with some toroidal
compactification, similar to that used in [35]) and take
the timelike direction as the usual X, then the monopole
properties of the field theory solution carry aver directly
into the string solution.

The string action contains a term —a'F which also
diverges as in the field-theory solution. However, this
divergence is precisely cancelled by the term a'R (0+) in
the O(a') action. This result follows from the exactness
condition A„=Q+„which leads to dH=O and the van-
ishing of all higher-order corrections in a . Another way

Unlike the four-dimensional solution, however, the dila-
ton correction is not a simple rescaling of the power of r
to order a'. This fact is intimately connected with the
difficulty in formulating a CFT description of the three-
dimensional solution.

We now combine the above solutions to construct an
exact multimonopole solution of heterotic string theory.
The derivation of this solution closely parallels that of the
multi-instanton solution reviewed in Sec. II, but in this
case, the solution possesses three-dimensional (rather
than four-dimensional) spherical symmetry near each
source. Again the reduction is effected by singling out a
direction in the transverse space. An exact solution is
now given by

24'
gpv e ~pv & gab Dab

of seeing this is to consider the higher-order corrections
to the bosonic action shown in [27,28]. All such terms
contain the tensor T~zp&, a generalized curvature incor-
porating both R(Q+) and F. The ansatz is constructed
precisely so that this tensor vanishes identically [8,19].
The action thus reduces to its finite lowest-order form
and can be calculated directly for a multisource solution
from the expressions for the massless fields in the gravity
sector.

The divergences in the gravitational sector in heterotic
string theory thus serve to cancel the divergences stem-
ming from the field-theory solution. This solution thus
provides an interesting example of how this type of can-
cellation can occur in string theory, and supports the
promise of string theory as a finite theory of quantum
gravity. Another point of interest is that the string solu-
tion represents a supersymmetric multirnonopole solution
coupled to gravity, whose zero-force condition in the
gravity sector (cancellation of the attractive gravitational
force and repulsive antisymmetric field force) arises as a
direct result of the zero-force condition in the gauge sec-
tor (cancellation of gauge and Higgs forces of exchange}
once the gauge connection and generalized connection
are identified.

IV. CONCLUSION

We classified some of the recently obtained higher-
membrane solitonic solutions of string theory according
to the symmetry the solitons possess in the space trans-
verse to the membrane. We considered in this paper two
such classes: those with four-dimensional spherical sym-
metry, and which possess instanton structure, and those
with three-dimensional symmetry, which represent
magnetic-monopole-like solutions in string theory.

We outlined in Sec. II the 't Hooft ansatz for the
Yang-Mills instanton, and then turned to the bosonic
tree-level axionic instanton solution of [7], and its exact
extension for the case of a single-instanton wormhole
solution [8]. A combination of the gauge instanton and
axionic instanton solutions led to an exact multi-
instanton solution in heterotic string theory [11,12].

In Sec. III we considered some of the monopolelike
solutions. In this case, a combination of the modified
't Hooft ansatz [16,17] and a bosonic three-dimensional
solution [18] led to an exact heterotic multimonopole
solution [16,17]. Unlike the instanton solutions, the
monopole solutions do not seem to be easily describable
in terms of conformal field theories, an unfortunate state
of affairs from the point of view of string theory. An in-
teresting aspect of this solution, however, is that the YM
divergences of the modified 't Hooft ansatz solution are
precisely cancelled in the string theory solution by similar
divergences in the gravity sector, resulting in a finite-
action solution. This finding is significant in that it
represents an example of how string theory incorporates
gravity in such a way as to cancel infinities inherent in
gauge theories, thus supporting its promise as a finite
theory of quantum gravity.

Another class of solutions, which we did not consider
here, are the eight-dimensional instanton [36—38] solu-
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tions of string theory [39—41]. In this case, however, the
exact extension is most natural in the context of a dual
theory of fundamental five-branes, which has not yet been
constructed.
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