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Conformally exact metric and dilaton in string theory on curved spacetime

I. Bars and K. Sfetsos
Physics Department, University ofSouthern California, Los Angeles, California 90089 0-484

(Received 4 June 1992)

Using a Hamiltonian approach to gauged Wess-Zumino-Witten models, we present a general method
for computing the conformally exact metric and dilaton, to all orders in the 1/k expansion, for any bo-
sonic, heterotic, or type-II superstring model based on a coset G/H. We prove the following relations:
(i) For type-II superstrings the conformally exact metric and dilaton are identical to those of the nonsu-

persymmetric semiclassical bosonic model except for an-overall renormalization of the metric obtained

by k ~k —g. (ii) The exact expressions for the heterotic superstring are derived from their exact bosonic
string counterparts by shifting the central extension k ~2k —h [but an overall factor (k —g) remains un-

shifted]. (lii) The combination e &—G is independent of k and therefore can be computed in lowest-

order perturbation theory. The general formalism is applied to the coset models

SO(d —1,2) I, /SO(d —1, 1) I, that are relevant for string theory on curved spacetime. Explicit expres-
sions for the conformally exact metric and dilaton for the cases d =2, 3,4 are given. In the semiclassical
limit (k ~ 00 ) our results agree with those obtained with the Lagrangian method up to one loop in per-
turbation theory.

PACS number(s): 11.17.+y, 02.40.+m, 04.20.Jb

I. INTRODUCTION

During the past year there has been extensive investi-
gations of curved-spacetime string backgrounds generat-
ed by noncompact cosets G/H. A11 models with space-
time dimension d(4 require the noncompact current
algebra coset SO(d —1,2) i, /SO(d —1, 1) i, as part of,
or as the full, conformal field theory [1]. The action is
written in the form of a gauged Wess-Zumino-Witten
(WZW) model [2]. For models involving more than four
spacetime coordinates there are other possibilities which
have been classified [3], but so far not investigated. The
semiclassical analysis [4] for k —+ ~ has shown that these
are useful models for learning more about string and par-
ticle propagation in gravitationally singular spaces such
as black holes and more interesting singularities in vari-
ous dimensions. By now essentially all models up to di-
mension four have been subjected to the semiclassical
analysis [5—12]. A cosmological interpretation has also
been found [13—15]. A group-theoretical method for the
global analysis of these semiclassical geometries, includ-

ing an explicit solution of the geodesics, has been formu-
lated and explicitly applied to some cases [14].

As in [8], heterotic and type-II superstring actions can
be constructed in exactly four dimensions in the form of
N =1 superconformal gauged WZW models. We believe
that a heterotic string model of this type, perhaps with
some variations, taken with a cosmological interpreta-
tion, provides the kind of setting suitable for a discussion
of the physics of the early Universe in the context of
string theory.

The principal method of semiclassical investigation fol-
lowed Ref. [4], which used a Lagrangian method. Quan-
tum corrections, which were necessary to obtain the dila-
ton and satisfy the perturbative equations for conformal
invariance [16], were limited to one loop. In practical
terms one cannot carry out the quantum computation of

the cr-model-like theory to all orders with this method.
However, the main interest in these models stems from
the fact that they are conformally exact current algebra
theories, which are in principle exactly solvable quantum
theories. In order to take advantage of this fact it is
desirable to go back to the Hamiltonian method and use
the algebraic properties of the current algebra. The mod-
el can then be investigated via the coset methods for non-
compact current algebras [17,18].

In this paper we will show how to use the Hamiltonian
approach to compute the gravitational metric and dilaton
backgrounds to all orders in the quantum theory (all or-
ders in the central extension k). These will then provide
a more accurate representation of the conformally exact
vacuum configuration of the string at the "classical" level
(i.e., no string loops). We have managed to obtain these
quantities for bosonic, type-II supersymmetric, and
heterotic string theories in d & 4. '

The main idea is the following: The conforrnally exact
Hamiltonian is the sum of left and right Virasoro genera-
tors La+La that may be written purely in terms of
Casimir operators of G and H at the tachyon level. The
exact dependence on the central extension k is included
in this form. If we investigate the exact quantum eigen-
states in configuration space, then the Casimir operators
become Laplacians constructed as differential operators
in group parameter space (dirnG). If the state P is a sing-
let under the gauge group H (acting simultaneously on

'The corresponding results are also given for a particle theory

whose WZW-like action was defined in [14]. The particle

theory can be thought of as a string shrunk to a point which has

no interactions with string excitations. For this case the semi-

classical result is actually exact.
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left and right movers), then gauge invariance requires
that it is a function of singlet combinations of group pa-
rameters. There are exactly dim(G/H) such invariants
which we choose as our string coordinates X'. We have
recently shown [14] that these invariants provide a global
description of the geometry. In this way we can write the
conformally exact Hamiltonian L p +L p as a differential
operator in the global curved-space-time manifold involv-
ing only the string coordinates X'. By comparing to the
expected general form

II. ALGEBRAIC FORMALISM FOR COMPUTING
THE EXACT METRIC AND DILATON

Let us consider a bosonic string theory for closed
strings in d curved-space-time dimensions, based on a cr-
model conformal field theory with string coordinates X',
a =0, 1, . . . , d —1. The space-time metric and dilaton
fields are G,b(X) and 4(X), respectively. We begin with
the effective action for the tachyon field T(X) in d space-
time dimensions. The most general form of this effective
action is

S [ T]= f d X& Ge (—G' d, Tr)b T —V( T)),
V(T)=2T +0(T ),

(2.1)

where V(T) is the tachyon potential whose precise form
is not necessary for the analysis that follows. From the
point of view of conformal field theory the tachyon is
completely defined through the action of the zero modes
L p and L p of the stress tensors for the left and right
movers. Therefore (2.1) must be equivalent to the follow-
ing action:

S [T]=f d X& Ge (T(LO +Lo—)T —V(T)) . (2.2)

Comparison of (2.1) with (2.2) determines the form of
L p +L p as a differential operator in configuration space,

(L +L")T= — t), (G' e &—G t)bT) . (2 3)
1

e~&—G

Now let us consider the o.-model-like action which re-
sults from an exact conformal theory based on the gauged
WZW action. Using the equivalent current algebra coset
model G/H, we can write L p in terms of the quadratic
Casimir operators hG and b H for the group and the sub-

(L +L" )Q= B,(e )/ GG—' Bbf)e~ —G

for the singlet g, we read off the exact global metric and
dilaton.

We have applied this program to the general bosonic,
heterotic, and type-II superstrings and derived relation-
ships among the exact quantities of these theories as an-
nounced in the abstract of this paper. For the specific
cosets of interest SO(d —1,2)/SO(d —1, 1) explicit ex-
pressions are given below. The large-k limit of our re-
sults agrees with the previous semiclassical computations.
In the special case of two dimensions we also agree with
another previous derivation of the exact metric and dila-
ton for the SO(2, 1)/SO(1, 1) bosonic string [19].

group as follows:

gL

k —g
(2.4)

where JG and JH are anti-Hermitian group and subgroup
generators obeying the appropriate Lie algebras, and g, h

are the Coxeter numbers for the group and the subgroup.
For the cases of interest in this paper g =d —1,h =d —2
for d ~ 3, and g =2, h =0 for d =2. An expression simi-
lar to (2.4) can also be written for Lo. As shown below,
we construct the generators JG,JG,JH, JH as first-order
differential operators acting on group parameter space.
Then the Casimir operators EG, EH, EG, b H contain sin-

gle and double derivatives with respect to all dimG pa-
rameters in G.

For the purposes of this paper it is sufficient to concen-
trate on gauge-invariant tachyon level states T which
satisfy

(JH+ J~)T =0 . (2.5)

The number of conditions is dimH and therefore T can
depend only on d =dim(G/H) parameters, X' (string
coordinates), which are H invariants. The fact that there
are exactly dim(G/H) such independent invariants is not
immediately obvious, but it should become apparent to
the reader by considering a few specific examples. As dis-
cussed in [14] these are in fact the coordinates that glo-
bally describe the O.-model geometry. Consequently, us-
ing the chain rule, we reduce the derivatives in (2.4) to
only derivatives with respect to the d string coordinates
X'. Moreover, using the fact that hG =AG for any
group, together with the fact that the gauge-invariance
condition (2.5) leads to (hH —b H ) T =0 [see (2.14)
below], we ensure the physical condition for closed bo-
sonic strings (Lo Lo )T =0. T—hen using (2.3) and (2.4)
one can deduce uniquely the expression for the inverse
metric G' by comparing the coefficients of the double
derivatives B,BbT. Comparison of the single-derivative
terms B,T will give a system of d coupled linear partial

2For the particle theory of footnote 1 the Hamiltonian con-
tains no Coxeter numbers since the higher string excitation are
absent. Then Lp =(EG 5~)/k.

Since we have defined our Casimir operators as the square of
anti-Hermitian generators we differ by a minus sign from usual
conventions. For example, for SU(2) we would get the eigenval-
ues 6G = —j(j+1)instead of +j(j+1).

4If H contains an Abelian U(1) or R factor there is the alterna-
tive of imposing the axial gauging condition (JH —JH )T =0 for
the currents associated with the Abelian factor. For an applica-
tion see [20].

This follows from JG = —g 'J&g + (1/D)Tr(g 'JGg), where
D is the dimension of the matrix g. The second term is present
because g and Jz do not commute as quantum operators and JG
has to be traceless. But despite its presence the relation
AG =5& is derived from it.
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differential equations, whose solution determines the dila-
ton field 4.

The general k dependence of the exact expressions
takes a particular form that can be seen as follows. In the
large-k limit (2.4) becomes proportional to
(1/k)(b, G hH), —from which we can read off the semi-
classical metric and dilaton according to the above pro-
cedure. Therefore, we may rewrite (2.4) in the form

h„=[(1+a)(1—a) ']„",with a„=—a „when both in-
dices are lowered. To ensure that t is a SO(d —1,2)
group element we take b =(1—x )/(1+x ). By consid-
ering the infinitesimal left transformations 6Lg =eLg we
can read off the form of the generators,

J„,, = —,'(1+a)„(1+a)„t/ a
P OQ.p

I.OLT = 1

k —g
~G/H+

k h
~HL g ~ L (2.6) J = ——'(1+x ) —

Q . P

(2.8)

1 0

0 p

b (b+1}x'
(b +1)x„—[r)„'—(b +1)x„x"]

(2.7}

Furthermore, h can be written in the form
I

where hG&H =5G —hH. Then it is evident that, except
for the overall factor (k —g), all dependence on k has the
form (g —h)/(k —h). This applies to the bosonic string.
For the heterotic and type-II superstrings the k depen-
dence can be derived by the same technique as will be
seen below. It is evident that for the particle theory of
footnotes 1 and 2 there are no such corrections to the
semiclassical result.

Let us specialize to the coset models
SO(d —1,2) k /SO(d —1, 1) k with d =2, 3,4 since
these are the ones of interest for a theory in four dimen-
sions. We want to find the currents appropriate for right
or left transformations of the group elements of
SO(d —1,2) in an SO(d —1, 1) basis. It is convenient to
parametrize the group element of SO(d —1,2) as the
product g =ht, where h ESO(d —1, 1) and
t ESO(d —1,2) /SO(d —1, 1). The h, t are given by

+ —,'(1+a)„(1+a)t/rx r
BQ~p

It can be shown that the above generators obey the com-
mutation rules of the SO(d —1,2) algebra. Namely,

L L L L L L
[jpv& ja/3] jpa lvP jva lp/3+ jvt/ /pa jp/39va

[J„„J ]=r)„P, —r),P„,
[J J ]=J

(2.9)

If we consider instead, the infinitesimal right transforma-
tions 5&g =go„we find the expressions

j~,= —
—,'(1 —a)„(1—a),/3

a

BQ~p

j~ = —,'(x —1) —x x'a - a
axP " axv

——'(1 —a) (1—a)
C}

Q ap

a
fp g v]

(2.10)

These currents obey the same commutation rules as in
(2.9) and moreover commute with the left currents
[J,J ]=0. Now we construct the quadratic Casimir
operator associated with the left and right currents. We
find

82=
—,'(1+x )

ax pox„

a2
(1+x )x„+—,'(1+a)„xr(1+a) sx (1—a )„t/

2 p Bx„4 BQpVBQ ~p

a2
+ —,'(1+a)„~ (1—a )„~~ + —,'(1+x )(1+a)„~ (I+a),t/

a2+ —,'(1 —a )„(1—a ),& + —,'(a —a )„POQ„OQ p pv

(2. 11)

The expression for 6G is identical for reasons explained
in footnote 5. The quadratic Casimir operators corre-

sponding to the subgroup H =SO(d —1, 1) are

=—'(j ) (j )""
H p pv

6We follow the notation of [14]. As explained there, to com-

pare with [7,8] where another vector X" was used, one should

set X"=2x"/(x —1). These Lorentz vectors should not be

confused with the Lorentz-invariant string coordinates X' even

though they have the same dimension d =dim( G /H).

=
—,'(1 —a )„(1—a ),s + ~(

BQp BQ p BQp

(2.12)

and
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gR & (JR) ( JR)Pv
H p pv

B2=
—,'(1 —a )„(1—a ) & Ba„Ba &

+—,'(a —a )„,
Bap~

Using the chain rule, we transform the derivatives with
respect to the vectors x" and y"= ,'—e" a„z in (2.11) and

(2.12) to derivatives with respect to the H invariants
v, u, b, e.g.,

B' B+(x 7)„—x„x ) —(d —1)x„
Bxp Bx Bxp

+(1+a)„~ (1+a),p
B2

Ba„Bx&
(2.13)

4 2T= [2v (x.y)/x [(x y )x"—x y" ]] T
Bxp Bu

(b—+1) x" T,
Bb

The two expressions differ by the last line in (2.13) which
equals

gR gL 1((JR)Pv (JL)Pv)((JR) +(JL) ) (2.14)

B B
Q[pg ) x[p )

T 0
Ba&' Bx' (2.15}

Using the expressions (2.8) and (2.10) the gauge-
invariance conditions (2.5) take the form

etc. Finally, with the dot products in the Laplacians, Lo
is written only in terms of ( v, u, b) when acting on T.
Then comparison of the double-derivative terms in (2.3)
and (2.4) gives the nonzero elements of the inverse of the
metric [we omit an overall factor of 1/[2(k —2)] which
will be restored later in (3.5)],

gbb —4(b2 1)

where the brackets indicate antisymmetrization of the
p, v indices. This form is recognized as the global
Lorentz generator and it requires that T be constructed
only from Lorentz invariants that can be formed from x„
and a„. Next we specialize to the cases d =3 and d =4.
The d =2 case corresponding to the two-dimensional
black hole is discussed in the Appendix.

b —1 4G'"= —4 v (v —u —2)+ v (v —2),b+1 k —1

G""=4 u (v —u —2)+ u (u +2),b+1 4
b —1 k —1

46""= vu,
k —1

(3.3)

III. 3d BOSONIC STRING

The 3d model based on the coset model
SO(2, 2)/SO(2, 1) was discussed semiclassically from the
gauged WZW model Lagrangian point of view in [5,7,9].
This model may be viewed as the 3d submanifold of a
four-dimensional model which is constructed by adjoin-
ing a factor of U(l) or R to the coset. The global struc-
ture of the 3d manifold was analyzed in [14] by finding
the global coordinates and examining the particle trajec-
tories. In particular, it was found that the space consists
of two topologically distinct sectors. There is a curvature
singularity with the topology of "pinched double
trousers" in one sector and that of a "double saddle" in
the other. In this case the antisymmetric matrix a„, has
three parameters; therefore, it is possible to reparameter-
ize it in terms of a three-dimensional vector y", as
a„„=e„„~ Then the ga. uge condition (2.15) takes the
form

B
1n(& —Ge ) = b

Bb b —1

(GUv+ g 4)+ (GMv+ G 4)
Bv Bu

b —1 4v —2=2&' —Ge (u +2—3v)+b+1 k —1
(3.4)

(G""&—Ge )+ (G""&—Ge )
Bu

'
Bv

=2&—Ge b+1
(v —2 —3u)+ 4u +2

b —1 k —1

and comparison of the single-derivative terms yields a
system of linear partial differential equations which deter-
mine the dilaton,

B By[„)+x[ T =0 .
By Bx

(3.1)

The constraint (3.1} requires that T depends only on the
three Lorentz invariants x,y, x.y, or their combina-
tions. In fact, in order to make correspondence with pre-
vious results we choose the same invariants as in [14]
with T(v, u, b} where

Note that without a dilaton these equations have no solu-
tions. Therefore, even without the hindsight of general
string arguments, a dilaton must be introduced in our ap-
proach in order to have a solution to these equations. If
we invert the inverse metric we get for the line element
the following expression [we also restore the overall fac-
tor 2(k —2)]:

ds ~ =2( k 2)( G„bdb +G—,„dv + G„„du +2G„„dvdu ),
1 —x' 2 (x y)'b= v= u = 21+x 1+y x (1+y )

(32)
with

(3.5)
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(- — +) IIa (+ — +) Izb

/ I

I' (- + +) j -2

z'

/
I ' b (+ — +)

(- — +)

2-2/(k-1) & a & 2-2/(k-1) 2

-2+2/(k-1) & c & 0

IIII
II ' b (+ — +) 2-2/(k-1)2 & a & 2

c&0

FIG. 1. Allowed regions of the 3d manifold for the coset model SO(2,2)/SO(2, 1). (a) b )k/(k —2). (b) 1 (b (k/(k —2).

Gbb
1

4(b 1)—
G

UV

P(v, u, b) b —1

4u (v —u —2) b +1
1 P(v, u, b)

4(k —1) (v —u —2)2

1 u —2
k —1 v —u —2

and where the function p(v, u, b) is defined as

P '(v, u, b) =1+ 1 1

k —1 u —u —2

P(v, u, b) b+1 1 u +2
4v(v —u —2) b —1 k —1 v —u —2

(3.6)

semiclassical limit k ~ (x) . Because of the group-
theoretic nature of the derivation it was conjectured that
the combination e &—6 is k independent and equal to
the one-loop result, although individually the metric and
the dilaton can receive 1/k corrections. In the notation
of [14] the one-loop semiclassical result is

uu

1/2

(3.9)

e v' —6 =e &—6 ~k „ for all k . (3.10)

One can now check that this expression indeed satisfies
the system of differential equations (3.4) for all values of
k. Therefore, the conjecture is correct as we expected on
the basis of the group-theoretical argument above. So we
have proven the theorem

X (u+2)b+1

b+1(
)

2

b —1 k —1
(3.7)

This is also true in all string and superstring models we
consider in the present paper. We are convinced that this
is a general feature of gauged WZW models. After calcu-
lating v' —6 from (3.3) or (3.6) the result for the dilaton
1s

Haar X Faddev —Popov/determinant =&—G (3.8)

Moreover, the dilation @ which solves the conformal
conditions [16]was identified as e =determinant. These
observations led to the concluison that the purely group-
theoretical HaarXFaddeev —Popov can always be writ-
ten in the form e &—G. This result was true in the

It remains to solve the system of differential equations
(3.4). Although the solution to those equations is
straightforward, it is illuminating to guess the solution by
recalling some of the results of [7] and [8] (see also [21]).
There it was found that various factors in the measure,
including the group Haar measure, the Faddeev-Popov
determinant in a unitary gauge, and the determinant pro-
duced by integrating out the gauge fields, combine to-
gether to give the square root of the determinant of the
metric. That is

(b 1)(v ——u —2) ++4= ln
&P(v, u, b)

(3.11)

where +0 is the constant of integration. In the limit
k~ ~,P~l both the metric and the dilaton tend to
their semiclassical expressions of [14].

One might ask the question: How does the finite value
of k modify the manifold? In Figs. 1 —3 the allowed re-
gions in the v-u plane are indicated at fixed values of b.
As in [14], the three signs inside the parentheses in the
various regions are the signs of the coe%cients of
du, du, and db in the semiclassical metric. A minus
(plus) sign corresponds to a time (space) coordinate, thus
indicating the signature of the region. The regions with
one time coordinate correspond to the SO(2,2)/SO(2, 1)
coset. The remaining regions correspond to the analytic
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IZ'c (+ + -)
IZ'f (+ + -)

0 2

(- --~

(+ — -)

(+ + -) ZZC

2 & a & 2+2/(k-1)
c & -2-2/ (k-1)

& 2+2/(k-1)
-2-2/(k-1) & c & -2

FIG. 2. Same as Fig. 1but with (a) 0&b &1 and(b) —1&b &0.

continuations SO(3,1)/SO(3) (++ + ), SO(4)/SO(3)
(
———), and SO(3, 1)/SO(2, 1) (one plus). Thus, by speci-

alizing to each one of these regions our exact metric and
dilaton describe those cosets as well. The 45' line
u =u —2 is a curvature singularity in the semiclassical
limit, the other two being at b =+1. The way the
b-fixed planes are sliced up by the lines at
u =O, u =O, u —u —2=0 into regions of various signa-
tures is a purely group-theoretical result about the coset
manifolds that are listed above. That is, the coset mani-
fold SO(2,2)/SO(2, 1) lives in the ranges of (v, u, b) param-
eters indicated in the figures, independently of any metric
(similarly for the other manifolds). As it turns out, the
full region coincides with the properties of the semiclassi-
cal metric. However, quantum corrections may require
additional constraints on the acceptable regions in order
to maintain the signature. This is indeed what happens,

and how the k dependence of the exact metric shows up.
The second line, with varying slope (which depends on b)
is a singularity of the function P(v, u, b) For t.he case of
the coset SO(2,2)/SO(2, 1) and k &2, one must demand
that P(U, u, b}& 0 so that the exact metric has the correct
signature, as seen from the determinant of the metric (one
time coordinate requires detG & 0}. This leads to further
restrictions for the allowed regions. The result is shown
as the shaded areas in the figures: they have switched sig-
nature due to the quantum corrections. Therefore, al-
though they were previously allowed, they are now off
limits since a classical geodesic in the SO(2,2)/SO(2, 1)
unshaded regions cannot enter the shaded areas. There-
fore quantum amplitudes are expected to decay off and
tunnel in these regions. This implies that quantum effects
have created a screening of the classical singularity, al-
though not everywhere.

ZZ'g (- + +)

(- - +)

/I/
,~ /

@+r ~ zz'g (- + +)

(} /a
2

ZZg (- + +)

(- - +)

a&0
-2 & c & -2+2/(k-1)

2-2/(k-1)

1)2 & c & -2+2/(k-1)

FIG. 3. Same as Fig. 1 but with (a) —k l(k —2) & b & —1 and (b) b & —k l(k —2).

The signature depends crucially on the sign of k —2 as seen from (3.5). Demanding c =26 for the bosonic string gives k =2.48 or
k =0.91, and c = 15 for the superstring gives k =20/7. It is believed that a consistent quantum theory requires k & 2 [18]. Neverthe-
less, one could perform a similar analysis even when k & 1.
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IV. 4K/ BOSONIC STRING

The 4d model based on the coset SO(3,2)/SO(3, 1) was
analyzed in [8] where expressions for the perturbative
metric and dilaton were given in some patches of the
manifold. We will see that the method we have been fol-
lowing in the present paper leads to the discovery of the
global coordinates as well. The four invariants one can
construct and which satisfy the gauge condition (2.15) are ao, =tanht or cotht, a23 =tang . (4.3)

To find the ranges in which the above global coordinates
take their values we consider a Lorentz frame that can
cover all possibilities without loss of generality. First, we
notice that by Lorentz transformations the antisymmetric
matrix a„can always be transformed, as in [8], to a
block-diagonal matrix, with the nonzero elements

x, z, =
—,
' Tr(a ), z2= —,

' Tr(a*a), z =xa x/x

(4.1)

Then using (4.2) one can deduce the form of the global
variables: v =+cosh2t, w =cos2$, and

where a„*„=—,'e„, @ ~ is the dual of a„,. However, the
metric written in these coordinates is nondiagonal and
very complicated. Instead, we use a different set of four
invariants b, u, v, w for which the semiclassical metric is
diagonal,

1+z2+2(z, —z3 }6=, u=
1+x 1 —2z& —z2

(4 2)
1+z, +(z +z )' 1+z, —(z +z )'

1 —z, —(z, +z2)' 1 —z, +(z, +z2)'

2 [ w(x 0 xi ) v(x2+x3)]

When x (0, apart from an overall factor we may give its
components by (O, cos8, 0, sin8) or by (sinh1(, cosh/, O), on
the other hand, when it is timelike x )0 we may write
(cosh/, 1(,O, sinhg, O). These three possibilities give the
following expressions for u: (i) u =w cos 8+ v sin 8, (ii)
u = —w sinh g+ v cosh g, (iii) u = w cosh g —v sinh 1(.
Then the string variables take values in the following re-
gions with the signature indicated in the (b, u, v, w } basis

(++—+): b'&1, j
—1&w &u &1&v or v & —1&u &w &1 or —1&w &1&u &vj

(+ —++): b &1, j
—1&w &1&v &u or u &v & —1&w &1]

(
—+++): b &1, [u &w &1&v or v & —1&w &u or v &u & —1&w &1) .

(4.4)

Then by considering states of the type T = T(b, u, v, w) and following a procedure similar to the 3d case we find the line
element

ds =2(k —3)(G„qdb +G„„du +G„dv +G „dw +2G„„dudv+2G„dudw+2G, dvdw),

where

Gbb
1

4( b 1)—
(4.5)

P(b, u, v, w) b —1

4(u —w)(v —u) b +1
1 (v —w)

1
1 b+1

k —2 (v —u)(u —w) k —2 b —1

(v —w)P(b, u, v, w) b+1
4(U —1)(v —u) b 1

1 1

k —2 (v —u)(u —w)

b+1 1 b+1 (1+v )(u+w) —2v(1+uw)
X 1 —u + (v —u v —w+

b —1 k —2 b —1 U W

(v —w)P(b, u, v, w) b+1
4(1—w )(u —w)

1 1

k —2 (v —u)(u —w)

b+1 1 b+1 (1+w )(u+v) —2w(1+uv)
X 1 —u + u —w(v —w-

b —1 k —2 b —1 V W
(4.6)

6 = P(buv w)
1

1 b+1 v w

4(k —2)(v —u)~ k —2 b —1 u —w

P(b, u, v, w) 1 b+1 v —w

4(k —2)(u —w)~ k —2 b —1 v —u
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1 b+1 P(b, u, v, w)

(k —2) b —1 4(v —u)(u —w)
'

where the function p(b, u, v, w) is defined by

1 (v —w) b+1 b —1 1 —u + 1

k —2 (v —u)(w —u) b —1 b+1 (v —w)~ k —2

+ 2 b+1 Uw —1

(k —2)3 b —1 (v —u)(u —w)

The dilaton field is

vw +u (v +w) —3

(v —w)

b+1
2

(4.7}

(b 1)(—b —1)(v —u)( w —u )4= ln +40 .
&P(b, u, v, w)

(4.8)

It would be instructive to write the expression for the metric in the semiclassical limit and verify that the range for the
string parameters (4.4) is such that there is only one time coordinate in every region. From (4.6) we obtain

r

ds db + b —1 du b+1 dw dv

2(k —2) g „4(b2—1) b+1 4(v —u)(u —w) b —1 4(1 —w2)(u —w) 4(v —1)(v —u)

This metric was derived in [8] in region (++—+ ). The
presence of a finite k modifies the manifold in a similar
way to the 3d case, as considered in the preceding sec-
tion.

Again, we can check that e &—G is independent of k,
which proves the theorem for d =4.

V. TYPE-II AND HETEROTIC SUPERSTRINGS

SO(d —1,2) „sSO(d —1, 1),
S«d —1 1}—a+s —~

(5.1)

for both the left and the right movers. For the tachyon
the fermionic factor SO(d —1, 1)& makes no contribution.
However, the shifting of the level in the denominator in
(5.1), i.e., ( —k +g —h) = —k +1 instead of —k for the

In this section we consider superconformal extensions
of the bosonic models we have been considering in the
preceding sections. The general type-II and heterotic
superstring model in curved space-time was defined in [8]
in the form of a supersymmetric N=1 gauged WZW
model. This corresponds to a Kazama-Suzuki model
with a noncompact group SO(1 —1,2) [1] and therefore
can be analyzed with current-algebra techniques [17,18].
The 4d case was worked out explicitly, to leading order in
perturbation theory, using the Lagrangian method. As
we shall see, the exact metric and dilaton for these super-
string models are closely related to the corresponding ex-
pressions for the bosonic strings. It was pointed out in
footnote 5 that for any WZW model 5& =KG —=56. Re-
stricting to H-invariant tachyon states, as we were in-
structed to do by (2.5), gives another condition
hH T =AH T—=58T, or equivalently AG]H T =AGIH T
=—EG&HT. For the bosonic string we saw that these re-
marks led to the k dependence exhibited in (2.6). Now
we turn to the superstrings.

For the type-II superstring the coset model with N =1
superconformal symmetry (X =2 if G/H is Kihlerian) is
described by [1]

bosonic case, has a profound efFect and we obtain the
quantum Hamiltonian with the exact dependence on k

(Lo+Lv }T„= ~G ~a ~G ~H+ — T
k —g k —g k —g k —g

2
~G/H TIIk —g

(5.2)

Except for an overall renormalization of k ~k —g, this is
exactly the expression in the semiclassical limit. There-
fore, almost trivially we have proven a theorem: For any
type-II superstring based on a Kazama-Suzuki coset, as
in (5.1), the exact metric and dilaton are given by the
one-loop perturbative result except for the overall nor-
mahzation of the metric. In the special case of d=2
available field-theoretic perturbative computations verify
this result up to five loops [22].

For a heterotic superstring only the left sector is super-
symmetric whereas the right sector is not. Therefore, for
the tachyon we can write

(La+La )T
gL gL gR

+
k —g k —g k —g

+La (int)Tt, „

~a
het

2
k —g

g —h
6/H 2(k h) H het

+La (int)T„„, (5.3)

where Lo (int) is the internal part which does not contrib-
ute to the spacetime metric and dilaton. Comparing (2.6)
to (5.3), we see that we can obtain the exact metric and
dilaton for the heterotic superstring if we replace k in the
bosonic expressions by 2k —h (except for the overall fac-
tor in the line element ds which is the same in both
cases). In the k~ao limit these fields tend to their bo-
sonic counterparts, as in [8], in agreement with the gen-
eral arguments of [16].
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VI. CONCLUDING REMARKS APPENDIX

We found a general method for obtaining the confor-
mally exact metric and dilaton fields for any theory
which can be formulated as a coset model. Since the
value of k that yields c =26 (or c =15) is actually small,
our results represent substantial deviations from the
semiclassical computations. We have applied our method
to the coset models SO(d —1,2)/SO(d —1, 1). Our ex-
pressions hold true also for all the models that are ob-
tained from this coset by appropriate analytic continua-
tions, e.g. , SO(d, 1)/SO(d), SO(d + 1)/SO(d), etc. , by
simply specializing to the appropriate region of our glo-
bal space. For the cases d =2, 3,4 we gave explicit re-
sults. We have also derived results that apply to the gen-
eral gauged WZW model with or without supersym-
metry. For any type-II superstring the perturbative one-
loop results were shown to be also exact except for an
overall factor in the metric. We have also shown that for
a heterotic superstring the conformally exact metric and
dilaton fields can be obtained by a simple shifting of k in
the corresponding bosonic expressions. Finally, we have
shown that the combination e &—G is indeed k in-
dependent as conjectured in earlier work.

Our exact results may be verified in perturbation
theory, as was the case in d =2 (the 2d heterotic case has
not yet been verified). However, this should be regarded
as a challenge for perturbation theory which is beset with
uncertainties over renormalization schemes. It is gen-
erally believed, but only tentatively proved that coset
models and gauged WZW models are equivalent. This is
certainly the case at the classical level, as can be seen
from the equations of motion in the axial gauge
[3,7,8, 14]. Furthermore, our Hamiltonian approach
should leave no doubt that semiclassically these two
theories are equivalent. The Hamiltonian versus the path
integral can be regarded as two possible approaches to
quantization which may differ in higher orders of A, un-
less one ensures that they are equivalent by choosing the
correct measure of integration. If only to strengthen the
relationship between these two formulations, it may be of
interest to study the perturbative approach to verify our
results for the more challenging cases in d =3,4. This
should also be helpful in pinning down the appropriate
renormalization scheme which may be useful for other
computations in these models.

We have pointed out the screening effects of the quan-
tum corrections in the neighborhoods of the singularities.
It is not yet clear how to use these conformally exact re-
sults in physical applications. One needs to know how
this "classical" string vacuum configuration competes
with higher-genus string loop effects in specific physical
situations. It may be that, together with the small-large
duality properties pointed out in [14], one may arrive at
believable physical conclusions in some regimes even
from the zero-genus exact computation presented in this
paper.

+ —,'(1+x )
—e„~"Bt" Bx

(Al)

4 Bt' '

where we have used a„„=aE„„and(1—a )(8/Ba) =a/at
for a =cosht or sinht. The gauge condition (2.15) is

e ~" T=O.a
Bx

(A2)

For gauge-invariant tachyon states of the form
T=T(b, t), where b is defined by b =(x —1)/(x +1),
the Casimir operators reduce to the simpler equations

T= —(b 1Q 2b—B +— 8 T,1
G b b 2(b —1)

gL Z" = —& g2Z.
H 4 t

Proceeding as before we obtain the line element

db b —1
ds =2(k —2) 2 p(b) d—t

4(b2 —1) b +1
2 b —1

P '(b) =1——
k b+1

(A4)

For the dilaton the corresponding expression is

4= ln +Co .
b+1

P(b)
(A5)

The scalar curvature reads as

R= 2k (k —2)b +k —4
k —2 [(k —2)b+k+2]2

(A6)

The scalar curvature is singular at b = —(k+2)/(k —2)
which is exactly the point of singularity for the function
p(b) To make cont. act with the results of [19]one needs
to reparametrize b in the various patches. For instance,
in the black-hole region outside the horizons at b = 1 one

The reader who is familiar with the exact results for
the metric and dilaton of the 2d Minkowski or Euclidean
black hole, obtained in [19], may wonder how these can
be deduced in our formalism. This appendix serves ex-
actly this purpose. In the 2d case, for the coset model
SO(2, 1)/SO(l, l), the Casimir operators (2.11) and (2.12)
take the form

a' a2
4G= —,'(1+x )

—
—,'(1+x )

ax~ax„ at2
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We have here a sign difference with (3.2) which we used in

higher dimensions. This allows us to agree with Fig. 4 in a pre-
vious paper [14] for d =2.
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can set b =cosh2r, in the naked-singularity region
b = —cosh2r', and in the inside-the-horizons regions
b =cos2r". The corresponding expressions for the Eu-
clidean black hole follow from (A4) and (A5) if we analyt-

ically continue t~iO, where 0 is compact, 0(0(2m.
The cigar (b =cosh2r) and trumpet (b = —cosh2r') cor-
respond to the SO(2, 1)/SO(2) coset, whereas the cymbal
region (b =cos2r" ) to the SO(3)ISO(2) coset.
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