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Orbiting cross sections: Application to black hole scattering
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The semiclassical formulas for orbiting cross sections (spiraling scattering) are derived for particles
and for scalar waves. They are applied to scalar waves orbiting Schwarzschild black holes. The cross
sections for scalar waves orbiting Schwarzschild black holes are also computed numerically by the
method of partial wave decomposition. They are compared with the semiclassical analytic cross sec-
tions. The approximations made in the semiclassical analysis determine the scattering up to two param-
eters: the overall amplitude and the phase of the oscillation in the cross section. When matched to the
amplitude and phase of the numerical computation there is an extremely close fit between the analytical
and the numerical cross sections. Therefore we conclude that the oscillatory features observed in the nu-

merical calculations away from forward- and backward-scattering angle are due to orbiting. Backward
glory scattering has been computed analytically previously; the perfect agreement with the numerical re-
sults shows that the behavior of the cross section for a scattering angle 0=m is due to glory scattering.
Together these results interpret the numerically computed cross section for the entire range of scattering
angles. The analytical calculation of the glory and orbiting cross sections is an application of the prodis-
tribution formulation of functional integration.

PACS number(s): 03.80.+r, 03.40.Kf, 03.65.Sq, 11.80.Et

I. INTRODUCTION

A. Orbiting

are difficult because orbiting contributes to all observa-
tion angles, and because an infinite number of classical
paths contribute to the semiclassical cross section.

In particle scattering by a potential, it can happen that
the particle orbits several times around the scattering
center before escaping. This phenomenon is called orbit-
ing, or spiral scattering. Orbiting cross sections have so
far eluded analytical computation.

Orbiting is discussed by Ford and Wheeler [1,2] in
their semiclassical description of quantum scattering.
They "conclude that there is no semiclassical approxima-
tion to the orbiting effect of simplicity or generality com-
parable to the analysis for rainbow scattering and glory
scattering, " and they "content [themselves] with men-
tioning several possible limiting situations": the sharp
spike of the deflection function, the thin or thick barrier
of the effective potential in the radial wave equation.
They apply these results to the scattering of a particles
by nuclei and to the scattering of atoms by atoms [3].

Berry concludes his paper [4] on uniform approxima-
tions for glory scattering and diffraction peaks with these
words: "All the common semiclassical potential scatter-
ing effects have been treated by methods of uniform ap-
proximation with the one exception of orbiting; the
pioneer work of Ford and Wheeler (1959) has hardly been
improved on, and a uniform approximate treatment is
not yet in sight. "

The semiclassical calculations of orbiting cross sections
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B. Glory and spiral scattering by black holes

More recently, Handler and Matzner [5] computed nu-
merically the scattering cross section of gravitational
waves by a Schwarzschild black hole. They suggested
that the oscillatory dependence of the cross section on
the scattering angle L9 results from glory scattering in-
terferences when 6r=m. , and from orbiting interferences
when 0 is not necessarily close to m.

Their conjecture was proved to be correct in the case
of backward scattering by De%itt-Morette, Nelson, and
Zhang who computed analytically the glory scattering
cross section [6—9]: In Fig. 1 reproduced from [10] the
solid line represents the numerical computation of the
scattering of gravitational waves by a Schwarzschild
black hole for Mao=2. 5 where M is the mass of the black
hole and co the energy of the incoming wave. The dotted
line is the analytically computed leading term do @zB in a
high-frequency expansion' of the cross section for glory
scattering in the solid angle d 0, in the 0 direction, of po-
larized classical waves of energy co =2~A. ', helicity

We label "WKB" all leading terms in high-frequency expan-
sions because the high-frequency cross sections have been ob-
tained from semiclassical expansions of quantum-mechanical
cross sections —changing the scale indicator A to a scale indica-
tor v '. It should also be noted that we are referring to leading
terms in these approximations, not to the standard (strict)
"WKB"approximations which are not valid here.
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l5—
Schwarzschild black hole, a massless particle {incoming
null ray) with the impact parameter B =3&3M is trapped
by the black hole and spirals toward a limiting circular
orbit of radius 3M. In terms of the angular momentum
l =B~initial momentum~ =B energy =Bee, the Darwin
formula (2.2) can then be written

7r/4 5 7r/4

l (8)= [1+3.48 exp( —8)]Mes,

8(1)= —In( 3.48M'�/i ) + In [ ( I —1 ) /I j .

(1.4a)

(1.4b)

FIG. 1. Scattering of a gravitational wave of angular frequen-
cy co by a Schwarzschild black hole of mass I, where Mao=2. 5
(in units G =c =1). The solid line is the cross section numeri-
cally computed by Handler and Matzner [2]. The dotted line is
the glory cross section analytically computed by DeWitt-
Morette, Nelson, and Zhang [3,4]. This reproduces Fig. 8.15
from [1]. In [1] the dotted glory cross section was incorrectly
attributed, which we correct here.

The Darwin formula exhibits the logarithmic singularity
responsible for particle orbiting.

Classical waves are said to be orbiting if the charac-
teristic system of their eikonal equation defines a flow
which includes orbiting paths. Therefore the presence of
orbiting can be predicted from the effective potential
which enters the radial wave equation. The radial wave
equation for a scalar wave [12],

/=exp(idiot)Rt (r)YI (O, y),

s =2, by a (long-range) central potential:

der((vKB=2ncuB Jz, (coB sin 8)d A
dB

YP =spherical harmonic, (1.5)

scattered by a Schwarzschild black hole, i.e., propagating
in a manifold with the metric

for O=n, (1.1.)

where Bg is the glory impact parameter, defined by the
deflection function 8(B ) =nFor a S.c. hwarzschild black
hole of mass M the impact parameter B (8) is given by
the Darwin formula [11]

1S

ds = —(1 2M/r)dt +(—1 2M/r) ' dr—+r dQ

dQ =r dO +r sin Odg (1.6)

B (8)= [3v'3+3.48 exp( —8)]M, c =1, G = 1,
(1.2)

Bs =B(n.) = 5.35 .

d 2M
+CO

dr r
2M 1(1+1)
r r

8(l) = '

Oz+2b In[(1 —I )/I ]+ . for I &1, (1.3b)

for some constants 8, , 82, and b. Large values of 8(1)
mean that the particle orbits several times around the
scattering center before escaping. For I = I the particle is
trapped in orbit. The logarithmic behavior of the
deflection function occurs when the energy of the incom-
ing particle is close to a local maximum of the effective
potential of the radial wave function [9].

Darwin [11]has shown that, in the neighborhood of a

The discrepancy between the dotted and solid lines is
due to the fact that (1.1), valid for 8 =mr, is plotted in the
range —,'vr~9+vr for a B with an exponential, 0 depen-
dence. It is clear from the Mco dependence of the cross
section given in [10] that, if computed for larger values of
Mco and for 0 closer to m. , the fit between the solid and
dotted lines would be near perfect.

One wishes to investigate the reasons for the oscilla-
tions of the cross section for all values of 0, and ascertain
whether or not they are due to orbiting.

In particle scattering, orbiting occurs [1,2] when the
deflection function 8( i) as a function of the angular
momentum l has a logarithmic singularity at I = I:

8, +b In[(1 —1)/1]+ for I )1, (1.3a)

(1.7)

V,tt(r', l)=V, l = 1—r 2M 2M l(l +1)
3 r2

is of finite range: it vanishes as (r*) for r*~~ and as
exp(r*/2M) for r*~—ao (i.e., for r 2M~0+). (—See
Fig. 2 [13].)

Since black holes absorb waves of energy larger than
V „,black hole orbiting is different from the orbiting
due to potentials with repulsive core considered by Ford
and Wheeler. If the potential has a repulsive core, the
angular momenta I ) I and I & I will contribute to the or-
biting cross section. If the potential does not have a
repulsive core, only the angular momenta 1& I will con-
tribute to the orbiting cross section; the angular momenta
I & I contribute to the absorption cross section.

where r & 2M is the function of r * given by

r"= r +2M ln( r /2M —1), 2M & r & ~ .

The "tortoise distance" r* is the natural variable to use
for a long-range potential.

The effective potential
r
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corresponding Jacobi operator in phase space).
(c) The critical points of the action are degenerate on

several accounts. Hence the %'KB approximation
"breaks down, "and cannot be corrected heuristically.

On the other hand, the computational techniques
[14—16] based on the definition of path integrals directly
on the infinite-dimensional space of paths, proposed by
DeWitt-Morette [17,18] and developed in collaboration
with Nelson and Zhang, are suitable to compute glory
and orbiting cross sections.

In Sec. II we derive the semiclassical approximation of
the cross section. In Sec. III we compute the cross sec-
tion numerically for several values of Mcu. The formula
obtained in Sec. II gives an interpretation of the numeri-
cal cross sections. The numerical cross sections justify
the approximations made in deriving the formula.

II. SEMICLASSICAL APPROXIMATION

A. Quantum-mechanical orbiting cross sections

The techniques developed for the path integral calcula-
tion of glory scattering [6] can be adapted for the calcula-
tion of orbiting cross sections, although the two phenom-
ena differ on two accounts.

(a) Glories and rainbows occur when the critical points
(classical solutions of the Euler-Lagrange equations) of
the action functional are degenerate [6]. Orbiting, on the
other hand, occurs when the deflection function is singu-
lar.

(b) Glories and rainbows occur near a definite observa-
tion angle. Orbiting contributes to all observation angles.

Quantum-mechanical scattering cross sections can be
computed [19] in terms of the probability amplitude
K(pb, tb, p„t, ) that a particle known to have momentum

p, at time t, will be found with momentum pb at time tb.
We have previously computed [14] KwKB(pb, tb,.p„t, )

when classical conservation laws limit the choice of the
final momentum. Here we shall simply sketch a heuristic
argument valid in flat spacetime for potentials with com-
pact support; we refer the reader to [14] for a rigorous
analysis of the general case:

KWKB( pb, tb, pa ~ ta )

=spa f exp[(i/&)p. 'a]KwKB(pb, tb, a, t, )d a,
(2.1)

tions indicated by the arguments of S:
fb

S(pb, tb, a, t, )= 1(q(t), q(t))dt —
pb q(t„),

M,
q(t, )=a, =p

dq(tb )

(2.2b)

=2~~(
I pt, I

—Ip. I ) I p. I

'

Xspa J KWKB(pb&tb l&grp&ta)'l dl
0

(2.3)

When orbiting occurs, an infinite number of classical
paths contribute to KwKB(pb,'p, ). We shall now exam-
ine this situation. Let 8 be the observation angle, O(l) be
the rotation angle of a particle moving along a classical
trajectory, and O(1) be the deflection function. For at-
tractive potentials (see Fig. 3), O is positive for negative
impact parameters (trajectory deflected counterclock-
wise), and negative for positive impact parameters (trajec-
tory deflected clockwise). On the other hand, the

In cylindrical coordinates a=(z, B,y) with z along the
direction of the incident wave and the scatterer at z =0,
8 is the impact parameter, and q the polar angle in the
plane perpendicular to z,

d a=B dB dz dy= ~p, ~

'1 dl dz dy,
where l =B~p, ~

is the incoming angular momentum with
respect to the scatterer. Provided one is far from glory
scattering, the stationary phase y integral determines a
single critical value y0 corresponding to the plane of the
classical path with boundary value a, pb. The stationary
phase z integral does not select a particular value z0 but
introduces 5(~pb~ —

~p, ~), which reflects the energy con-
servation during the scattering process. Hence,

KWKB(pb~tb~pa~ta )

where spa stands for stationary phase approximation, and

KwKB( pb tb
det t) S( pb, tb,' a, t, )

1/2

~Pb ~a

X exp[(i /A' )S(p„,tb;a, t, ) ] . (2.2a)

FIG. 3. The observation angle 0 ~ 0(vr. The deflection func-
tion 8(l) is negative for attractive potentials 8(l)= —~8(l)~,
where O(l) is the rotation angle of a particle moving along the
classical trajectory.

Note that we use the same symbol EwKB on both sides of
Eq. (2.1). Hence, p, , a, etc. , in this and other equations
are not treated as arguments of KwKB but as labels which
specify the probability amplitude.

The action function S is equal to the action functional
evaluated along the classical path q with boundary condi-

This is, with a change of notation, the same equation as

(17) in Ref. [6]. See (2.57a) the explicit expression for

K~K&(Pb tb I +0 t ).

We omit the labels "t„t&"when not necessary.
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defiection function 8(1)=OS(l)/Bl, where S(1) is defined

by (2.57), is insensitive to the orientation of the trajecto-
ry. Hence [see also 1,2] 8(1)= —l8(1)l for attractive po-
tentials.

The scattering angle 0(l) is the equivalence class [8(1)]
where O(l) =8(l') if they yield the same scattering angle.
For 1 ) 1, the scattering angle 9(1) is plotted in Fig. 4.

If the boundary conditions (pb, p, ) define a finite num-
ber of classical paths "sufficiently distinct, " then we can
write

KwKB(PblPa ) g K wKB(P b~p a) ~

one term computed for each classical path. In our prob-
lem, there is only one path sufficiently distinct from the
others, namely, the nonorbiting path:

KwKB(pb, p, ) =K(nonorbiting)+K(orbiting) .

Omitting the WKB label, we set

E=EI+E"+E'"+E"
=Ki(1+K "/K')+K "()+K "I/Kiv) . (2.4)

In Ref. [6], we have derived the scattering cross section
do /d0 in terms of the momentum-to-momentum ampli-
tude K(pb', p, ), normalized to be of dimension L .
When, as is the case here, the amplitude is of the form

In the domains I and IV, I is a single-valued function of
the observation angle 0; E' and E' can be computed by
the standard stationary phase method.

For black hole scattering the only contribution to the
orbiting cross section comes from I & I:

EIII
EIv

EIv

More precisely we shall split the domain of I integration
in (2.3) into four domains:

K(pb,'p. ) =2~~(lpb
I

—Ip. I )K(pb, p, ),
which defines k; the cross section is

(2.5)

Angular
Domain momentum

Scattering with
repulsive core

Black-hole
scattering

Ip. I'
, l~(pb, p. )l' with Ipi, l

—Ip. l
(2.6)

~II
~III
~IV

0( I' & I'
I' (I'&I
1(I& I

I (I & ac

No orbiting
Orbiting
Orbiting

No orbiting

Absorption
Absorption
Orbiting
No orbiting

However, the normalization of the amplitude E is ir-
relevant in our calculation for the following reason. It
follows from (2.15) that

K =K ' (1+K "'/K '
)

and

e(4)—
0

l
I+K '"/K "l'

dQ dQ
(2.7)

I-8 1
I

For large impact parameter, the effective potential
V,Ir(r', 1) [Fig. 2(c)] is well approximated by a Newton
effective potential [(Fig. 2(d)] and we shall replace
do /dQ by the Rutherford cross section

—8-2w— do. 6 M
c sin 8/2

(2.8)

e-4m-
—4w

li-6)-4~ -- ———-I - & 4

FIG. 4. Near l, the deflection function 8(l) is given by (2.4b).
For large values of 1 (large impact parameters) 8{1)tends to
zero. The equivalence class 8(l)=[8(l)] is plotted for 1&l.
The points 1, 2, 3, and 4 are in the same equivalence class; the
points 1 and 3 correspond to particles with different 1 which
have orbited zero time, once, or twice counterclockwise; the
points 2 and 4 correspond to particles with different 1 which
have orbited once or twice clockwise. l is an infinite valued
function of 0. For l ) 1, let lo be the solution of O(10)= —0 and
for l & l, let lo be the solution of O(10)= —0.

It is then not necessary to use the coefficient of propor-
tionality between do /dQ and lK l given by (2.6).

At first the approximation (2.8) was made to simplify
the calculation and to isolate the orbiting effects

III IV/K . The numerical calculation, reported in Sec.
III justifies this approximation.

The explicit calculation of E"'/E' for scalar waves
orbiting Schwarzschild black holes is given in Sec. II C,
after we prove in Sec. II B that K(pb', p, ) can be used for
computing wave scattering. In this section, we give the
generic properties of the orbiting contributions E' /E'

III IVor E /E and a blueprint for computing the orbiting
contributions, starting from (2.3).

It will be shown (2.57a) that

K(pb;l, qo)= Af (1)exp —„[S(1)+lOI1] (2.9)
4Classical paths close to coalescing (i.e., initial and final points

of classical paths in phase space to conjugate points) are not
"sufficiently distinct. " where A is independent of 1, f (1) is a slowly varying

function of 1, S(1) is the action function (2.57b), and 8 is
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—[s(1)+ioiI ]=0,d
dl

(2.10a)

the rotation angle at time tb. The stationary phase ap-
proximation in (2.3) selects the values of I such that

The different representations are labeled by 0~a&1.
They define different propagators. Dowker [21] has
shown that choosing a in Eq. (2. 12) is equivalent to
choosing the phase change of the multivalued wave func-
tion of the system,

ds (I) —=8(1)= —lol .
dl

(2.10b) %(x)~exp(2miak )%(x),

There are an infinite number of values of l which satisfy
this equation for a given value of B—i.e., for a given
value of pb since

8„=B+2n~, 8 =B—2m'. with mn 1,
any l„or l such that

8(1„)=—i8„i or 8(1 )= —iO

(2.11)

Ka y+a(k)Kk y e2niakKk (2.12)

is an acceptable value of I contributing to K(pb, p, ). In
classical mechanics, the boundary conditions [(l,po), pb ]
determine a unique path. In quantum mechanics,
K(pb, l, yo) is the sum over all paths with boundary con-
ditions [(I,yo), pb ]. These paths are in different homoto-

py classes and it has been shown [20] that the total ampli-
tude K(pb, I, yo) is a linear combination of the partial am-

plitudes K "(pb, l, go) obtained by summing over all the
paths in the k-homotopy class. The coefftcients y (k) of
this linear combination form a one-dimensional, unitary
representation of the fundamental group n &(IR
—f0] )=Z:

after circling k times around the scatterer. There is no a
priori reason for choosing cx =0 and the choice of
different quantum representations corresponding to a
given classical system is an important problem which has
received only a few answers: e.g., boson and fermion rep-
resentations of systems of indistinguishable particles, the
existence of nonequivalent 8 vacua in QCD, and the
Schwinger model in two-dimensional QED [22].

In this paper we compute KwKB explicitly for a =0 for
two reasons: it is simpler and it is:he quantity needed to
compute classical wave scattering where the solution is
single valued. We shall simply omit the label a and indi-
cate in Eq. (2.16) how the result is changed when a&0.
Equation (2.12) can be written

K(p„;I,y )= g K(/0 /)+ g K(/0„/),
m =1 n =1

I E b, nehru ~ (2.13)

where we have used ~8
~

and ~8„~ to label the homotopy
classes. Given the form (2.9) of K( pb, l, y) and the values

(2.11) of 8, this equation gives

K(pb, i, yo) = Af (l)exp —S(1) g exp —I( —8+2m'. )+ g exp l(8+2n—m.

m n

(2.14)

l i Ol . ~l=i Af (1)exp —S(1) exp —~I cos—sin (2.15)

With a+0 in Eq. (2.11), and A'= 1, the term cos 81 /sin nl.
in the above equation is replaced by

1 exp[i(81+m.a)] 1 exp[ i(81+m—.a)]
2 sin m(I +o. ) 2 sin vr(I +a)

i Af(l )I,
K spa f, K(p~;l, q&0)l dl

(2.19)

We now insert K(pb, l, go) in ( .3) and integrate it in the
S ~II, III.

f K(pb; I, yo)1 dl =i Af (1)I, , (2.17)
II, III

where we have assumed that f (I) is a slowly varying
function of I and

I

I, :=f exp(i[S(1)+el]/fi] . . I dl . (2.18)
1 sin m.l /A

In conclusion

5S=2 p, dr,
1

(2.20)

where p„ is the momentum conjugate to the radial vari-

able, and r, and r2 are the values of r indicated on Fig. 5.
The expansion of S (I) near S (I) is given by [2]

In Sec. II C we compute explicitly E"'/K' . The calcu-
lation of K"/K' is similar with l replacing l, but with
one important difference: K' and K" correspond to
values of l (l; i.e., they appear when the effective poten-
tial is of the type sketched on Fig. 5:
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and

S (1}=S(1}+a (1—1 }+b(1—1 )ln(1/1 —l )

+O((1—1)i), 1 & 1 (2.21)

S(l)=S(1)+bS+c(!—1)+2b(l —1)ln(l —1/1

+O((l —I) ), I &1 (2.22)

If we repeat the calculation carried out in S II C
black-hole scattering, we obtain when I & I 'b

also to the cross section,
7 contributes

Kw„B pb, tb , pa~'~a) E'( l+u(lp }cos( 81 /A)exp [i/A[S(l)+AS 0 ai —S(10 ) —88la +a.l ] j )

+E ( l + u (lp )cos(81/A)exp [ i /A'[S(l ) S (la ) 81a+ gal (2.23)

where

l —l

( 2irA

a's
a12

(a)

B. Orbiting classical waves

(2.24a)

Classical waves can be said to be orbitin if th h

biting aths. It
ing flow —more precisely, a flow which includes some ome or-

uantu

b' '
g p ~ t is then natural to invest' t 'f higa e i t e

q um-mechanical orbiting cross section (2.7
pu ing t e classical wave orbiting cross sec-

tion. We shall show that the answer i
odification"; more generall h
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a y, we s all show how

quantum-mechanical scatterin 1 1u - ' '
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x, t )=exp( i cot )%(x ) solution of a Schrodin er e
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n, u t is is of limited use. For tim
ang' , &

has shown that classical wave scatterin
on an asymptotically ffat manifold X (e. . s

ine rom solutions of a
o t e "relativistic Schrodinger" type [Eqs. (2.29}

and 2.30 ]. Consider a wave operator H(x, iB ), with
x EX =MXR and 8 =8/8

7 px, and a wave equation

[H(x, iB„) rn ]Pz(x)—=0, x EX '3S
3j.

gg c

(c)

lim P (x)=f (x), (2.24b)

where f~(x) is defined as follows. Let [f J be a corn lete
set of orthonormal functions on X' i e~ ~ )

J f (x}f (x'}dp =5(x,x'}, p ER

f f~(x)f '(x)dr(x)=5(p, p') .

If X=R, we choose [f ] to be a set of plane waves; if X
is a Schwarzschild manifold [Eq. (0.6)], we choose

h
e p ane waves defined outside the black

ole located at the origin bn y
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ff r wit repulsive core.
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f (x)= exp(ipx *
)

r(1 2M— lr)'
—:C(r)exp(ipx *),

with r ' the "tortoise distance" defined by

(2.25)

strued as space being fiat. We define f to be equal to fP P
when p is on the mass shell,

p =m

If f~ is a distorted plane wave,

r'=r+2M ln(r/2M —1) for 2M ~r ( oo

(2.26)
fz(x)=exp(icox )g (x), co=(p +m2)'~2 . (2.27)

x*=(x,(r*lr)x), px*=p„x*",

p =g" p„p p„=(po p)

The use of arrows over spatial variables is not to be con-

Note that the family [g ] is an orthogonal family of
functions on M. Zhang [23] has shown that the solution
of Eq. (2.24a) with boundary values Eq. (2.24b) can be
written

oo 0
P~(x)=con. '

dpo lim K+(x,s;p, O)exp(im s —Es)ds+ f K (x, O p, s)exp(im +vs)ds
0 m=0 . 0 00

(2.28)

with p„=(po,p) and where K +are sol—utions of a system
of equations associated with the wave equations [Eqs.
(2.24)]:

(p lslp)=(f, y, )

p~ X
p

X d7 X )
M

(2.31)

i B,K+(x,s;P, O) =H (x,i B„)K+(x,s;P, O), s & 0, (2.29a)
where f is the on-shell value of an element of the ortho-
normal set [f ]. In order to identify the various high-

frequency approximations, we scale s and x; set

limK+(x, s;p, O) =f (x)
s=o

(2.29b)
S =VS, X =VX

and

iB,K (x,O;p, s)=H(x, i B„)K (x,O;p, s), s ~0, (2.30a)

and define

K(x, s ):=K(x(x ),s(s ) ),

limK (x, O;p, s) =f, (x),
s=0

(2.30b)
H(x, iv 'd ):=H(x(x),it)xax"(x)) .

P

E —is a solution of
where a, =axles.

A path integral solution of Eqs. (2.29) or (2.30) is a sum

over all "relativistic" paths,

x:K~M by s~x(s),
with the boundary conditions for Eq. (2.29)

x(s) =x, p(0) =p,
and for Eq. (2.30)

x(0}=x, p(s) =p,
where p(s) = tjL /Bx(s).

We recall that the relativistic propagator K+ has ex-
tensively been used [24] since it was introduced [25,26] in
1950 for the construction of the Feynrnan Green's func-
tion which propagates positive frequencies in the future
and negative frequencies in the past.

The "fifth" parameter s, also, but erroneously, called
"proper time", is conjugate to m in the sense that K +—(s)
propagates particles of all masses and its Fourier trans-
form at m "selects the mass mode m." One selects the
zero mass mode for massless waves.

We shall carry out explicitly the calculation of the
high-frequency approximation PwKa of P given by Eq.
(2.28) and of the high-frequency approximation of the S-
matrix element (p'lSlp), which is defined by

iv 'B,K +—=H(x, iv '8 )K

its WKB approximation is the leading term of its expan-
sion in powers of v, and PwxB is the stationary phase
approximation of Eq. (2.28) with the integrands replaced
by their WKB approximations. We have previously
[17,18] computed the WKB approximation

KwKB(p, tb;a, t, )

= C(P, a )
l det„,a'S( f3, t, ; a, t. ) ZaP aa"

l

'"
X exp[i vS (p, tb,'a, t, ) ] (2.32)

for propagators E on Riemannian manifolds M" arbi-
trary dimensions n with arbitrary initial and final condi-
tions (P,a). For K, P=x, a=p, tb =s, t, =0,

C(P, a) =(2vrv ')

S(x,s;P, O} is the classical action function, i.e., the action
functional, corresponding to a classical Hamiltonian
H(x, p), evaluated along a classical solution x with

boundary conditions x(s ) =x, p(0) =p. Hence

as
Bs

and, since H is independent of s,
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S(x,s;p, O)= —H(x, p}s+So(x,p) .

For a scalar wave [Eq. (2.27)],

H(x, p) =g"'(vx )p„p

At x(s =+~ ), the space X has been assumed flat

g""[vx(s =+~ ) ]=g"" .

(2.33)

(2.34) Xexp[iv[SO(x, p) —p s]], (2.37b)

KwKB(x»p» } KwKB(x»p«

a's,(x,p)
'"

KwKB(x, s;p, O) =(2vrv ') " det„„
aX ~ap.

H(x, p) =ri""p~„, (2.35)

In the relativistic classical motion x(s) parametrized by s,
the relativistic Hamiltonian is independent of s; hence,

and we define a continuous function Ew&B of s by

KwKB(x, s;p, O) for s &0,
KWKB(x, s;p, O)= 'K —

( Q ) f (Q (2.38)

so

a's(x,g;p, o)
aX~ ap.

a's, (x,p)
az~ap,

(2.36)

Equation (2.5) becomes

y wK(Bx)=~~ 'f-"dpolim f KwKB(x, s;p, O)
0 g =-0 —oo

Xexp(im s —E IsI )ds .

Hence inserting Eqs. (2.31), (2.33), and (2.34) into Eq.
(2.30), we have, for s (0,

a's,(x,p)
'"

KwKB(x, O;p, s)=(2~v '} " det„„
aX ~ ap.

(2.39)

The s dependence of KwKB can be read from Eqs. (2.37)
and the s integral yields

+ oo

lim f ds exp(im s —sIsI)exp(ip s)= 2~5( m —p )
m=0

Xexp[iv[SO(x, p) —p s]] (2.37a)
=2m.5(po —co );

(2.40)

and, for s ~0, it follows from Eq. (2.31) and from x =vx that

a's,(x,p)
'"

(p'IHIP) wKB=spa f d~(x)f" (x)(v/2m)" det„„exp[ivSO(x, p)] for p =m
M

"" ax& ap„

=spa f «(x)f ' (x)KWKB(» P }
M P

where

a's, (x,p)
'"

KwKB(x, p) =(v/2n. )"~ det„, exp[ivSO(x, p)] for p =m"' ax~op.

(2.41)

(2.42)

First we note that the right-hand side of Eq. (2.41) is in-
dependent of x, as it should be. Indeed, when p =m
the dependence of exp[iSO(x, p)] on x precisely cancels
the dependence off*.(x) on x, and the determinant does
not depend on x . The stationary phase approximation
of integrals such as Eq. (2.42) has been analyzed in [14].
It has been shown that if the flows associated with fz (x)
and by KwKB(x, p) have no common trajectory, then the
integral is of order v for arbitrary X, i.e., the integral
vanishes. If the Aows have one common trajectory,

&P I~IP~=KwKB(p «P}

(2vrv ')5(IPI' ——IpI)K(p', p) . (2.43)

WKB scattering of waves can be computed in terms of
the particle propagator KwKB(p', p) because the charac-
teristic system of the WKB approximation of the wave

equation (eikonal equation) defines a flow. This flow can
be used in the WKB approximation of a "relativistic"
path integral (paths in R, Lorentzian metric)
parametrized by a fifth parameter.

C. Scalar waves orbiting Schwarzschild black holes

In order to compute the cross section for the scattering
of scalar waves by Schwarzschild black holes, we need,
according to the discussion in paragraph 3, to compute

KwKB(pbrbp»ar»a } »K(Pb P»» } «

and according to the discussion in paragraph 1, we need
to express K(pb, p, } in terms of

f KWKB(pb, l &0)l dl
0
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as per (2.3). Following the blueprint outlined in para-
graph 1, we insert (2.2a) and (2. 1b) into (2.1) we obtain

1/2BS 2

K(pb;p, )=f det exp —p, a+ —S da,
BPb Ba

(2.44)

&(Pb P. )

—1/2='"P" '"'fld. tS-I' " ~2 ~
Ip. I' ~v o

Xexp —[lp, lz+S(z, IO(l)l, yo)]

where the action function is a function of a and pb,
tb

S(p, ;a)= f L dt p, —q(t, )

tb

p dq E(t —t, )
——p q(t ),

a
(2.45)

the Lagrangian being computed along the classical path q
with initial position a, final momentum pb. We shall use
cylindrical coordinates

a=(z, B,y), d a=lp, l
I dl dzdy

with the impact parameter B =I /lp, I, z along the direc-
tion of the incident wave, and the scatterer at z =0. We
write, using the arguments as labels and not as variables,

XI dl dz, (2.47)

S"being the matrix 8 S/Bpb Ba~.
(ii) To perform the z integration we need to compute

S[z, I8(l}l,yo], i.e.,

lbS=f Ldt —
pb q(tb}

a
fb

p dq —E(t t, ) —p—q(t ) . (2.48)
t

In the yo plane of the orbit p dq=p„dr+p&d8; with
8, = —m we have

Ibf p d q pb q(—tb ) = I( IOb I+ ~}+f p, dr pb q(t—b }
a

s(pb;a)—:s[z, l8(I}l,q] . (2.46) (2.49)

(i) The g integration is performed by the stationary
phase method which selects the value of y, say yo, deter-
mined by the boundary conditions (a, pb ). The stationary
phase approximation of the y integration follows from

having used the spherical symmetry of the scatterer
which implies p& =const= l. It remains to compute

f p, « pb q(tb—}=2f (p„—Ip, l )« —Ipblz,
Q

ff(p)exp —S(y) dtp

= (2M)' exp
le
4

82S

~%0

(2.50)

tb

f, Ip, l.« pb q(tb}—= —Ipblz,
a

(2.51)

where ro is the turning point of the radial coordinate, and
where we have used

giving

IXf (po)exp —S(po) which follows from lp„l „=const =
I pb I, and

I q(t, ) I
=z.

Inserting S, as computed above, in (2.47) and perform-
ing the z integration we get

BS
—1/2

K(pb', p, ) =2vrfi5(lpb I

—lp, )exp(in/4) f ldets" I' (2vrfi)'
a&',

xexp — E(tb t, )+l(lo—bI—+m )+2f (p„—lp„l „)dr I dl .
L

(2.52)

Remark. Strictly speaking 0 l ~ ~ and not l l & ao.
Numerical integration has shown that the contributions
of I to K (pb, p, ) in the absorption range (0, 1) can be
neglected. This reflects the fact that, for each value of
the observation angle 8, there is an infinite number of
values of I E [I,lo ] which contribute to the cross section.

(iii) Before performing the I integration, we compute
2 p, —p„dr for a Schwarzschild black hole. Set

0
p +dr*=p„dr where r* is the tortoise distance defined

by Eq. (1.8):

f (p, —Ip, l
}d»=f.(p„*—lp„. l

}«*.
0 0

In terms of r* the radial wave equation reads [11]

(2.53)

+co —V,tt(r, I) exp —p ~r =0
dT'*

(2.54)

with V,z(r*, l) given by Eq. (1.9). We can read off p +
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from Eq. (2.54) and use Eq. (1.8) to compute
dr =dr(1 2M— /r ) '. Finally,

vvhere v =r/M, r is the Schwarzschild radial coordinate,
and M is the mass of black hole, vp=fp/M Tp the turn-

ing point of the radial coordinate, and

2
U(v, 1)= 1 ——

U

2 1(1+1)
3 2

=A'f f [(Mco) —U(v, l)]' —Mcojdv,
1 —2/U =M V s(r*, l) . (2.56)

(2.55} Inserting (2.5S) into (2.52) gives

& (pb,'p, ) =(2~)5(ip& i

—ip, ~
)exp(in /4), exp E(—tb—t, )—1 i

Pa

where

BS
—1/2

X detg"
1 Bgp

(2~)'/'exp —[1iOb i+S(l)] 1 dl, (2.57a)

S(l)=nl+2fi f [[(Mto)2 —U(v, l)]' 2 Mto]d—u .
Uo 1 —2/u (2.57b)

(Mco) —U(u (1 ), 1 ) =0, (2.58)

where v (1) is the value of v =r/M at which the effective
potential has its maximum. From the equation

The angular momentum I at which orbiting scattering
occurs is determined by the equation

where

A =exp(in/4)(2M)' exp[ (i /fi)E(—tb t, )], —

i

1/2~ g2S /g 2i
—1/2

BU(u, 1)

Bv U =v (I)
=0, (2.59)

According to the argument developed in Sec. IIA, Eq.
(2.19),

it is easy to get u (l)=3, and then the solution of Eq.
(2.58) is 1 =3&3Mm.

Equation (2.57a) gives K in the form (2.3) with
E( pb, l, tpc ) in the form (2.9):

&(p;l, vapo)= Af (l)exp —[S(1)+iOil]

for I &hr, iv

i Af (1)Ii

spa f, K(pb , l, yv)l d'l

where I, is defined by (2.18). The denominator is given
by

—1/2

Asp f Aidet S"i' exp —[S(l)+ iO„il ] I dl
~V'o

—:Asp f, Af (1)exp —[S(l)+iO&il] I dl

=(2m')' exp(in /4)
dlo

Af (10)exp —[S(lo)+6)lo] 10, (2.60)
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where lo is the angular momentum such that dS/dlo
= —0, and d S/dlo )0. It follows that

III f (/) 1 d2S
K'v f (/o) I,&2m dl,'

where a and b can be obtained by inverting (2.63):

I —I0(/) = —0= —in(3. 48Mco/I )+In
I

Xexp ——S(/o)+0/o+ — I, .
l 77

Hence [(2.7) and (2.8)],

(2.61)
b =1, a +b = —ln(3. 48Mco/I),

S(l )
—S(/) =(0+ 1)(l—I ),

S ( I )
—S ( I ) +~l —01= I —I + ( m. —0)1,

(2.64)

do
dA

do . f(l) 1 d S
dA f (/o) Io/2rrfi d/c

d S =(I —I )
dl

X exp ——[S(/o )+0/o+ m. /4) I,

(2.62)

An approximation to the integral I, can be obtained by
using the Darwin form for S (/) so that

For a Schwarzschild black hole, with A= 1, 6 = 1, c = 1,
and using the Ford and Wheeler approximation (2.21)
and I (0) computed by Darwin (0.2) we obtain

I

I~ -e' "IJ exp i a(1 I)+b(—l —I )ln
I I

I =3&3Ma),

lo = I (0)= I + 3.48 exp( —0)Mco,

I —I = 3.48 exp( —
m )M co =0. 15M', (2.63)

/dl
sin ~//R

(2.65)

S(1)=S(l )+a (I —I )+b(l —1)ln

ds I —I8(/)= =a+b+b ln
dl

for I )I,
and then assuming that the variations generated by all ar-
guments are negligible relative to the ~I terms. Thus the
effect of the first two terms in the exponential can be ac-
counted for by an overall phase shift and that cos OI/fi
can be approximated by cos 01/fi The inte.gral (2.65) can
now be written as

I, =exp{i[S(l)+4]]lcos(0//A') J . dl
I sin m.l /A'

sin
~

m.(1 —n )
~=exp {i [S( I ) +4 ] ] I cos(01 /A') —ln +i ( I I)—

sin m(I n)~— (2.66)

where n is chosen such that I —n &1 and I n&1. T—he cross section (2.62) for scattering of scalar waves by
Schwarzschild black holes can then be written as

2

1+— exp(iP)I2
do. der i f (I )

dQ dQ a lo

where

= [3v 3+3.48 exp( —0) ]Mcov 2~[3 48 exp( —0)]M. cu,

sin~sr(/ —n )
~I, =cos 01 —ln +il(/ —I )

sin
~
vr(1 n)~—

13= S(1)—S (/o )
—0/o —

m /4+ 4 = [3.48 exp( —0)—3&30]M~—~/4+ @

o.= Io&2+6
dlo

(2.67)

(2.68)

sSee for instance in [27], p. 593, the reason for the factor exp(im. /4).
With A&1, G&1, c&1, the first equation becomes l/A' =GMco/c'.
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Before comparing this cross section with the numerical
cross section computed in Sec. III, we shall recapitulate
the approximations made in its derivation: WKB ap-
proximation; normalizing by the Rutherford cross sec-
tion; ignoring f (I )/f (lo); simplifying phase variations of
S(l)—S(l ) in (2.65).

None of these approximations affect the periodicity of
the oscillations of the cross section due to orbiting —and
this is our main concern in diagnosing the oscillations ob-
served in the numerical cross sections. We anticipate the
last two items will manifest themselves as discrepancies
in the overall amplitude and phase of the oscillations be-
cause the analytic solution (2.67) has effectively two free
parameters [f(I)/f (10 ) and 4] that will be chosen to fit

the numerical results. How much they affect the oscilla-
tions can be assessed by comparison with the numerical
calculations.

III. NUMERICAL CROSS SECTIONS

A. Method of partial waves

In Sec. III, we present the techniques used numerically
to compute cross sections for the scattering of massless
scalar (spin-0) waves in the static field of a Schwarzschild
black hole. The method of partial waves is employed and
solutions are separated into "plane" and "scattered"
(spherical) waves of definite angular momentum. The
phases of the scattered partial waves are determined nu-
merically and used to compute the scattering cross sec-
tion. Because we solve the exact differential wave equa-
tion, our results represent solutions over the full range of
scattering and wave frequencies.

The equation governing massless scalar wave propaga-
tion is the wave equation [10,12]

pp ( g )
1 /2

( g )
1 /2gPv P 0a a

ax~ Bx
(3.1)

+r d82+. r2sjn28$$2 (3.2)

where g is the determinant of the Schwarzschild metric
tensor g„defined by the line element

2

ds = — 1
2M dt+ dr
r 1 2M/r—

vanishes as (r*) for r*~~ when l&0 and as
exp( r '/2M) for r *~ —~. The "tortoise distance"
r' E ( —ao, + 00 } is related to the coordinate r )2M by

dr
dr

1 —2M/r '

or equivalently

r*= r+2M ln(r/2M —1)+const .

(3.5a)

(3.5b)

The corresponding asymptotic solution to the radial
equation (3.4) for each partial wave has the analytic form

2l+1; „+ 2I'5l
rRI (r)- [e' " e ' —( —1)e ' " ],2lN

(3.7)

where 5I is the Schwarzschild phase shift between the
outgoing and incoming waves determining the scattering
amplitude. Explicit use of this analytic form will be
made in extracting phase shifts from the numerical solu-
tions. This procedure is described in detail in the next
section.

The different scattering cross section is defined as
[10,12]

An ambiguity exists in choosing the value of the integra-
tion constant (representing the coordinate gauge free-
dom) appearing in (3.5b). Addition of a constant to r*
that is also l independent amounts to adding a constant
to each of the phase shifts and will not affect the summed
differential cross section. Because of the freedom in-
herent in choosing the constant, we pick a value that will
equate the numerically computed phase shift to its
Newton equivalent for some predetermined large I. This
allows us to compute only a few phase shifts numerically
before matching onto the Newton analytic solutions for
the higher 1 values [10].

As r~oo (or equivalently as r'~00) Eq. (3.4) has ap-
proximate solutions rR i„-exp(+i cor ' ). The logarithmic
phase shift at large r suggests that a distorted plane wave

approximation be made even at great distances. The
asymptotic (r~ 00 ) form of the distorted plane wave is
given by [1,11]

[e' " —( —1)'e ' " ]P,(cos8)e(2l +I)
0 2lNr

(3.6)

and M is the mass of the scatterer. The static and spheri-
cally symmetric nature of the metric (3.2) allows a natu-
ral separation of variables [10,12], where

(3.8)

p=e '"'RI (r)YI (8,$), (3.3}

d2
,2

+co —V,fr(r*, l) rRI„(r)=0,dr* (3.4a)

where the effective potential

where Yi (8,$) is a spherical harmonic and RI (r} obeys
the radial equation

f (8)= g (21 + 1)(e ' —1)Pi(cos 8)
1 2i 6l

2la) 1=0
(3.9)

B. Numerical methods

is the scattering amplitude given in terms of the phase
shift 51.

V,fr(r *,I ) = 1—2M 2M l(1+1)
r3 r2

(3.4b)
In numerically solving (3.4), one must first specify the

proper boundary conditions. Because the effective poten-
tial V, (r*,frl) vanishes exponentially as r*~—ao (or
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d (rRI,„) =u(r*),
dp'

(3.10a)

r ~2M), there is no backscattering from negative values
of r * for a pulse of scalar radiation incident from
r*=+ ~ [10,12]. As a result, the pulse will be purely in-

going at the Schwarzschild horizon r =2M and we take
for boundary conditions that rR& (r)=exp( —ivor*) at
r*=—30M for each partial wave. The exponential van-
ishing of V, s(r*, l) at negative r* implies that the choice
r*=—30M makes V,tr(r*, l) very nearly zero and, for
computational purposes, the specified boundary condi-
tions are appropriate solutions to (3.4).

The second-order ordinary differential equation (3.4)
can be reduced to two first-order equations:

Y=Ae' " +Be (3.12a)

and, for u (r*),

Y=icoAe' " —icoBe (3.12b)

where Y= YR+i YI and Y:—dY/dr'=— YR+i Y~. Also,
the amplitudes A = AR+iA~ and B=—BR+iBI are com-
plex numbers independent of r* and defined by the in-
verse of Eqs. (3.12):

As mentioned in the previous section, at sufficiently
large r*, one expects the analytic form (3.7) to hold. As-
suming such a linear superposition of incoming and out-
going waves, we represent the numerical solution for rRI
as

du (r*)
&

1
2M

dp'

2M l(l +1)
p 3

py
2

rR =1 YI
Y +R 2 R cos cur *+— YI — sin cur *,

2

(3.10b) (3.13a)

r
r +2M ln —1 —r*=0,

2M
(3.1 1)

for r using a bisection method [28] at every integration
step r*. Notice that the integration constant in (3.5b) has
been set to zero. The actual value is unimportant at this
stage but it will be computed indirectly when the
Schwarzschild and Newton phase shifts are matched at
some l. Because (3.11) is a monotonic or single-valued
function [see Fig. 2(b)], we encounter no difficulties in
finding roots. In fact, the method converges rapidly
enough that solving (3.11) at each step of the integration
does not appreciably increase the computational time.

where u (r *
) is a new variable defining the first derivative

of rR&„. Because the wave variables are complex, Eqs.
(3.10) represent four coupled first-order differential equa-
tions. The real and imaginary parts each obey indepen-
dent differential equations.

The problem is now posed as a generic situation involv-

ing the study of X coupled first-order differential equa-
tions. Runge-Kutta methods are particularly suited to
such problems and we rely on a fourth order Runge-
Kutta scheme [28] to integrate the system (3.10) numeri-
cally for rRI and u (r*) from a boundary near the event
horizon to a sufficiently large value of r' so that the ap-
proximation (3.7) is valid. The stopping value of r* is
determined from the condition that the dominant term in
the effective potential be (1 + 1)/r ( 10 (the 1 in 1 + 1

is introduced for the special case 1=0). Thus integra-
tions are performed over longer intervals for larger values
of l in order to keep errors comparable for different l.
This increases the computational time and prevents us
from solving for a sequence of arbitrarily large angular
momentum wave functions.

Equations (3.10) are transcendental in the sense that
the independent variable is r* but it appears only in-

directly in (3.10) through the variable r defined by (3.5b).
It is therefore necessary to solve (3.5b) for r at every in-

tegration step in r'. We solve, for the roots of the func-
tion,

1
A =—Y—I 2 I

Y
COS d'or ——YR + Sin ~r

2 co

1B =—YR 2 R

Y Y
cos d'or —— YI + sin ur1

2 6)

(3.13b)

(3.14a)

1
BI=— Y~+ cos cur *+—YR—

2 co 2
sincor* .

CO

rRI (r)= [X ' " —
(
—1)' ' "

] (3.15)
l CO

where

2i 6(X—=XR+iXI =e (3.16)

is the complex phase shift and 8'= 8'R+iWI is intro-
duced as a complex proportionality constant. The con-
stant 8'is found by equating the incoming part of the nu-
merical solution Y in (3.12) to the incoming part of the
analytic form for rR& (r) in (3.15). This results in

2coBI

(21+ 1)( —1)'

26)BR

(21+ 1)( —1)'

(3.17}

(3.18)

Similarly, we set the outgoing part of Y equal to the out-
going part of rRI„, obtaining

(3.14b)

The real and imaginary components of Y and Y are ob-
tained directly from the Runge-Kutta integrator since
Y=rRI and Y:—u(r*). Hence, the right-hand sides of
Eqs. (3.13) and (3.14) are known numerically so that the
wave amplitudes A and B can be constructed easily.

A direct comparison to the expected analytic solution
(3.7) can now be made. Simplifying the notational form
of (3.7), we rewrite it as
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2'( AR Wi —Ai W~ )
XR =

(21+1)(Wi+ W~ )
(3.19a)

and

Z ' =exp[2iMco in[sin (8/2)]] . (3.25)

2'(AI WI+ A~ W„)
&r=

(21 + 1)( WI + W„)
(3.19b) Consequently, the Schwarzschild cross section (3.8) can

be written as

Expressions (3.19) define the real and imaginary parts of
the phase shift in terms of quantities readily determined
from the numerical solution.

The scattering amplitude f (0) is defined by Eq. (3.9).
Unfortunately, the infinite sum does not converge rapidly
enough to allow a direct numerical computation. How-
ever, for 1 )L (where L is an integer dependent on Mco)
the Schwarzschild phase shift 5I approaches the phase
shift gi for the equivalent Newton problem [1]. Taking
advantage of this, the procedure is to sum the finite series
for the first L terms in (3.9) then approximate the remain-
ing contribution by the equivalent Newton terms which
have an analytic form. The value of L is determined
from accuracy and computational time considerations. A
larger L results in substantially longer run times and
more accurate solutions. However, the accuracy of solu-
tions saturates beyond a certain value of L and an op-
timal choice for L can be made experimentally. We dis-
cuss this point further in the next section.

The Newton phase shift is given by [10,12]

= g(0) — g (21+ 1)(e ' —1)P,(cos 8}
dO 2l co

L
+ . g (21+1)(X—1)P,(cos8)

2ico I

(3.26)

5IR =
—,
' arctan +c,

R
(3.27a)

where we have already noted that X=exp(2i5I) is the
complex phase shift obtained from the numerical solution
by Eqs. (3.19). The first two terms in (3.26) give the con-
tribution of partial waves with angular momentum
L +1 ~ I ~ 00 to the Newton scattering amplitude which,
for sufficiently large L, is approximately equivalent to the
Schwarzschild result for the same I values.

The matching of 5I to g& at I =L is accomplished by

computing 5I numerically, then adding the difference

c =gL —5L to all the 51 for I ~ L. In terms of numerical-

ly computed quantities, we have

gt = —arg I (1 + I + 2iM~) (3.20a}

5g = —
—,
' ln(XI +X„) (3.27b)

or

I (1+1 2iM—co)

I (1+I+2iMco)
(3.20b)

Because we need to match the Schwarzschild phase shifts
onto the Newton phases at 1 =L, the form (3.20a) is the
more appropriate since it details directly with gI. For
computational purposes we replace the gamma function
in (3.20a) by the identity

arg I (x +iy) =y g(x)+ g —arctanx+n x+n

(3.21)

where g(x) is the psi function defined as the logarithmic
derivative of I (x) or equivalently as

n —1

g(n)= —y+ g k (3.22)

where y= f(1)=0.577. . .—is Euler's constant. Equa-
tions (3.20a), (3.21), and (3.22) together define the Newton
phase shifts in a form that is convenient for numerical
calculations. The series (3.21) can be truncated to any
desired accuracy.

The total or summed Newton scattering amplitude is
given by [10]

for the real and imaginary parts of 5I. Notice that since
there is no absorption in the Newton problem, the imagi-
nary parts of gI are zero and we need only correct the
real part of 5&. We have verified that 5II do indeed vanish
for the larger I. Also, because a computer calculates only
the principal values of arctan(x) which lie between
—~/2 ~ arctan(x) ~ n. /2, care must be taken to place 5I
in the proper quadrant before adding c. The sum (3.26) is
performed with the corrected phase shifts.

C. Code tests and results

We have subjected our code to a number of tests
designed to check the reliability and accuracy of numeri-
cal solutions. First, the accuracy of the fourth-order
Runge-Kutta integrator was tested against the analytic
solution rRoo=r to the s-wave radial equation [1=0 in
(3.4)] with co=0. We have verified that the numerical
solution converges to the analytic solution as the trunca-
tion error (b r ) of the fourth-order method.

Other tests include actual computations of cross sec-
tions. Direct comparisons can be made in some limits
that allow analytic approximations. For example, at
small scattering angles we expect to recover the forward
divergence of the Newtonian formula for the summed
differential scattering cross section [1]

g(0)=Me '(Z ' /Z), (3.23)
do. M

sin (8/2)
(3.28)

where

Z =sin (0/2), (3.24)
At small angles (8-0.01m), relative differences between
the Newtonian formula (3.28) and our numerical results



4492 P. ANNINOS et al. 46

are less than half of a percent. The analytic glory scatter-
ing cross section for spin-0 scalar waves provides another
code test for scattering angles near 0=~. The analytic
form of this behavior is approximated by [3,4]

35

=2mcoB Jo(coB sin 0),
do. =2 P dB
dO

glory

(3.29a) 25

where

B =(3&3+3.48e )M (3.29b)

50

40

b

20

0
0.70 0.75 0.80 0.85

0
0.90 0.95 1.00

FIG. 6. As Fig. 1 except the cross section presented here is
for the scattering of scalar waves with Men=2. 5. The scattering
angle 0 is displayed in fractions of ~. The dashed line is the an-

alytic glory scattering cross section and the solid line is the nu-

merical cross section.

is the glory impact parameter and Jo is a Bessel function.
In Fig. 6 we present a graphic comparison of our numeri-
cal results (solid line) to the analytic approximation
(dashed line). We plot the cross section versus scattering
angle (in units of ~) for the case co=2.5, M=1 and
L =60. The rnatch is excellent for 9=m.

Together, the previous two tests provide checks on
small and large angle scattering and suggest that the
methods we use are accurate enough to solve for cross
sections over the entire range of scattering angles. An
additional check can be made by verifying that our solu-
tions converge for larger values of l. In Fig. 7 we show
the summed cross section for L =20 (short dashed line),
L =40 (long dashed line) and L =60 (solid line) with
~=2.5 and M=1. It is clear that computation of the
first twenty partial wave contributions resolves the quali-
tative features of the larger scattering angles but fails for
the smaller angles. However, the series quickly con-
verges for higher L, with L =40 and L =60 yielding
nearly identical cross sections.

Finally, we verified that our solutions are affected nei-
ther by decreasing the integration step nor by our ehoiee

20

15

0
0.30 0,40 0.50 0.60 0.70

0

.~i
0.80 0.90 'l, 00

FIG. 7. A convergence test on the numerical computation of
the scattering cross section. The short dashed line corresponds
to all l up to and including L =20, the long dashed line is
L =40 and the solid line represents L =60. For l )L, the am-

plitude is approximated by the corresponding Newtonian ampli-
tude, Henceforth all calculations are done with L =60.

in locating the starting and terminal r* (that is by the
choice of asymptotic negative and positive infinity, re-
spectively). In summary, all code tests performed indi-
cate that our numerical solutions are accurate. Having
established this fact, we now proceed to investigate orbit-
al scattering (orbiting) in more detail.

Figure 6 demonstrates that behavior in d o /d 0 near
0=~ in the differential cross section are explained as glo-
ry scattering interference. The analytic result (2.67) in
Sec. II is an approximation to the cross section when one
considers orbital scattering and is valid for intermediate
scattering angles 0. Together, glory and orbital scatter-
ing may provide a complete physical interpretation of the
oscillatory behavior in the cross section for a wide range
of scattering angles. Comparison of the analytic orbiting
cross sections to numerical solutions is presented in Fig.
9. Before discussing these results, we point out that the
numerical solutions these figures include absorption.
However, the analytic solution was derived from con-
siderations of angular momentums l & l =3&3Mco and
thus ignores absorption. This difference can easily be
compensated for in the numerical solutions for M~=2. 5

by simply neglecting the first thirteen (1=3&3Mco=13)
terms in the Schwarzschild scattering amplitude when
computing the cross section from (3.26). We plot this re-
sult in Fig. 8 with a dashed line and compare it to the
case which includes absorption (solid line). It is clear
that the contribution due to absorption is negligible.

The orbital scattering formula (dashed line) is shown in

Fig. 9 for the case co=2. 5 and M = 1 along with the cor-
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80. - 80. .

70:— 70:—

60:— 60:—

50:— 50:—

40
b

40:—
b

30
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I. . . . i. . . . I. . . i. . . . I. . . . i. . . . I0
0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0

FIG. 8. Testing the importance of the absorption contribu-

tion I & l. The numerical scattering cross section with absorp-
tion (solid line) and without absorption (dashed line) is present-

ed for Mao=2. 5. It is evident that absorption does not contrib-
ute significantly to the scattering cross section. Note that Fig.
8.1b in Futterman, Handler, and Matzner [10] also shows the

partial wave contributions to the total absorption cross section
are negligible for large Mco.

responding numerical solution (solid line) with L =60.
The oscillatory behavior is the same but for an overall
difference in phase and amplitude. This discrepancy was
anticipated from the analytic treatment in Sec. II C
where the orbital scattering formula was determined up
to an overall amplitude [f(l)/f (1o)] and an overall
phase (4). The variables f (l )/f (lo) and 4 are chosen
to match the analytic with the numerical cross section.
The choices f(I )/f (lo) =8/3 and 4=m. give a nearly ex-
act fit, as evidenced in Fig. 9.

CONCLUSION

Using partial wave methods, the scattering cross sec-
tion of scalar waves by a Schwarzschild black hole can be
computed numerically for a wide range of scattering an-
gles. Cross sections in the high-frequency limit exhibit an

I
0 . . . . i. . . . I. . . . i. . . . I. . . . i. . . . I. . . . s. . . . I

0,30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
8

FIG. 9. The analytic orbiting cross section (dashed line) as
compared to the numerical solution (solid line) for the case
Mao=2. 5 and L =60 in the orbiting region 0(0.9m.

oscillatory dependence on the scattering angle. Previous
work has demonstrated via a semiclassical expansion that
the oscillations near 8=m. are due to glory scattering in-
terference. In this work, we demonstrate that the com-
puted oscillations result from orbital (or spiral) scattering
in which waves orbit the black hole before they scatter.
Thus, a physical interpretation of scattering can now be
given for the entire range of scattering angles.

If rings are ever observed around black holes, the
above cross sections will have sharp diagnostic value for
the nature of the hole, the nature of the scattered waves,
and their wavelength.

emote added in proof. Three articles (N. Sanchez, Phys.
Rev. D 18, 1798 (1978);A. B. Gaina, Zh. Eksp. Teor. Fiz.
98, 25 (1989) [Sov. Phys. JETP 69, 13 (1989)]; Class.
Quantum Qrav. 9, 667 (1992)) have come to our attention
too late to be included in the introduction with other
works on orbiting and black hole scattering.
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