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Failure of unitarity for interacting fields on spacetimes with closed timelike curves
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The scattering of free quantum fields is well defined on a class of asymptotically flat spacetimes with

closed timelike curves (CTC's), and, at least on these spacetimes, the S matrix is unitary as well. For in-

teracting fields, however, the preceding paper has obtained a set of unitarity relations that must be
satisfied by the Feynman propagator if the scattering is to be unitary to each order in perturbation
theory. In a globally hyperbolic spacetime, the causal form of the propagator guarantees that the rela-

tions are satisfied, but for spacetimes with CTC s, the form of the propagator is altered, and we show
that the unitarity relations are not satisfied for interacting fields. We consider the ill theory in detail,
but the results appear to hold for a wide class of fields. Although a conventional interpretation of quan-
tum mechanics leads to inconsistency, a path-integral interpretation appears to allow a consistent assign-
ment of probabilities to histories.

PACS number(s); 03.70.+k, 04.60.+n

I. INTRODUCTION

If the notion of spacetime, of manifold and Lorentz
metric, retains its meaning at scales where quantum fluc-
tuations of the metric are of order unity, closed timelike
curves (CTC's) seem likely to pervade a microscopic
quantum geometry. Local fluctuations of the metric
would be roughly independent of fluctuations several
Planck volumes away, and the resulting randomly orient-
ed field of light cones would give rise to a sea of small
CTC's. One apparently avoids microscopic CTC's only
by adopting a theory in which causal structure is funda-
mental or one in which the metric is not meaningful or
not Lorentzian at small scales.

A number of authors have recently challenged the as-
sumption that one cannot construct a consistent physical
theory on spacetimes with CTC's [2—11]. In particular,
Morris, Thorne, and Yurtsever [3] give a compelling ar-
gument that on a class of asymptotically flat spacetimes,
in which all CTC s are confined to a finite spatial region,
the Cauchy problem for free fields is well defined. This
was confirmed by Friedman and Morris for a class of
static spacetimes in which CTC's are forever present:
given arbitrary data on 2, they showed the existence of
a smooth, asymptotically regular solution to the massless
Klein-Gordon equation. In addition to the existence
theorem, a simple uniqueness theorem implies that no
smooth free field can be trapped in a finite region. Al-
though an isolated null ray can remain forever trapped in
a finite region, circling a closed null geodesic, any smooth
field leaks out.

Free-field unitarity is essentially this last result, that in
the spacetimes where the Cauchy problem is known to be

well defined, solutions to the free-field wave equation are
not trapped by closed geodesics. That is, as we observed
in the preceding paper [1], for spacetimes on which the
scattering matrix exists, unitarity is a consequence of a
conserved inner product on the one-particle Hilbert
space: conservation of the classical symplectic product
implies conservation of probability in the Fock space.
Thus, for free fields, unitarity does not rely on the ex-
istence of a global causal structure.

At first sight it appears that interacting fields are simi-
larly unitary. One can again make the intuitive argument
that interacting fields are not trapped by the geometry;
and, although the classical Cauchy problem for interact-
ing fields is not yet understood, simple systems of in-
teracting particles appear generically to have classical
solutions for arbitrary data on a class of spacetimes with
CTC's [4,8,11]. Moreover, the initial steps in construct-
ing a perturbative scattering theory for interacting fields

appear to go through without change in a spacetime with
CTC's. A formal path-integral reduction of S-matrix ele-
ments to products of Feynman propagators can be car-
ried through in a way that is independent of the causal
structure [1]. Since the evolution of both free and in-

teracting fields is determined by the propagator alone, the
fact that free-field scattering is unitary suggests that the
scattering of interacting fields will be unitary as well.

Unfortunately, perturbative unitarity of interacting
field theories rests on an additional property of the propa-
gator. As we noted in [1], it relies on a series of relations,
all of which are satisfied if the Feynman propagator hF
has a form reflecting the causal structure of the space-
time:

i EF(x,y ) =0(x y)D (x,y)—
+0(y x)D(x,y), —
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where D (x,y) is the Wightman function. When there are
CTC's, one cannot assign a time ordering to spacetime
points x and y, and this causal form is lost. The difriculty
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appears to be fatal: the scattering of interacting fields
does not satisfy the unitarity relations on spacetimes with
closed timelike curves. This implies (as we discuss in Sec.
IV), that a Copenhagen interpretation cannot consistent-
ly describe observations both before and after a region of
CTC's. A sum-over-histories interpretation, on the other
hand, may allow one to make sense of quantum field
theory. However, to obtain a consistent assignment of
probabilities one can consider only paths that start to the
past of any region of CTC's and terminate to the future
of every such region. Experiments at any intermediate
time can, as usual, be described by including measuring
instruments in the quantum system, but there is an unex-
pected loss of causality even before any CTC's form.
That is, one can set up experiments whose outcomes de-

pend on whether CTC's form to the future of the experi-
ment. Measurement in theories where unitarity is violat-
ed has also been discussed by Hartle [12], who reaches
conclusions similar to ours.

Boulware [13] independently has investigated the A,P
theory on one of the Gott spacetimes [14] in which there
are CTC's in the vacuum surrounding two infinite cosmic
strings that move past each other. He has explicitly com-
puted the propagator, and it again fails to satisfy the uni-
tarity relations of Ref. [1]. (See also Gerbert and Jackiw
[34].) (He considers tadpole diagrams, and we have
strengthened an earlier version of our paper by including
an analogous treatment here for time-tunnel spacetimes. )

Our work appears to be closely related to a recent in-
vestigation by Klinkhammer and Thorne on the quantum
mechanics of billiard balls on time-tunnel spacetimes and
subsequent work by Politzer [18]. Using a WKB approx-
imation, they find a loss of unitarity that arises because
the number of classical solutions depends on the initial
data for the billiard balls. The norm of the final WKB
state depends on how many classical solutions there are.
As a result, initial WKB states peaked about different ini-
tial classical trajectories have different final norms.

Certainly some spacetimes with CTC's do not allow
solutions for most initial data of interacting classical sys-
tems. Deutsch [19] has assumed that this is a generic
property of spacetimes with CTC's, and he suggests a
substantially different approach to quantum mechanics
on such spacetimes. We will briefly comment on his
work in Sec. III.

This paper proceeds as follows. In Sec. II we review
work on the Cauchy problem for free fields on spacetimes
with CTC's. On spacetimes for which the Cauchy prob-
lem is well defined (and for which the evolution of the
vacuuin has finite norm) we show that the evolution of
free fields is unitary between two spacelike hypersurfaces
that do not intersect any CTC's. In Sec. III we examine
the structure of the propagator for a class of wormhole
spacetimes with CTC's. We show that the propagator
fails to satisfy the unitarity relations governing interact-
ing fields in curved spacetime. Finally, in Sec. IV we dis-
cuss the implications of the loss of unitarity, asking
whether a sum-over-histories approach might allow one
to recover a meaningful quantum field theory.

Lower case Latin letters serve as spacetime indices,
and our signature is —+++.

II. UNITARITY OF FREE FIELDS

As in paper [1], let M,g, i, be an asymptotically flat
spacetime, with static regions in the past and future con-
taining spacelike hypersurfaces X;„and X,„„respectively.
Let &'" and %'"' be the spaces of positive-frequency solu-
tions on the past and future static regions, defined with
respect to the past and future timelike Killing vectors,
and let V" and 7'"' be the corresponding Fock spaces.

To describe the scattering of a free field, one must have
a mell-defined Cauchy problem describing the evolution
of complex solutions to the classical wave equation. If in-
itial data for a free field y on X;„have a unique time evo-
lution to a free field Uq& on X,„„then the S matrix 1 is
determined by the Bogoliubov operators a and P that
give the positive- and negative-frequency parts of Uy, for

~a=(Um)+

Py=( Uy) (3)

(4)

0=(y'V, +m)g, 0=Vi F'

The corresponding products are

fd X.—y.,V'y, ,

I t

d~g~gg'v2

In the last equality, A, is any vector potential for F,b,
i.e., any asymptotically regular vector field for which
E,b =V, Ab —Vb A„and the product is gauge invariant.
If N is the spacetirne region bounded by X, and X2, con-
servation of each of the products follows from Gauss'
law:

The S matrix exists if and only if Tr(PP ) (~. As em-
phasized in [1], when 4 exists, its unitarity is implied by
the conservation of the inner product on the one-particle
Hilbert space, constructed from the symplectic product
of solutions to the classical field equation. For any free
field, conservation of the symplectic product is, in turn,
implied by Gauss law, which holds irrespective of the ex-
istence of a causal structure in the region between X;„and
&Dot

Conservation of the inner product is shown explicitly
as follows. Denote by P, v", f, and F'", respectively, a
scalar, two-component spinor (defined only on an orient-
able spacetiine), four-component spinor, and electromag-
netic field (antisymmetric tensor), satisfying the free-field
equations

0=Kg= ( O+m +—gR—)P,
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& Uy, l Uy, &
—&y, ly, &

= —.f d&.y, V'y, = —.f «&.(y, V'y, )=0,
I

& U+2l Uvi &
—

& v2~+1& f d~AA'+2 +1 f dr ~Ad'(+2
ax .V

&U~, lU~, & &~-, l~, &= f d~. ~,&"~,= f d-~. (&~'~ )=o.

& UF, ~UF, &
—&F, ~F, &= —f (A,bF; F,'—"A,„)=—f d~V, (A2„F;" F',—A, b)=0.

(6)

Here d ~ is an element of four-volume and
d&~~ =o'~~ d&. ~

To summarize, If a free field w-ave equation has a
unique solution on N for arbitrary initial data on X;„, and
if the in uacu-um has an image with finite norm in 7,„„
then the S matrix exists and is unitary.

Based on what is now known about the Cauchy prob-
lem on spacetimes with CTC's, one expects that for a
broad class of such spacetimes the scattering of free fields
is well defined and unitary. The work that has been done
is summarized below. The simplest class of spacetimes
with CTC's are static, and for these, most of the key
questions are decided. For other spacetimes with CTC's,
making precise the arguments for a well-defined Cauchy
problem may be more dim. cult.

Morris and Thorne [2] (see also Morris, Throne, and
Yurstever [3], Friedman et al. [4]) considered spacetimes
in which the two mouths of a wormhole move toward one
another, as seen by the external spacetime. Figure 1

shows three examples, (i) —(iii), of wormhole spacetimes,
constructed by removing two solid cylinders (copies of
D X R) from Minkowski space and identifying the boun-
daries (copies of S XR) in a way that produces CTC's.
The metric inherited from Minkowski space is continu-
ous, but not smooth, but one can choose a metric to make
the spacetime smooth everywhere. We shall follow the
usual terminology in calling the identified cylindrical
boundary the history of the wormhole "throat" and cal-
ling the curved region surrounding each copy of the
throat the wormhole "mouth. " In (i), the left and right
cylindrical boundaries are identified after a time transla-
tion ~, producing a static spacetime in which closed time-
like curves are forever present when ~ is greater than the
spatial distance between the cylinders. In (ii), the
cylinders are related by a boost and a translation, and
CTC's are confined to a finite region between the past and
future Cauchy horizons. The spacetime of (iii) illustrates
a more general motion of the mouths, the "twin-
paradox" example studied in Ref. [3].

For smooth, static spacetimes of the form (i), although
there are no complete spacelike hypersurfaces, one can
prove the existence of a massless scalar field for arbitrary
initial data on J [7]. That is, for arbitrary, smooth ini-

tial data with finite energy on J, there is a smooth,
asymptotically regular solution to the massless Klein-
Gordon equation:

/=0 .

The proof uses a generalized spectral decomposition that

relies on the fact that the spacetime is static.
It appears to be easy to extend the proof to other mass-

less free fields, although we have not yet explicitly done
so, and an extension to fields with nonzero rest mass is
also likely to be straightforward. The method of proof
does not, however, allow one to treat more general space-
times, and one's expectation that there is a well-defined
Cauchy problem for the CTC spacetimes (ii) and (iii) rests
on the argument given in Refs. [3,4].

The argument is that, because light traversing or
rejecting off of a wormhole diverges as if rejected from a
spherical mirror, one can construct a solution by a con-
vergent multiple scattering series. An incoming wave
from 2 may be thought of as initially scattering off of
the wormhole mouths, producing at each mouth some
purely outgoing scattered wave that is composed of a
reAected part from the initial scattering at that mouth
and a transmitted part that comes from the initial scatter-
ing at the other mouth. These first-scattered waves in
turn scatter again, producing new rejected and transmit-
ted waves, and so on. The convergence of the scattering
series is slowest in the short-wavelength limit, and this
limit can be treated by geometrical optics. In geometrical
optics, the amplitude of a light ray that traverses a
wormhole of radius a, with mouths separated by a dis-
tance d and moving toward one another with speed v, de-
creases by a factor ya/2d. The frequency increases by
&(I+u)/(1 —u), and one consequently expects d"P/Bt"
to be finite at the Cauchy horizon, when

n &ln(a/2d)/ln(l —u) .

(This corrects Eq. (6) of Ref. [4], in which the focusing
factor y=(1 —u )

' was omitted. }
For the static spacetime (i) Friedman and Morris [9]

have a proof of convergence of the multiple scattering
series for A, )A, any A, where A, is the wavelength and the
separation between mouths is suSciently large: a/d & e,
for some e. Thus, for small mouths, one can prove con-
vergence for all k) A with A((a. For the remaining
range, the wavelength is short enough that geometrical
optics must be valid (k & A «a ), and convergence had
already been shown in the geometrical optics limit. %e
therefore have little doubt that, at least for handles with
small mouths, the multiple scattering series converges.

III. FAILURE OF UNITARITY FOR
INTERACTING FIELDS

The initial steps in constructing a perturbative scatter-
ing theory for interacting fields formally go through
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FIG. 1. Spacetimes with a Lorentzian wormhole are constructed by removing two solid cylinders (copies of D XR) from Min-
kowski space and identifying the bounding cylinders. Three wormhole spacetimes with CTC s are depicted, with identified points la-
beled by the same letter. CTC s are the timelike curves joining identified points of the boundary. In spacetime (i), the cylinders are
related by a constant timelike translation, and closed timelike curves are forever present. In spacetimes (ii) and (iii}, the CTC s are
confined to a finite region bounded by a past and future Cauchy horizons. The region is roughly outlined in (ii}by dotted null lines.
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without change in a spacetime with CTC's: in Ref. [1],
we carried through a formal path-integral reduction of
S-matrix elements to products of Feynman propagators
in a way that is independent of the causal structure. Let
us follow the conventions of [1], denoting by ~i

. j ),„
an n-particle state in 9;„and by ~i

. j ),„, the image of
~i j );„under the action of the free-field S matrix:

(i j).„,=II"fi j),„.
As in [1] we restrict our detailed discussion to a A,P
theory.

As noted in the Introduction, perturbative unitarity re-
lies on a series of relations, which are satisfied if the
Feynman propagator EF has the causal form

i b F(x,y) =8(x y)D —(x,y)+ B(y x)D—(x,y),
where D (x,y) is the Wightman function. We now exam-
ine two of the unitarity relations of paper I for the
wormhole spacetimes of the previous section. We show
first that the propagator does not satisfy the pointwise
unitarity relation [Eq. (76) of paper I]:
—[ibF(x,y)] —[ibF(x,y)]

+[D(x,y)] +[D(x,y)] =0 . (11)

As noted below, this is not quite sufficient to prove that
unitarity fails, because the S-matrix amplitudes involve
only a smearing of the relation with solutions to the
Klein-Gordon equation, Eq. (25). We can, however,
show that unitarity fails, by showing that the smeared re-
lation, Eq. (85) of paper I,

apply equally well to spacetime (ii).
For a solution f to the scalar wave equation, the func-

tion and its normal derivative are continuous across the
cylindrical boundary. Let n, and n2 be the unit vectors at
p& and pz that are outward normals to the left and right
cylinders and are normal to the timelike Killing vectors
that run along the cylinders (see Fig. 2). Because a vector
pointing inward at p &

is identified with a vector pointing
out at p2 (it is tangent to a path that goes in to p ~

and
goes out from p2), the boundary conditions have the form

f(p&)=f(p, ),
ni. Vj'(pi ) = —nz Vf (pz) .

(&Sa)

(1Sb)

Then D(x,y) satisfies the boundary conditions (15a) and
(15b) in each of its arguments. The right-hand side of
equation Eq. (10), with x the Minkowski time, makes
sense in the spacetime outside the cylinders, but it is not
continuous across the cylindrical boundaries when there
are CTC's —when the identified points are timelike
separated with respect to causal structure of the space-
time outside the cylinders.

Let t =x be the Minkowski time of an observer mov-

ing parallel to the right cylinder, so that t is a scalar
defined outside the cylinders, but discontinuous from p2
to p, . When the radius a of the cylinders goes continu-

ik, Id' f (—x)f„(x)[ibF(x,x) ibF(x, x)]=0—, (12)
P2..- n =-n„

is not satisfied. The failure of the relations arises essen-
tially from the fact that, when there is no causal struc-
ture, the propagator cannot have the causal form (10).

In spacetime (ii), the CTC's are confined to a bounded
region and there are spacelike hypersurfaces X;„and X,„,.
To treat (i), these must be replaced by J and 2+. Let
I'I be an orthonormal basis for the space &'" of solutions
to the Klein-Gordon equation that have positive frequen-

cy in the past, and let D (x,y) be the distribution

D (x,y) = g FJ(x)F~(y ) =D(y, x), (13)

t2 =ted+7 (14)

In the spacetime (ii), p2 is related to p, by a spacetime
translation together with a boost. For ease of visualiza-
tion, Figs. 2 —4 refer to spacetime (i), but the arguments

agreeing in the past with the Wightman function. To see
that the propagator does not have the form (10) is not
difficult. The spacetime can be depicted by a single chart,
consisting of Minkowski space with two cylinders re-
moved, if one identifies the cylindrical boundaries. For
the static spacetime (i) the cylinders are identified after a
time translation by ~: in terms of the Minkowski time t
of an observer moving along the Killing vector (parallel
to the cylinders), a point p, on the left cylinder is

identified with a point p2 on the right cylinder for which

P
1 . . —n=n,

FIG. 2. Fields on the spacetime of Fig. 1(i) are continuous at
identified points p, and p&. Continuity of a field's derivative

along a curve that enters at pz and leaves at p& implies that the
derivative of the field along the outward normal, && at p& has

opposite sign to its derivative along the outward normal, && at

p2
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x ) oes continuously to its value for

g y yp o p

tl for at least a finitespacelike separated. Consequent y, or
range of a, we have

~F(J i,y)=~~(J2,V}.

From Eqs. (13) and (17) we have

D(y, ui )+«I i,y) =D(J i,y )+«u2 V

(19)

(20)

D (x,y)AD (y, x)

ast or to the future of y in Mo.forx to the pas or
Define an error E (x,y) measuring t e ep

propagator romt from the causal form (10), in the manner

id, „(x,y}=8(x y)D(—x,y

+8(y x)D—(x,y)+E(x,y) . (17)

ant to show that E(x,y) does not everywhere

on the left and right cylinders and let y be a poin

the spacetime outside thethe causal structure on t e spac
cylinders (Fig. 3). We have

I~F(P2 y ) D(P2 y)+E(I 2 y

E+E=O, (21)

(11) i o h
E s. (11}and (17) imply

we show that Eq. is n
satisfied. To lowest order in a, qs.

)
20= —D (x,y)+E (x,y)] —[D (x,y)+E(x,y ]

6 follows that E cannot everywhereThus, from Eq. (1, it o

~ ~

vanis .
w E ywhere purely imagi-w that E is everyw

of the form (17), because o
f hthe imaginary part o eg

the Klein-Gordon equation in o a
f the error function E. Sincethen so must the real part o t e error

~ ~ ~

for the Klein- or on1
' -G don operator acting on

d 1' d
'

1'14vanish on J (the identi e cy in er
11 data), we must also haveand do not aftect the initial nu a a, w

=D(JI „y)+E(p„y),
b the boundary condition (15a) sa

'
satisfied by D. But they e

'
fi the same boundary conditions:propagator satisfies t e same

+D(x,y) +D(x,y)'

2(DE +DE )—,

(22)

(23)

for x to the future ofy. Then, from q .E s. (21) and (23), we
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0=DE +DE =(D D—)E, (24)
0= f d x f, (x)lm[ibF(x, x)]f„(x)

da

0=f dx dy f;(x)fl, (x)f„(y)f,l(y)

X [
—[ihF(x,y)] [i—hF(x, y)]

+[D(x,y}] +[D(x,y)] ], (25)

implying that E(x,y) vanishes whenever x is to the future
of y, contradicting Eq. (20). Consequently the pointwise
unitarity relation (11) is not satisfied. Unitarity requires
that the corresponding integrated relation

d x f,' '(x)f„' '(x)Im [ib,F(x,x)]
da

(26)

where f' ' is a solution to the Klein-Gordon equation on
Minkowski space.

Because any function of the form e'"" can be written
as the product of two plane waves f ' ' and fJ, ', Eq. (26)
implies that every Fourier component of
Im(d/da)[ibF(x, x)] vanishes. Thus (almost every-
where),

Im [idF(x, x)]
a=0

=0. (27)

for all complex solutions f;,f~,fk, fl to the Klein-
Gordon equation. Because of the symmetrization, this is
a slightly weaker requirement than the pointwise unitari-
ty relation, but, given the failure of the pointwise rela-
tion, we think it highly likely that (25) is violated for the
A.P theory on spacetimes of the forin (i) and (ii).

We can show that unitarity is violated to order k for
the one-particle to one-particle transition or for a transi-
tion related to this one by crossing symmetry. For uni-
tarity to hold, Eq. (12) must be satisfied. If this relation
holds for each value of the radius a of the wormhole
throat, its derivative with respect to a must vanish:

The propagator for spacetime (i) is discussed in Appendix
A. If a is the radius of the wormhole throat,
Im[ibF(x, x)] is given by

Im[ihF(x, x) ]=2 Im[DO, (x,x)+D,o(x, x) ]+0(a) .

The quantities Do, and D,o are corrections to the prop-
agator corresponding to one traversal of the wormhole.
For a static wormhole spacetime with points on the first
and second copies of the throat identified after a time
translation ~:

Bo& = f dpi g tl~ i(kr, ) Yl (r—&)hl"''(kr2) Yl (r2)e
lm

(29)

D io= fdrag tl hl"'(—kri)Yl (r&)jt(kryo)Yl (r2)e
lm

(30)

In these formulas, r, (rz) is the position vector of the point x with respect to an origin centered in the first (second)

wormhole throat, and k is the magnitude of the momentum of a particle with energy ~. Finally tl. 1S the transmlsslon

coefticient through the wormhole's throat:

t = [2h'"(ka)h"'(ka)]leo
(k )2

l I (31)

The propagator itself is singular, and its singularity should be canceled by the mass-renormalization counterterm. The
counterterm, however, is real and does not contribute to Im[ib ~(x,x ) ].

From the form of hl for small argument we have

Then

ik=—50l, t, i, O=0.
a=0

I,'32)

~ 2

Im[ihF(x, x)] =Imf de [ —jo(kri)ho" (kr2)+jo(kr2}ho"(kri)]e
da a=0 4m

=(8vr r, r2) ' f dc@[—sin(kr, )c s(orkzc+or)+si ( nr k)c2(osrk, —cow)] . (33)

Because the integral is a nonvanishing distribution, the
unitarity relation (12) is violated. Boulware reached the
same conclusion for the tadpole diagram in the case of
Gott spacetimes, and the argument presented above was

stimulated by conversation with him.
The loss of unitarity for interacting fields is likely to be

related to a loss of unitarity that Klinkhammer and
Thorne [18] have found for a nonrelativistic billiard ball
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that can interact with itself when it traverses a closed
timelike curve. Using a WKB approximation they con-
struct a path integral to propagate the wave function
from 2;„ to X,„,. Their results are based on the analysis
of a classical billiard ball, in which they and Echeverria
had shown that, at least for a wide class of initial data,
"glancing blows" allow solutions to the Cauchy problem
[8]. The solutions, however are not unique: for some ini-
tial data, a billiard ball can loop several times through
the wormhole before hitting itself, and different solutions
correspond to the ball's looping different numbers of
times. The path integral is dominated by these different
classical alternatives, weighting equally all classical paths
whose length is short enough that the WKB approxirna-
tion remains valid. For longer paths —many loops —the
spread of the wave packet quickly diminishes the ampli-
tude for additional looping through the wormhole.

Loss of unitarity for the billiard ball system follows
from the fact that the final amplitude depends on how
many classical paths there are. If all initial data had the
same number M of classical solutions, one could regain
unitarity by multiplying the final amplitude by M ' to
obtain a normalized wave function. Because M depends
on the initial data, the evolution is not unitary. As in the
case of interacting fields, the difficulty is unrelated to a
billiard ball being trapped forever. The set of trapped
classical solutions has measure zero in the space of time-
like geodesics, and the amplitude for a trapped billiard
ball vanishes.

The billiard ball system should be similar to the evolu-
tion of a one-particle state in the A,P theory, if the Comp-
ton wavelength 1/p corresponding to the physical mass
of the scalar field, is small compared to the wormhole ra-
dius a and the state is chosen to have small velocity in the
frame of the wormhole mouths. The hard-sphere poten-
tial of the billiard balls is replaced by the attractive A,P
interaction, but one would expect similar near collisions
of a particle with itself to correspond to classical solu-
tions; and these would dominate the path integral for
states that approximate the non-relativistic WKB wave
function. The one-particle- one-particle scattering to
lowest order in A, corresponds to a tadpole diagram,

in which, as shown in Fig. 4, the loop of the diagram is
dominated by the classical solution for a particle that
traverses a CTC.

For a A,P field with small A. , however, there is likely to
be only one classical solution for given initial data. If this
is the case, the closest connection to the Klinkhammer-
Thorne and Politzer work is that diagrams that would
contribute to their one-particle —one-particle scattering
analysis fail to be unitary for any value of A, . In the
weak-field case one can see the loss of unitarity directly in
a perturbative approach to quantum field theory. When
the interaction is strong, one can infer a loss of unitarity
from the multiplicity of classical solutions; but unitarity
fails whether or not the classical solutions are unique.

Recent work by Deutsch [19] also considers quantum

mechanics on spacetimes with closed timelike curves,
with inputs and outputs from a black box modeling
"chronology-violating networks. " Deutsch assumes that
the classical evolution of fields is beset by paradoxes,
some of which (such as the grandfather paradox) prevent
consistent classical evolutions. As outlined in the Intro-
duction, we do not share this view. On the basis of the
examples that have been studied, we think it more likely
that (to state a rough conjecture) on smooth, stable space-
times whose CTC's are isolated —confined to a compact
region —one can find classical solutions for generic initial
data. Deutsch avoids the paradox by a departure from
standard quantum mechanics in which particles traveling
around CTC's are described by an arbitrary density ma-
trix. A resulting nonuniqueness is resolved by a minimi-
zation of entropy.

IV. DISCUSSION AND CONCLUSIONS

What are the consequences of a lack of unitarity in the
evolution that maps Fock space at a time prior to any
CTC's to that at a later time? Does a consistent probabil-

ity interpretation of quantum mechanics survive, or is it

impossible to make sense of quantum field theory on

spacetimes with CTC's? We begin with a discussion in a
Copenhagen framework, showing that the loss of unitari-

ty leads to inconsistent alternatives for computing proba-
bilities for outcomes of the same experiment. (Similar
analyses are given by Sorkin [33] and Jacobson [34].) We
then argue that a version of the sum-over-histories inter-

pretation of quantum mechanics can still make sense, al-

though one pays a price for the loss of unitarity. Even in

a region of spacetime to the past of any CTC's, the proba-
bilities assigned to the outcomes of measurements can be
affected by the fact that CTC's form in the future. One
can only assign probabilities to paths that begin in the
distant past, prior to any region of CTC's, and that end in

the distant future, after all such regions. Probabilities
can be assigned to decohering paths that include the his-

tories of local measuring instruments. We expect them to
agree with standard probabilities for the outcomes of ex-
periments that involve no interaction (in past or future)
with regions containing CTC's.

The key difficulty that arises from a loss of unitarity is
an ambiguity in the assignment of probabilities for events
occurring before the region of CTC's. To understand the
ambiguity, consider a quantum system consisting of a mi-
croscopic subsystem interacting with a macroscopic, but
quantum mechanical, measuring instrument. The com-
bined system is described, as usual, by a tensor product of
states ~a ) of the microscopic subsystem and states ~I ) of
the measuring instrument. In the Copenhagen interpre-
tation, a macroscopically large measuring instrument can
be included in or excluded from the description of a
quantum system at the discretation of the interpreter.
When the measuring instrument is included in the quan-
tum system, its macroscopic nature enforces a rapid
deeoherence that allows the probabilities of experimental
outcomes to agree with probabilities assigned to final
states of the subsystem by itself, with the instrument re-
garded as classical.

Suppose that the microscopic subsystem is initially in



FRIEDMAN, PAPASTAMATIOU, AND SIMON 46

state Ia ) just prior to the spacelike hypersurface X;„,and
that the microscopic system and the instrument interact
on X;„. As a result of the interaction, the combined sys-
tem will be in a state

(34)

In this expression, II, ) is a state of the instrument associ-
ated with the state Ic) of the microscopic system. The
states Ic ) are orthonormal, as are the states II, ).

After their interaction on X;„, the instrument and the
microscopic system decouple. We assume that, between
X;„and X,„„an instrument in the state II, ) remains in
that state, so that on X,„, the state II, ) has evolved to

1

e 'lI, ). (One could imagine the instrument's avoiding
the CTC region or passing through it with negligible in-
teraction. ) The evolution of the microscopic system be-
tween X;„and X,„, is governed by an operator V which
will not in general be unitary. Then the state IV) of the
combined system on X,„,has the form

I+&=/Vie&e' 'II, &&cia) . (35)

=gl&d Vlb&&bla&I'i&+I+&
d

=&bIV Vlb &I&bla &I'/&pl+& . (36)

If V is unitary, this agrees with the conventional result

P (Ii„X,„,)=P (Ii„X;„)=I &bla ) I (37)

If the failure of unitarity were simply due to an overall
normalization of the time evolution operator V (e.g. , for
a system with a Hamiltonian with constant imaginary
part, corresponding to particles decaying with a given
half-life), we would again have the usual result (37), be-
cause of the normalization factor &+l+) ' in Eq. (36).
The diSculty we face is more severe, however. The ex-
pectation value of V V does depend on the state, and one
finds inconsistent probabilities by observing the instru-
ment at different times, X;„and X,„,.

Even though it decouples from the microscopic system
before unitarity fails (before the Cauchy horizon bound-
ing the region of CTC's), the instrument gives different
results for the measurement depending on whether the in-
strument is checked before or after the epoch of CTC's:
P (I„,X,„,)WP (I~, X,„). This is quite disturbing. If the
measuring instrument has a memory, according to the
Copenhagen interpretation, the memory will change from
before the epoch of CTC's to after (even if it does not in-
teract with the region of CTC's). A more attractive alter-
native is to abandon Copenhagen in favor of a path-
integral interpretation.

Within the framework of the path-integral interpreta-

If we observe the instrument on X,„„the Copenhagen
probability P (Ii„X,„,) that it will be found in the state

I Ii, ), associated with state
I
b ) of the microscopic subsys-

tem is

P (It„X,„,)= g g &dIVIc) &Ii, II, ) &cia ) &Vl+)
d c

tion, one can apparently regain a consistent assignment
of probabilities for fields on a spacetime in which the
CTC's are confined to a compact region. A path integral
has the additional advantage that it apparently allows
one to define probabilities for measurements performed in
a region containing CTC's. Features of the interpretation
essential to our discussion are presented in the following
two paragraphs. We consider only experiments that can
be described by restrictions on the paths in configuration
space of the field P, and outline in the Appendix a more
complete version of the interpretation. (A detailed re-
view and list of references is given in Ref. [20].) The
remainder of this section is intended to be largely self-
contained.

As before, let X;„and X,„„respectively, be spacelike
hypersurfaces to the past and future of all CTC's. For a
scalar field P, a configuration-space path integral governs
the time evolution of state vectors in the field representa-
tion. State vectors in the in- and out-Fock spaces are
identified with functionals ip(p

I z ) and %(p I z ) (our no-
in Out

tation conforms to that of paper I). Suppose that one can
devise a measuring instruinent that makes a class C of
histories negligibly interfere with the complementary
class of all other histories. The probability P(C ) that the
history of the system belongs to C is then [21—23]

iS($)qp

(38)
eiS(P)qp

in

7

where [P] is the class of all fields between X;„and X,„,
and the inner integrals include fields on X;„but not on

X,„,.
To each outcome of a measurement corresponds a re-

striction on the possible fields in the vicinity of the
measuring instrument. The probability for a particular
outcome is given by (38), with 8 the class of all paths
obeying the restriction. This prescription assigns an
unambiguous probability for measurements made at any
time, and the probability is independent of the choice of
X;„and X,„„aslong as they are, respectively, to the past
and future of any CTC's.

For the system we considered at the beginning of this
section, we suppose that the state

I
b ) of the microscopic

subsystem corresponds to a restriction on Pl@ and to a
in

corresponding class X of fields. When one includes a
measuring instrument, the joint state I b ) IIi, ) similarly
corresponds to a class X of fields + instrument paths.
For the class X, the measuring instrument's path at X;„is
in the region of configuration space associated with a
reading I& of the instrument at X;„. By our prescription,
the probability for this is proportional to the sum over all
paths in S that start on X;„and terminate on X,„,:

(39)

lf the instrument remains intact and in an eigenstate IB )
until reaching X,„„this sum agrees with what one would
find in the Copenhagen framework if one resolved the
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ambiguity of a Copenhagen interpretation by choosing to
measure ~B ) on X,„,. Here, however, the measuring in-

strument need not remain intact; no observer need look
at it on X „„and the prescription is unambiguous.

The prescription, however, means that probabilities of
experiments performed to the past of any CTC's can be
affected by whether or not CTC's will form. Even to give
a probability interpretation to an initial wave function on

X;„, one must compute a path integral to X,„,. That is,
the probability density for finding the field P on 2;„ is a
sum of the form (38), where C is the set of all fields P that
start at P~x .

The fact that one must, in principle, compute a path
integral in order to find probabilities in the present is al-
ready present in a milder form, even without CTC's, if
one adopts the prescription that a class of histories must
decohere in order to have a well-defined probability. One
cannot, in principle, assign probabilities to alternatives
on X;„without computing a path integral of the form
(38), extending arbitrarily far to the future, in order to de-
cide whether the alternatives decohere. In practice, how-
ever, decohering alternatives are obvious, and no such in-
tegrals need be evaluated. We expect that, at least for mi-

croscopic CTC s, one can similarly dispense with path in-

tegrals extending over times long compared to the experi-
ment, and that one will not ordinarily encounter viola-
tions of causality on scales large compared to the size of
the CTC's. A plausible conjecture is that on spacetimes
whose CTC's are confined to a compact region, ordinary
quantum mechanics is valid unless one designs an experi-
ment to probe that region. Properly designed experi-
ments, however, can violate causality (exhibit probabili-
ties of outcomes different from those of ordinary quan-
tum mechanics) in regions to the past of any CTC's.

TX, =Xo, TXO=X» TX, =X (A 1)

If P satisfies the Klein-Gordon equation on M, g, then

P =go m satisfies the laein-Gordon equation on Miv.
A tilde will be used to denote pullbacks of functions,

covariant tensors, and operators from M to Mz. In par-
ticular the pullbacks to Mz of the Wightman function
and Feynman propagator are given by

D =Do(n Xn), bF=bFo(n Xn). '

Then hF satisfies

Kxb'F Krb'F 5(X, Y),

(A2)

(A3)

where

5(X, Y) =5(m (X),n ( Y) )= g 5(X,T ( Y) ) . (A4)

If one regards Mz, g as a spacetime, ignoring its role as a
covering space, one can define a Wightman function
8 (X, Y) and Feynman propagator b, F(X, Y) by requiring
that they satisfy

KID=K„D=O, KXZF=KrbF= —5(X, Y), (A5)

and have in the (static) past the form

spaces. Let Mz, g be the X-cover of M, shown in Fig. 5.
The projection m: M&~M, is locally an isometry that
covers each point x EM by X points in Mz. A global
isometry T: Mz~Mz maps each point XE.M over x to
the next point TX over x: On M3 (Fig 5.), for example,
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APPENDIX A:
PROPAGATOR ON TIME-TUNNEL SPACETIMES

Let M, g,b be a time-tunnel spacetime, an asymptoti-
cally flat spacetime a11 of whose CTC's thread a
wormhole. That is, M, g has CTC's, but its universal cov-
ering space does not. We shall assume that there are
asymptotically flat spacelike hypersurfaces X;„and X,„,
to the past and future of all CTC's, and that these hyper-
surfaces are generalized Cauchy surfaces —surfaces for
which smooth, finite-energy data for the scalar wave
equation has a unique solution P on M with P and VP in
I.2. For a static time tunnel, X;„and X,„,can be replaced
by 2 and 2'+.

We formally construct the propagator on M by means
of a multiple scattering series [9,4], a variant of which is
given in Eq. (A17) below in terms of a family of covering
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FIG. 5. The spacetime M, is constructed by identifying cor-
responding points on the cylindrical boundaries represented by
solid lines. To construct the covering space M„one identifies

points on the dashed cylinders as well. The points T 'X, X, and

TX correspond to the same point x EM but are not identified in

the covering space.
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Then

+0( Y X—)D( Y,X) .

g 6 F&&(T XT„),
m, n

D= —g Do(T XT„}.
m, n

B(x,Y)=,„(oly(x)y( Y) lo),„,
h~(X, Y) =0(X —Y )D(X, Y}

(A6)

(A7)

(AS}

in agreement with the second equality in (AS).
Because b F and X 'X „b,~o ( T X T„)have the same

form in the static past we need only verify Eq. (A3) to
show that the corresponding relation for b F holds: Be-
cause T~ is an isometry, Kx(T XT„}=T XT„Kz, and
we have

Kx —gZ Fo(T X T„) =—g (KxbF)o(T X T„)

1=—g( —5)o T XT
cV

m n

= —+5o(1XT )
To check Eq. (AS), let [f& ] be an orthonormal basis for
%;„, the Hilbert space constructed from solutions that
have positive frequency with respect to the past timelike
Killing vector on M. Then [fz ]

= [X '
fk I is orthnor-

mal on M~ and can be completed to an orthonormal
basis [fq] by adjoining an additional set of orthonormal
functions for which X fqo T =0. We have

g Do(T XT„)=g f f o(T XT„)
m, n m, n

= g (fko T )(fko T„)—
m, n

Equation (AS} implies

D(X, Y) =—g D(T X, T Y)
pq

QB(T X, T „Y)
pn

= gD(X, T „Y}.

(A10)

(A 1 1)

=&f f-k k ~
=ND, (A9)

The final equality here follows from the symmetry
D(X, Y) =8( TX, TY) and the fact that the sum over n in
the second line is thus independent of the value of p.
Similarly,

ibF giZF(T X T Y) +[0(T X T Y)D(TpX TqY)+0(T Y TqX)D(TqY TqX)]
pq pq

g [0(T X, T „Y}D(TX, Tp „Y}+(X~Y)]
pn

= Q [0(X,T „Y)D(X,T „Y)+(X~Y)], (A12)

where we have used the relation

0(TX, TY)=0(X, Y), D(TX, TY)=D(X, Y) . (A13)

copies of R, only one cylinder (Cz and C&, respectively)
are removed.

Then MN is globally hyperbolic, and we can write

Note that N does not appear in Eqs. (All) and (A12); if
the series converge, the equations are also correct as rela-
tions on the (globally hyperbolic) universal covering
space.

Let us now approximate Mz, g by leaving out the
outermost wormhole. More precisely, suppose the space-
time M, g is obtained from IR by removing two solid
cylinders C, and C2 and identifying each point x EBC,
with the point a(x)EBCz. One can construct MN from
X copies of R —

C& UCz by identifying a(x) on the kth

copy of BC2 with x on the (k +1}stcopy of BC, , ending
with the identification of the last copy of a(x) &BC' with

the first copy of x EBC, . The approximating space M~
lacks this final identification: from the first and last

id~=0(X, Y)D~(X, Y)+0(Y,X)8~( Y,X) . (A 14)

This version of the multiple scattering series is correct to
order N/2 when X and Y are on the middle (zeroth)
sheet. If the series converges, then

The corresponding approximations to D„and AF are

given by Eqs. (All} and (A12), with 8 and b, F replaced

byD~ and h~. Thus,

N/2
ib,~= g [0(X,T „Y)D~(X,T „Y)+(X~Y}].

—X/2

(A 15)
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and

X/2
D(X, Y)= lim g Blv(X, T „Y)+~ (x)

ihF= lirn ih~ .
Q~ oo

(A16)

(A17)

From the symmetry

f( ) (T X)=f( ~)j(X),

we have

D „(TX, T Y)=D ~„q(X,Y) .

(A22)

(A23)

(f( )j ~f( )k ~ ~ ~jk

We have

B(X,Y)= g f( )j(X)f( )j(Y)= QB
mj m

where

(A19)

(A20)

We can compute AF explicitly to first order in the mul-

tiple scattering series in terms of the first-order correc-
tions to the eigenfunctions, for the spacetime with boost-
ed wormhole mouths or a static spacetime [(i) and (ii) of
Fig. 1, respectively], with a flat metric outside the re-
moved cylinders. The calculation is simplest for zero-
rest-mass fields, because initial data can be specified on

, and 2 (Ml)l) consists of N disjoint copies of 2 (M).
We shall choose on M)v an orthonormal basis f( )l.(x) by
setting as initial data on J'

f, (x), XCmth sheet,

0, XEmth sheet . (A18)

Then

Then Eqs. (Al 1) and (A20) give

D(X, Y)= gD ~„(X,Y) . (A24)

+8( Y, T „X)D +„(Y,X}] (A25)

For X, Y in the pth and qth sheets, respectively,
D „(X,Y)-(a /d) '+ " because f( )

.(X) requires
~m

—
p~ transmissions. We expect that (A24) and (A25)

converge to distributions when the multiple scattering
series converges to solutions f of the Klein-Gordon
equation.

We can now calculate the propagator to first order in
the multiple scattering series. From Eqs. (A15) and
(A17), with X and Y on the zeroth sheet, of M3, we have

f( )j(T X)=O(a ), f( )J(T ~)X)=O(a),

)
—O ( a I m

I
+ In l )

An analogous relation for the propagator follows from
Eqs. (A20) and (A12):

ibF(X, Y)= +[8(X,T „Y)D +„(X,Y)

D „=g f( ), (X)f(„)j(Y) .

J
(A21)

Equation (A25) implies

ihF(X, Y)=8(X, Y)8(~+8( Y,X)8(~+8(X,T Y)(D(), +D,() )(X, Y)+8(X,TY)(D(), +D,() )(X, Y)

+8( Y, T 'X)(80) +D )o )( Y,X)+8( Y, TX)(80 ) +D, () )( Y,X)

=8(X, Y)8()o+8( Y,X)Boo+8(TX,Y)(80) +D,())(X, Y)+8(X,TY)(D(), +D,())(X, Y)

+8(TY,X)(D(), +D, () )( Y,X)+8(Y, TX)(BO ) +D,() )( Y,X) . (A26)

Note that Eq. (A26) is the O(a) approximation to EF of
Eq. (A25}.

Finally, we need the first-order correction to the eigen-
functions f( )

. As eigenfunctions on Minkowski space,
we use the normalized spherical 8essel functions,
V(k/m. j),(kr)Y) e ' '. Let us begin by considering the
simplest case, in which a single wormhole joins two iden-
tical copies of Minkowski space. The exact solution cor-
responding to an incoming spherical wave is a sum of a
reflected wave outgoing from the first mouth and a
transmitted wave outgoing from the second mouth.
Denote by rI and tI the reflection and transmission
coefficients for a wave j l(kr)Yl (r, )e '"' centered about
the first mouth, and let r, (X) and r2(TX) be vectors from
the centers of the two mouths. Exact eigenfunctions on

this simplest wormhole spacetime are then of the form

flm (x)=e ' ' k/lr[j((kr))Yl (r, )

+rl hl "(kr, ) Yi~(r, )

+e'"'&l„hl' "(kr2) Yl (r2)] .

(A27)

and

jl }+ I hl (k ) tl hl (A28}

The boundary conditions, Eqs. (15a) and (15b), become
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kj&'(ka)+r&„kh&'" (ka) = —
t& kh&

"(ka), (A29) h&"'(ka) j&'(ka) —h&~" (ka)j &(ka)
t, =

2h,'"(ka )h"'(ka)
determining the transmission and reflection coefFicients:

h& "(kaj)&'(ka)+ h&
"(ka)j&(ka)

2h&"'(ka)h&'" (ka)
(A30)

l

(ka) 2h&" '(ka)h "' (ka }

Finally, again to 0 (a), we have

(A31)

Do& = f dco g t&~—&(kr& }Y& (r, )h~ "(kr2)Y~ (rz)e
lm

(A32)

D —]0
= f dpi & t( h~ (kr& ) Yt (r& )jt(«2) Y~ (r2)e

1m

(A33)

To obtain the last equality, one can either use the transla-
tion formula of spherical 8essel functions [24] or use the
fact that the zeroth-order form of D (x,y) is translation
invariant to write it as a sum of spherical Bessel functions
centered about the left mouth.

APPENDIX B:
A PATH-INTEGRAL INTERPRETATION

We briefly review the path-integral interpretation of
quantum mechanics used in Sec. IV. In standard quan-
tum mechanics, ideal measurements are associated with
projection operators on a Hilbert space. When CTC's are
present, however, there are no global spacelike hypersur-
faces, and one can construct a Hilbert space of states only
on in and out regions. Thus, within the standard frame-
work, one cannot speak of measurements made in a re-
gion of CTC's; one can at best describe only measure-
ments made by instruments that maintain stable records
of experimental outcomes until there are no longer any
CTC's. In addition, as we have seen, a Copenhagen inter-
pretation gives inconsistent probabilities for measure-
ments made before and after a region of CTC's. A path-
integral interpretation, on the other hand, allows one to
define measurements in a region with CTC's in the same
way that they are defined on a globally hyperbolic space-
time, and one can apparently maintain a consistent set of
probabilities despite the loss of unitarity that character-
izes the quantum evolution.

The view we adopt is similar to that presented in Sec.
IV.3 of Hartle [20] and in Sinha and Sorkin [23] (al-
though Sorkin does not regard decoherence as a prere-
quisite for the assignment of probability). It shares with
the path-integral interpretation given in Feynman's [21]
initial paper an assignment of probabilities to classes of

(C ~p;„)(p~ ) = f Dp e' ~p;„. (81)

Then the overlap of CO,„and C'4;„ is called the decoher-
ence functional D(C, C'):

or

D(C, C )=(C e,„~Ce,„)
= f dp~~ (C'~p;„)(CV;„), (82)

paths in configuration space (see also Caves [22], Stachel
[25], Mensky [26], Aharonov and Albert [27], Griffiths
[28], Omnes [29], and Gell-Mann and Hartle [30]).
shares with the Everett interpretation a refusal to distin-
guish in principle macroscopic and microscopic
systems —there is no separate "classical" domain. The
entire Universe is assumed to be quantum mechanical,
and the nearly classical behavior of macroscopic systems
is in part the result of what Bohm calls "destruction of
interference" by the random phases of a complex system
[31,32]: in path-integral terminology, classes of paths in
configuration space rapidly decohere, allowing one to
identify the history of a physical system with any member
of a class of macroscopically indistinguishable paths.

We begin by recapitulating a version of the path-
integral interpretation, relating the formalism to a
Schrodinger picture. In a wave-function terminology,
two classes of fields C and C' are said to decohere if the
wave functions at X,„, obtained by summing over the
class C has negligible overlap with that obtained from the
class C'. Let C~p;„be the state vector in J,„, obtained
from 4';„by summing over the class C. That is, to obtain
the value of CV;„at P~z one sums over all fields g in C

out

that end at P ~ z

D(C, ~')= f DO'f DO&({t'i, —yl, )e-""+"~'~ (y)~ (y)C' C out out
(83)

One can regard this last form as a definition of D(C, C')
in language that refers to the classes of fields —not to a
final wave function.

If [P] is the set of all fields, one can assign a probabili-
ty

P(C ) =D( C, C )/D( [Q], [Q] ) (84)

to each class of fields C, C', . . . , if (a) the classes are ex-
clusive and exhaustive ( C fl C ' =0, C U C

' . =
[P] ) and

(b) any pair of classes decohere: D ( C, C" ) =0.
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Equation (B4) is equivalent to Eq. (41) of the text.
By including measuring instruments in the fundamen-

tal description of a system, one has substituted classes of
paths for the projection operators of the Copenhagen in-
terpretation. In practice, it is obviously helpful to be able
to speak only about probabilities associated with a micro-
scopic system without explicitly introducing a measuring
instrument. If one is allowed only to look at classes of
microscopic fields on spacetime, however, one cannot
reproduce most states —an energy eigenstate of an atom,
for example, cannot be described as a class of field paths.
The formalism of most of the recent "sum-over-histories"
work allows one to describe arbitrary states by generaliz-
ing the meaning of "history. " Instead of considering only
classes of paths in configuration space (equivalently, se-
quences of projection operators corresponding to se-
quences of regions in configuration space) one works in
the canonical framework and defines a history as a se-
quence of arbitrary projection operators. This freedom,
of course, is not available on spacetimes with CTC's.

Instead, we rely on the fact that an ordinary state of a

macroscopic object can be approximated to any reason-
able degree of accuracy by a description of the position of
the object in its configuration space, i.e., in the large
configuration space of the quantum fields that comprise
it, or in a smaller configuration space needed for a less
fundamental description. The state of a microscopic sys-
tem can be specified in the way one learns about it or
prepares it in practice, by specifying a history of the mac-
roscopic objects, together with the Lagrangian describing
their interaction with a microscopically described system.
(A specification that incorporates the inaccuracy of one' s

knowledge of a macroscopic system is given, for example,
by Caves [22].)

If CTC's pervade spacetime on a small scale, there will
be no hypersurfaces to whose future (or past) the space-
time has a causal structure. Nevertheless, we expect that
if one probes Planck-size distances only for a finite time,
a sum over local geometries in the past and future will
reproduce local Lorentz in variance and allow our
description, with final and initial spacelike surfaces, to be
an accurate approximation.
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