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Faddeev-Popov ghosts and (1+1)-dimensional black-hole evaporation
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Recently Callan, Giddings, Harvey, and the author derived a set of one-loop semiclassical equations
describing black-hole formation and/or evaporation in two-dimensional dilaton gravity conformally cou-

pled to N scalar fields. These equations were subsequently used to show that an incoming matter wave

develops a black-hole-type singularity at a critical value P„ofthe dilaton field. In this paper a
modification to these equations arising from the Faddeev-Popov determinant is considered and shown to
have dramatic effects for N &24, in which case P„becomes complex. The N & 24 equations are solved

along the leading edge of an incoming matter shock wave and found to be nonsingular. The shock wave

arrives at future null infinity in a zero-energy state, gravitationally cloaked by negative-energy Hawking
radiation. Static black-hole solutions supported by a radiation bath are also studied. The interior of the
event horizon is found to be nonsingular and asymptotic to de Sitter space for N &24, at least for
sufficiently small mass. It is noted that the one-loop approximation is not justified by a small parameter
for small N. However an alternate theory (with different matter content) is found for which the same

equations arise to leading order in an adjustable small parameter,

PACS number(s): 04.60.+n, 97.60.Lf

In recent work [1] it was proposed that two-
dimensional dilaton gravity coupled to conformal matter
is a useful and simple model in which progress might be
made in unraveling the mysteries associated with black-
hole evaporation [2]. It was shown that the process of
black-hole formation and/or evaporation, in an approxi-
rnation which includes one-loop matter effects and treats
gravity semiclassically, can be described by a set of par-
tial differential equations which incorporate the back re-
action of Hawking radiation on the geometry. It was fur-
ther pointed out that this approximation is formally exact
in a limit as the number N of matter fields is taken to
infinity.

It was subsequently shown [3,4] that in the large-N ap-
proximation a collapsing matter wave forms a black hole
containing a singularity. ' This singularity no longer
occurs at the value P= Oo of the dilation as in the classi-
cal theory, but rather moves up to the finite value

P,„=——,'In(N/12). The black hole then evaporates,
presumably leaving a massless, singular "remnant" [5—7].

In this paper we will consider the equations describing
dilaton gravity coupled to N conformal scalars in the
one-loop approximation for finite N. These equations
diff'er from those derived in [1] by the addition of terms
arising from the gravity-ghost measures which are negli-
gible for N~ ~. We shall see that, for N (24, these
terms remove the singularity found in [3,4].

Some evidence consistent with the absence of other
types of singularities is presented, but the equations are

where g and P are the metric and dilaton fields, respec-
tively, and k is a cosmological constant. This is a
theory with no local degrees of freedom: the 3+1 fields
in g and P may be eliminated by two gauge conditions
and two constraints. There is, however, a one-parameter
family of classical black-hole solutions labeled by the
black-hole mass [10]. We wish to gauge fix (1) to confor-
mal gauge

g 1 e2p

(2)
g++ =g ——=O

where o.—=~+o.. In so doing the action will be shifted
by the usual logarithm of the Faddeev-Popov ghost deter-
minant. This term may be expressed in a covariant nota-
tion as

SFp d o —gR R
13

(3)

However, an ambiguity in this procedure arises in the
present context. There is a family of metrics g given by

sufficiently complex that the question is not settled here.
We hope to analyze the problem numerically in the near
future [8].

We begin with a discussion of the gauge fixing and
quantization of pure dilaton gravity:

So= Jd o& ge —~[R+4(Vtb) +4k, ],1

Electronic address: andy ~denali. physics. ucsb. edu
'Or more precisely, the fields become so large that the large-N

approximation breaks down.

2A related discussion of this quantization with similar con-

clusions has been given in [9].
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any of which might be used to construct S„pin (3). Al-
though we have chosen go in order to write down (1), it is
not especially preferred. Indeed, the difference between
two choices of metric is given by

S„p(g ) —S„p(g)= fd o& —g(A+a P)P .

This is a local expression which might have been added
to the action (1) either in the first place or as a finite
counterterm during one-loop renormalization. Thus,
there is no right or wrong choice of metric in (3):
different choices simply correspond to different theories.
One must choose a theory which contains the physical

phenomena one wishes to investigate.
In fact, g is not a good choice of metric to use for

defining the ghost measures —it leads to a sick theory.
Using the metric g in (3) means that the Faddeev-Popov
b-c ghosts couple to the geometry in the same way as the
conformal f fields described in [1]. It immediately fol-
lows that black holes will grow in mass by Hawking radi-
ation of negative-energy ghosts. This is clearly non-
sense.

This problem is avoided by defining the ghost measure
with the alternate metric

T +T =e ~(4B PB p
—2B P)+2(B p

—i) P)

2—3+p+ 28+/+ t+,

where, as explained in [1], r+( o+) is determined by
boundary conditions.

In order to study the problem of black-hole evapora-
tion, we must complicate the theory by adding matter
fields with local degrees of freedom. Following [1] we
add N conformally coupled scalar matter fields f, . Again
an ambiguity in defining the f measure arises. However,
this time we do not wish to use metric g. This leads to a
presumably sensible theory which does not contain the
phenomena we wish to study: black holes do not Hawk-
ing radiate. Indeed this theory in a sense does not even
contain black holes, since the matter sees only the flat
metric g. As explained in [1],if we instead use g to define
the f measure, Hawking radiation of f particles indeed
occurs, and closely resembles the four-dimensional phe-
nomena. One thereby arrives at the final action

S=—f d cr e ~(28+d p 48+—$8 /+hei').

This metric turns out to be flat for all classical solutions
of (1). Black holes will therefore not radiate ghosts to
leading order.

As is familiar in Liouville gravity, there is an addition-
al term of the form (3) arising from the dependence of the

p, P measures on the metric. Again there is an ambiguity
in these measures. Since p, P are not local, propagating
degrees of freedom, it is natural to demand that there be
no Hawking radiation in these modes. This is accom-
plished by using the metric g to define their measures as
well, which changes the 13 in Eqs. (3) to a 12. This
definition ensures that there is a stable black-hole solu-
tion of the quantum theory for each value of the mass M.

The gauge-Axed action, including all the measure
terms, is then

S +Ssr= —fd cr[e ~(2d, a p 4a, ya —y+k e ~)

while the stress tensor is

Although we cannot build detectors to see the ghosts directly,
we can sti11 observe their effects on the geometry.

4Ignoring the cosmological constant term, (7) becomes a free
theory in terms of the variables v=e 'i and w=p —P. It is

then easy to check that the stress tensor has c =26, as required
by coordinate invariance. It also easily follows that the cosmo-
logical constant operator e is dimension (1,1) (with no renor-
malization of the exponent). Thus, there are many similarities
with Liouville theory, and the methods developed there may be
useful in the present context.

N N

12
a,&a p+-,' pa, f, a f,

+28 (p —P)a (p

The constraints will be discussed shortly.
The quantum theory is described by functional integra-

tion with the "naive" measure weighted by S. In the
large-N limit, all terms are of order N (after shifting P)
except the last one, which is order one and may therefore
be dropped. In [1]it was argued that these order-N terms
may be treated as a quantum effective action which de-
scribes the process of black-hole formation and evapora-
tion, with the modifications of the gravitational action ac-
counting for the stress energy carried by Hawking radia-
tion.

Ho~ever, the large-N approximation is not necessarily
a reliable barometer of finite-N physics, particularly for
N ~ 24. One way to see this is from the behavior of the
p-P kinetic operator A at large positive and negative P.
At large negative P, the theory is essentially classical and
A has one positive and one negative eigenvalue. At large
positive P and finite N, the classical action may be treated
as a perturbation about the free measure-induced terms,
and A still has one positive and one negative eigenvalue. '
In the large-N limit, however, there are two negative ei-
genvalues for large P and consequently a zero eigenvalue
at an intermediate value of P. This zero eigenvalue leads
to singular behavior in the large-N limit [3,4] which may

5Although for N )24, there is a region whose size gro~s with
Tin which there are two negative eigenvalues.
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gPa, a y= P(4a, ya —y+X'e ~),

2Pc)+c) p=e ~(48+$d P+Ae~), ,

where

(10)

not be present for small N. Thus, other methods should
be found for analyzing the theory at small N.

In this paper the action (9) including the last term (and
corresponding modification of the constraints) will be
treated as a quantum effective action for finite N. This
amounts to a one-loop semiclassical approximation. For
small N, there is no obvious small parameter which
justifies this approximation. The loop expansion may
break down when e ~ gets large, and we cannot be
confident that our conclusions are qualitatively correct.
Nevertheless, we shall find in the one-loop approximation
that the behavior of the theory changes dramatically at
N=24, and we hope that the one-loop semiclassical ap-
proximation is at least qualitatively correct in the N & 24
regime.

While treating (9) semiclassically has not been justified
as a systematic approximation to dilaton gravity coupled
to N scalar fields for small N, it can be formally justified
as a systematic approximation to dilaton gravity coupled
to a different matter system: let there be NM scalar f
fields, and include an additional c= —24M conformal
matter sector with measure defined with respect to g.
After a shift of P, one recovers an action of the form (9)
multiplied by M. One then expects a semiclassical treat-
ment to be valid for large M. The following analysis may
be taken to apply to this system.

We now proceed to analyze the dynamics following
from (9). The p and (() equations may be cast in the useful
form

p=O .

An f shock wave is defined by

(15)

Classically, the f stress energy leads to a black hole of
mass M above 0.0+. The quantum equations, however, ex-
hibit different behavior. Below ere one still has (15), and
the solution above O.o+ can be computed in a Taylor ex-
pansion in (o+ —cro+). Defining X(o ) =c)+P(ere+, cr ),
Eq. (10) becomes a simple equation for X:

SPa r= —P'(4a yr +X' 'e~), (17)

where (15) should be substituted for the values of ((),p
along (cro, cr ). This is easily integrated to yield

1 M
&(cr )=-

QP(o~+, cr )

However, for N (24, there are no real solutions of (14),
and P is a positive definite quantity with a minimum at

P = —
—,
' ln(N /24):—P, .

Thus, the singularities described in [3,4] do not arise.
While we do not know if other types of singularities arise
in the N & 24 equations, they are clearly far better
behaved.

These equations can be solved following [3,4] perturba-
tively about the leading edge of an f shock wave incident
on the linear dilaton vacuum, as illustrated in Fig. 1. The
linear dilaton vacuum is a solution of (10)—(13) given by

4p N
12 24 '

P, 6P
5$ 24

The + + constraint equation is

(a,pe+p —a,p)2

(12)

just above the shock wave. The integration constant here
is fixed by requiring that asymptotically as cr ~ —ae (on

2„)X agree with the classical f shock wave solution.
For N &24, P has no zeros, and X is perfectly finite.

(For N ~24, X diverges at a finite value of o .) As ex-
plained in [3], an apparent horizon occurs whenever X
vanishes, and one may say that an "apparent black hole"
has formed. Since the minimum value of P (at (( =P, ) is

(N/24)(1 N /24) the—re is no apparent horizon for
sufficiently weak shock waves, i.e., small M. For
M=X"t/(N/24)(l N/24), X has —a double zero where

+2[c) (p —$)c) (p —P) —c) (p —P)]+t =0,
(13)

and a similar equation holds for T
The effect of the ghost-induced terms in these equa-

tions is immediately evident from (10). The prefactor P
in (10) has zeros at

' 1/2
N 1+ 1 —24
24 X

As pointed out in [3,4], these zeros are very dangerous:
because the right-hand side of (10) is generically nonzem,
8+c) P is forced to diverge whenever P cmsses a zero.

6The stability of the zeros (or lack thereof) of P—on which

our results strongly depend —against higher loop quantum

corrections is an important question to which we do not have a

definitive answer. However, it can be easily seen, by considering

perturbation theory in e~ and e ~, that, in the large-N limit (in

which the last term in P is neglected), P must change sign be-

tween weak and strong coupling, and consequently must have at

least one zero. For N &24, it does not change sign, and must

therefore have an even number of zeros, though we are not sure

if that even number is zero in the exact theory.
7The weak-coupling singularities of the quantum kink solu-

tions found in [5,7], are presumably still present.



FADDEEV-POPOV GHOSTS AND (1+1)-DIMENSIONAL BLACK-. . . 4399

It is thus crucial to determine whether or not the ap-
parent horizon actually reaches P, . Following [3], the
outer horizon may be parametrized as the curve & (o.+).
Russo, Susskind, and Thorlacius [3] derive several formu-
las for o from the condition

For the present system these become

d& t) 0 4e ~ t'P
(21)

FIG. l. An f shock wave incident on the linear dilaton vacu-

um. For N &24, no singularities are encountered in a Taylor
expansion above the shock wave, but this expansion does not
probe the region above the dashed line.

the shock wave crosses (() =P„which splits into two ap-
parent horizons (containing a region of trapped points )

as M increases. Since P approaches N/24 as o —+ ao (on
SL+), for M ) A,&N/24, the region of trapped points ex-
tends all the way from the first apparent horizon up to
J'L along the f shock wave.

It is of interest to determine the fate of the apparent
black hole —or, equivalently, the region of trapped
points —above the shock wave. This is a diScult prob-
lem in general, but some progress on it can be made as
follows. At the apparent horizon, where 8+/=0, Eq.
(10) reduces to

where

Tf+ = 12(d+pr)+p r)+p)2

+2[t) (p —$)t) (p —Q}—t) (p —P)]+t,
(22}

can be thought of as minus the energy in Hawking radia-
tion leaving the apparent black hole. The second relation
in (21) implies that if Tg+ is always negative (i.e., the
black hole is evaporating), the outer apparent horizon is
timelike and will tend to meet the spacelike line P=P, . '

However, we have unfortunately been unable to prove
that T~++ is indeed everywhere negative.

Further progress can be made by considering a very
small apparent black hole, for which M is just over the
threshold for production of an apparent horizon along
the shock wave. In that case the apparent black hole is
formed in a small neighborhood of P„and its evolution
can be determined by a Taylor expansion about the point

P'A, e ~
a (a,y)=- (19)

(0'p rJ ): tTp 0'p ln

where P' is negative (positive) in the weak- (strong-) cou-
pling region where P (P, (P & P, ). It follows that if one
moves across an outer (inner) apparent horizon in the
direction of increasing rr, one always enters (leaves) the
interior of the apparent black hole where 8+/ )0.

Thus, if the outer apparent horizon (in the weak-
coupling region) is followed above the shock wave, cr+
will monotonically increase until (or unless) it meets the
line P=P, (which is spacelike inside the apparent hor-
izon). If it does meet this line, the boundary (now the
inner horizon) must subsequently continue along decreas-
ing o. , back toward the shock wave. Thus, the apparent
black hole ceases to exist for o.+ greater than the value at
which the apparent horizon meets P, .

sA trapped point is one point for which p increases along both
outgoing null geodesic s. This corresponds to the four-
dimensional definition of a trapped surface when e ~ is inter-
preted as the size of the two spheres [3,4, 11].

Though it may (and will for M&k&N/24} exist for large
values of 0.

where the shock wave crosses the line P=((), . Using the
first equation in (21) and (19), one finds that the trajectory
of the horizon is determined by

2(24/N —1)a',y(~,+,~; )

do+ A, (cr —cr, )

One then finds, for o.+ )o.o,

& =+2k(trp+ —o+)+c +o,

(23)

(24)

If T~ goes to zero sufficiently fast, the horizon could be
asymptotically null and avoid P, .

where (Op, cr, +c) are the initial coordinates of the inner
and outer horizons along the shock wave. The behavior
of the trajectory depends crucially on the sign of
t)+(((o.p+, o, ) or k. According to (24), if k is positive the
apparent black hole shrinks and disappears at
o.+=o.o++c /2k, soon after formation. On the other
hand, if k is negative the apparent black hole will initially
grow in size, and perturbation theory about the shock
wave cannot be used to determine its ultimate fate. The
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T~+ + Tf+ =0 (26)

at (o.0+, oo). Thus, the f shock wave is gravitationally
cloaked by a cloud of quantum fluctuations and arrives at
JL as a "zero-energy bound state. ""

This is in line with the conjecture made in [1] that the
incoming state from 2z evaporates before forming a
black hole, and arrives as a zero-energy bound state on
JL. It is tempting to speculate that this conjecture,
though disproved for N )24 [3,4], might be applicable to
N &24. However, it is not clear if this is consistent with
the behavior of the apparent horizons.

We hope to answer these questions in the near future.
For the moment some further insight can be gained by in-

vestigating static black-hole solutions of the type found
for N) 24 in [6,7]. Following [7], this is best accom-
plished in terms of the variable

g
—2 k(o —o. j (27)

which vanishes on the horizon, is spacelike and positive
outside, and timelike and negative inside. The equations
of motion (10) and (11) for fields depending only on s be-
come

8P(sg+P)=P'(A, e P 4sg ), —

2P(sp+p)= —e ~()(, e P —4s(t) ),
while the constraint is

(28)

(29)

e "(4' 24) =,2
(p —p) 2[(p 4)' P—+0—]+— —

(30)

where an overdot denotes differentiation with respect to s
and t is a constant. The finiteness of jf and p at the hor-
izon gives constraints for initial data at s =0:

"This greatly strengthens the analogy made in [5,12] to the

Schwinger model with a position-dependent mass.

sign of k is determined by continuing to one higher order
the Taylor expansion about cr0 used to find X(cr ). A
tedious computation reveals that, rather curiously, k is
positive for some values of X and negative for others. We
do not understand the significance of this. Perhaps the
theory depends qualitatively on X even within the range
0&N (24.

It is of interest to study the behavior of the quantum
stress tensor Tg+ of (22) along the shock wave. At
o+=(T0+, c)+(t (as well as 8+p) is discontinuous. T~++
will therefore have a 5 function at O.o+. One easily finds

r

A.(oo 0' )

T~~+ (cr(), cr ) =Mfi(cr+ —
cr() )

—1 . (25)
P

As the shock wave enters from fat((7 = —0()), Tg+
vanishes. As it moves in, P increases, and negative-
energy quantum fluctuations begin to accumulate along
the shock wave. This energy approaches a constant up
on 2t+ which obeys

g2e 2P(0) —4$(0)

p 0)=-
2P (0)

X'e 'P"'P'(0)
8P(0)

0 =

t=o.
(31)

Since p(0) can be set to zero by a global coordinate trans-
formation, there is a one-parameter family of ine-
quivalent solutions labeled by P(0), or equivalently, the
black-hole mass.

The behavior of these solutions depends on whether
())(0) is less than or greater than the critical value,
t))), = —,'ln(24/N), where P' changes sign. For large nega-
tive P(0) (corresponding to large black holes), the solu-
tions will differ little outside the horizon from those
found in [6,7]. Asymptotically the solution approaches
the linear dilaton vacuum, but with a linearly divergent
Arnowitt-Deser-Misner (ADM) mass corresponding to
the infinite radiation bath required to stabilize the black
hole against Hawking decay. As (t(0) approaches ((), the
solutions begin to differ. This can be seen from the fact
that, at (()(0)=P„the solution is exactly given by [in the
gauge p(0) =0]

1 24
())

=—ln
2

p= —ln 1+—S
CX

(32)

where a=2)(, (24/N —1). This corresponds to de Sitter
space filled with Hawking radiation. We presume that, as
(t)(0) approaches (()„there is a growing de Sitter —like re-

gion outside the black hole. At $(0)=(t)„this region
engulfs the entire spacetime and the black-hole horizon
becomes a de Sitter horizon.

One expects that a large slowly evaporating black hole
is approximated within some region by these static solu-
tions with a slowly increasing ()I)(0). However, one should
not conclude from the above that the end point of an ap-
parent black hole formed by a massive incoming shock
wave is de Sitter space. In that situation, the spacetime is

always asymptotic to the linear dilaton vacuum with a
finite mass. One possibility is that it looks like de Sitter
space within some region which then decays back to the
linear dilaton vacuum.

Inside the horizon, the ghost modifications have a cru-
cial effect even for P(0) «(t, . When N) 24, it was

shown that (t) increases (now in a timelike direction) until

a zero of P and a singularity is reached. The resulting
spacetime has a causal structure identical to that of the
static classical black-hole solution. However, for A &24
there are no zeros of P. In this case one finds from (28)
that, for P &(t)„both (1) and s(() are initially increasing as
before. P will then inevitably cross P„atwhich point s(()

must start to decrease, and P "bounces" off of some max-

imum value rather than becoming singular. This behav-
ior can be understood from a linearized analysis for smail

P(0). To leading order the p equation is independent of (t

and yields the de Sitter solution (32). The linearization of
(10) is then
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sP+P=
(s+a)

Define the new timelike variable

(33)

&a+&—s
u =1n

&a—&—s
(34)

which runs from zero at the horizon to plus infinity at fu-
ture timelike infinity (s = —a). The linearized P equation
then becomes

r)„p+cothu d „p+2p =0, (35)

while the boundary condition (31) implies B„Pvanishes at
the horizon. As the coefficient of the first derivative term
is positive for u & 0, this is a damped harmonic oscillator.
Thus, excursions of P are damped inside the horizon and
the linearized approximation does not break down. We
therefore conclude that, at least for small $(0), the interi-
or of the black hole is nonsingular and asymptotic to de
Sitter space, as illustrated in Fig. 2.

Evidently this system is very resistant to singularity
formation: even if a small black hole is forced into ex-
istence by continuously pumping in energy from infinity,
there is no singularity in its interior.

For large P(0) the equations are harder to analyze, but
we expect similar behavior. Numerical work on this
question is in progress [8].

Clearly this set of equations exhibits complex and
unusual behavior that we do not yet fully understand,
and which merits further investigation. Our preliminary
investigations have failed to uncover any black-hole-type
singularities, but their existence is certainly not ruled out.
We also do not know if the equations give a qualitatively

FIG. 2. Penrose diagram for an N (24 quantum black hole
in equilibrium with a radiation bath. The singularity present in

the classical Kruskal diagram is replaced by an asymptotically
de Sitter region.

correct description of X (24 matter fields coupled to di-
laton gravity because higher-loop corrections could be
important. What has been established, however, is that
the nature of the black-hole formation-evaporation pro-
cess, including the singularity structure, depends qualita-
tively on the properties of the matter sector. It is an ur-
gent problem to characterize the possible behaviors.

It is intriguing that the outcome of two-dimensional
gravitational collapse depends qualitatively on the matter
content of the Universe. Perhaps this will also turn out
to be true in four dimensions, and lead to constraints on
the spectrum of elementary particles.
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