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In most attempts to compute the Hartle-Hawking “wave function of the Universe” in Euclidean quan-
tum gravity, two important approximations are made: the path integral is evaluated in a saddle-point

approximation, and only the leading (least action) extremum is taken into account.

In (2+1)-

dimensional gravity with a negative cosmological constant, the second assumption is shown to lead to in-
correct results: although the leading extremum gives the most important single contribution to the path
integral, topologically inequivalent instantons with larger actions occur in great enough numbers to
predominate. One can thus say that in 2+ 1 dimensions, and possibly in 3+ 1 dimensions as well, entro-
py dominates the action in the gravitational path integral.

PACS number(s): 04.60.+n, 98.80.Dr

I. INTRODUCTION

Quantum cosmology is a difficult subject, not least be-
cause we do not yet have a consistent quantum theory of
gravity. In the absence of such a theory, cosmologists
must rely on plausible, but necessarily speculative, ap-
proaches to gravity in the very early Universe. One at-
tractive approach is Hawking’s Euclidean path integral
[1], which describes the wave function of Universe in
terms of a “Wick rotated” gravitational path integral
over Riemannian (positive-definite) metrics g, with an ac-
tion
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Here R [g] is the scalar curvature for an n-dimensional
manifold M (n =4 for standard physics), A is the cosmo-
logical constant, A is the induced metric on dM, and X is
the trace of the intrinsic curvature of dM, while ¢
represents a generic set of matter fields.

A path integral ordinarily determines a transition am-
plitude between an initial and a final configuration, and to
specify a unique wave function one must select appropri-
ate initial conditions. The Hartle-Hawking “no bound-
ary” proposal [2] is that there should be no initial
geometry—the path integral should be evaluated for
compact manifolds with only a single boundary com-
ponent 2. If we specify a metric 4 and a set of matter
fields ¢|s on =, the path integral

Ylh,¢ls] (1.2)
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can be interpreted as a wave function, giving an ampli-
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tude for the Universe to have spatial geometry A and
matter configuration ¢|s. There seems to be no natural
way to select any one particular topology in such a path
integral, so in the Hartle-Hawking approach one sums
over all manifolds M, subject to the condition that = be
the sole boundary component.

To obtain interesting physics, a further restriction on
M must be imposed. The integration in (1.2) is over
Riemannian metrics, and it is necessary to “analytically
continue” to obtain the observed Lorentzian structure of
spacetime. This will be possible if the Riemannian
metrics in the path integral can be joined to Lorentzian
metrics to the future of = (see Fig. 1). Gibbons and Har-
tle [3] have shown that a finite action continuation across
3 exists only if the extrinsic curvature of X vanishes.
One should therefore limit the sum to manifolds M and
metrics g such that the boundary dM =3 is totally geo-
desic.

It is perhaps time to admit that no one knows how to
evaluate a path integral of the form (1.2). Ordinary gen-
eral relativity is nonrenormalizable, so the standard per-
turbative expansions make no sense. A standard pro-
cedure in quantum cosmology is to compute the path in-
tegral in a saddle-point approximation, in the hope that
the resulting estimate may be useful even if higher-order
corrections are not well defined. The result is a kind of
instanton picture, describing the semiclassical tunneling
from “nothing” to a Universe. An extra implicit assump-
tion is usually, although not always, made: one considers

&

FIG. 1. A spacetime that will contribute to the Hartle-
Hawking wave function. The metric is Riemannian to the past
of 2 and Lorentzian of the future.
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only the extrema with the smallest actions,! which are as-
sumed to dominate the path integral.

It would clearly be useful to have a well-defined model
in which these assumptions could be tested more careful-
ly. Gravity in 2+ 1 dimensions provides such a model. It
is by now fairly well known that pure (2+ 1)-dimensional
gravity is renormalizable [6,7], and that a canonically
quantized theory can be formulated with no approxima-
tions [6,8,9]. At the same time, many of the basic
features of (3+ 1)-dimensional gravity—the form of the
action, diffeomorphism invariance, the possibility of sum-
ming over topologies—remain unaltered.

In a series of very interesting papers, Fujiwara et al.
[10-12] have begun to investigate quantum cosmology
for pure (2+1)-dimensional gravity with a negative
cosmological constant. They have found the leading
saddle-point contribution to the path integral, and have
investigated the possibilities of topology change and the
spontaneous creation of particlelike defects in spacetime.
The purpose of this paper is to extend this work by exam-
ining the contributions of higher action extrema. We
shall see that the classical solutions discussed by Fujiwara
et al. do not, in fact, determine the overall structure of
the Hartle-Hawking wave function; instead, the wave
function is peaked at certain highly symmetric two-
geometries for which an infinite number of distinct topo-
logies contribute to the path integral.

II. THE PATH INTEGRAL IN 2+1 DIMENSIONS

Let us begin with a brief discussion of the path integral
(1.2) in 2+1 dimensions with a negative cosmological
constant and no matter. The classical equations of

motion coming from the action (1.1) are
Ry = —2[Algy - (2.1)

J
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where the complex gauge field

Af=1ew,, +ilAl' %] 2.5)
is a PSL(2,C) connection, expressed in terms of a
“dreibein” or frame field e/ and a spin connection g, on
M. The extrema of (2.4) are flat PSL(2,C) connections,
and it is easy to check that the condition of flatness is
equivalent to the field equations (2.1) for the metric
g =efer,. At the same time, (2.4) may also be recog-
nized as the standard Chern-Simons action for PSL(2,C),
allowing us to use known results for Chern-Simons path

In wormhole sums [4,5], one includes a class of higher action
metrics as well, essentially an instanton gas of the leading extre-
ma, but most of the classical solutions are still neglected.
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In three dimensions, the Ricci tensor completely deter-
mines the curvature, and (2.1) implies that g, is a con-
stant negative curvature metric, i.e., that (M,g) is a hy-
perbolic three-manifold. The Hartle-Hawking wave
function depends on the boundary value 4, which is itself
a hyperbolic metric on the totally geodesic boundary X.
This is in accord with the canonically quantized theory
[6,8,13], where wave functions are quite naturally ex-
pressed as square-integrable functions on the moduli
space J s of hyperbolic metrics on 2.

On general grounds, we expect the contribution of an
extremum (M,g) to the path integral to take the form

"[E[gJ

WYy (gls]=4ye , (2.2)

where I;[g] is the classical action at the extremum and
the prefactor A,, is a combination of determinants com-
ing from small fluctuation around g and from gauge
fixing. Using (2.1), we see that the exponent is
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where Vol(M) is the volume of the three-manifold M
with the metric rescaled to constant curvature —1. This
volume is a well-known topological invariant in three-
manifold theory: a given manifold will admit at most one
hyperbolic metric, and it can be shown that at most a
finite number of three-manifolds have any given hyper-
bolic volume [14].

To evaluate the prefactor A,,, we can appeal to the re-
lationship between the three-dimensional Einstein action
and the Chern-Simons action for the gauge group
PSL(2,C). As Witten has observed [15], the first order
form of the Einstein action in three dimensions with
A <0 can be rewritten as

[

integrals to evaluate A,,.

To understand this correspondence better, it is helpful
to know a bit more about the geometric significance of
the connection A/. Recall first that PSL(2,C) is the
isometry group of hyperbolic three-space H®. Any three-
manifold M with a constant negative curvature metric is
locally isometric to H, and can be covered by coordinate
charts U, isometric to H? with transition functions Popin
PSL(2,C). This “geometric structure” allows us to define
a natural flat s/(2,C) bundle E over M as follows [16]: we
first construct the product bundle s/(2,C)X U, on each
chart, and then identify the fibers in the overlap U, N Uy
by means of the adjoint action of the transition function
¢,p- It can then be shown that the connection A4/ is pre-
cisely the flat connection on E.

Equivalently, at least if M is geodesically complete, we
can write

M=H3/T (2.6)
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for some discrete subgroup I'CPSL(2,C), unique up to
conjugation. I is called the holonomy group of M; it is
isomorphic to the fundamental group (M), and can be
viewed as a representation of 7 (M) in PSL(2,C). The
bundle E is then

E=(sl(2,C)XH?)/T, 2.7

where the quotient is by the simultaneous action of " as a
group of isometries of H> and the adjoint action of T on
sl(2,C). This description makes it clear that E is com-
pletely determined by the group I'.

Standard results from Chern-Simons theory now tell us
that

Ay=TYYM,E), (2.8)

where T (M, E) is the Ray-Singer torsion, or equivalently?

the Reidemeister-Franz torsion, associated with the flat
bundle E. Strictly speaking, we must use a slight
modification of the standard definition of Ray-Singer tor-
sion, as discussed in Ref. [17], because PSL(2,C) is non-
compact. For a complex gauge group, the effect of this
change is essentially to replace the torsion computed in
terms of A4 alone with its absolute square; heuristically,
the partition function receives separate contributions
from the path integrals over 4 and A4 in the action (2.4).
To obtain (2.8) from Ref. [17], we have also used the fact
that the connection A4/ is isolated (by rigidity theorems
for hyperbolic structures [19]) and irreducible, and that
the framing anomaly and the phase of the prefactor A,,
both vanish for PSL(2,C), essentially because of a cancel-
lation between left- and right-moving modes [17,20].

The Chern-Simons formulation can potentially give us
information about higher-order corrections to the
saddle-point approximation as well. In particular, al-
though the higher-order terms have not been computed
explicitly, we know they will be of order G|A|'/?, and will
thus be small if the cosmological constant is sufficiently
small [15].

Combining (2.3) and (2.8), we obtain a contribution to
the wave function of the form

Vol(M)

W, [h]=T'"*M,E)ex —_
wlh] P17 4nGlAl 2

(2.9)

for each extremum (M,g) with g|s=h. These contribu-
tions must be summed over extrema:

Yir]= 3 Wylhl,
METS,h)

(2.10)

where the “space of instantons” J(M, k) comprises all hy-
perbolic manifolds with induced hyperbolic metric 4 on a

2For noncompact groups, this equivalence is discussed in [17].
Schwarz and Tyupkin [18] have pointed out that an additional
anomaly can occur because M has a boundary. This problem
will not arise when the boundary is totally geodesic, however,
since one can then compute everything on the (closed) double of
M.
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single totally geodesic boundary 2. Our next task is to
categorize this space.

III. COUNTING HYPERBOLIC MANIFOLDS

The classification of hyperbolic three-manifolds is one
of the most active areas of research in modern topology,
and for now we should not expect to completely under-
stand the space of extrema of the (2+ 1)-dimensional Ein-
stein action. We may still look for particular points in
J(M,h), however, that can give us useful information
about the Hartle-Hawking wave function (2.10).

Let us first note that for most hyperbolic metrics 4 on
3, there are no saddle-point contributions—the field
equations (2.1) usually have no solution with a specified
boundary value for the metric. It is known, however,
that solutions exist for a dense set of values of % in the
moduli space MMy [21]. If the full path integral behaves
reasonably smoothly, the saddle-point approximation for
W[h] on such a dense set should be adequate for physics.

Kojima and Miyamoto [22] have recently found the
hyperbolic manifolds of least volume with a single totally
geodesic boundary of any given genus. These are the ex-
trema My considered by Fujiwara et al. [10]. For a
given spatial topology X, the corresponding manifold
Mp(2) will have some definite boundary metric kg, and
since the wave function (2.9) is exponentially suppressed
for large volumes, we might expect W[A] to be peaked at
the corresponding two-geometry.

On the other hand, a given extremum My makes only
a single contribution to W[A; ]. We must also ask wheth-
er other spatial metrics 4 are boundary values for large
numbers of extrema of the action. If this is the case, the
number of instantons, the “entropy,” may overcome the
exponential volume suppression.

To see that this is possible, we consider a family of hy-
perbolic three-manifolds discovered by Neumann and
Reid [23,24]. (The manifolds most relevant to physics are
actually not quite the ones described in these references,
but rather a closely related family found by Reid; see the
Appendix for details.) The family consists of an infinite
number of manifolds M (p,q» Where p and g are relatively
prime integers, with the following characteristics: (1)
each of the M, ».q) has a single totally geodesic boundary,
with a fixed hyperbolic metric 4, that is independent of
p and g; (2) the volumes of the M(p,q) are bounded above
by a finite number Vol(M _ ), and converge to Vol(M _ )
as p?+g’—>w; and (3) the Ray-Singer torsions
T(M(p,q,,E(p’q) considered in the previous section do not
converge as p2+g2— oo, but instead take on a dense set
of values in the interval (0,cT , ], where c¢T , is a positive
constant.

These properties imply that the M, »q all give positive
contributions to the Hartle-Hawking wave function at
h =h . Indeed, conditions (2) and (3) guarantee that the
sum over topologies diverges: the volumes converge to
Vol(M ), while infinitely many of the prefactors are
bounded below by some €>0. The Hartle-Hawking wave
function is thus infinitely peaked at 4, .

The construction of the families M, p.q 18 discussed in
more detail in the Appendix, but the basic procedure is
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fairly easy to describe. Neumann and Reid start with a
finite volume hyperbolic orbifold M, (note no tilde here)
with two essential characteristics: a totally geodesic
boundary consisting of a sphere with three conical singu-
larities, and a cusp K that is separated from this bound-
ary. The singularity at K can be “filled in” by a standard
procedure called hyperbolic Dehn surgery—essentially
by replacing a neighborhood of the cusp with a solid
torus—to obtain a set of new orbifolds M(p’q), where the
integers (p,q) describe the way the torus is twisted before
it is glued in. This surgery procedure cannot change the
hyperbolic structure on the boundary, however, since a
sphere with three cone points admits only one hyperbolic
metric.

Neumann and Reid then consider a covering space
M, of M in which the orbifold singularities, including
the conical singularities on the boundary, are
“unwrapped.” The cusp K of M is lifted to a set of
cusps K on M, and Dehn surgeries on M lift to sur-
geries on M . These lifted surgeries must again leave the
boundary of M fixed, since otherwise their projections
to M, would change the boundary there. We thus ob-
tain an infinite family of nonsingular three-manifolds all
having an identical totally geodesic boundary.

It can be shown that Dehn surgery on a cusp of a hy-
perbolic manifold always decreases the volume [28]. This
fact gives us condition (2) above: the volume of M(p’q) is
bounded above by the volume of the cusped manifold

M. For p*+gq? large, Neumann and Zagier [25] have

found a fairly simple description of the rate of conver-
gence of the volume Vol(M, ,,) to Vol(M , ):

#{p,q):VollM, ,)) <Vol(M,)—1/x}
=6mx +0(x'?), (3.1

where # 4 denotes the number of elements in the set 4.

To obtain condition (3), we must understand the behav-
ior of the Ray-Singer torsion under hyperbolic Dehn sur-
gery. Our basic strategy parallels Witten’s computation
of Chern-Simons amplitudes on manifolds that have un-
dergone surgery [15]: we separately compute the torsions
of M, ,,—V and V, where V is the solid torus added by
the surgery. We can then use the “‘gluing theorem” for
torsion [26] to obtain

T(M(p,q),E(p,q))ZT(M(p,q)— V’E(p,q)|A?—V)T(V’E(p,q)|V) .

(3.2)

By construction, M, g VIS diffeomorphic to M ; its
torsion differs from that of M _ only because the hyper-
bolic structure—the flat bundle E, ;) —differs. But for
p2+4q? large, the holonomy groups F(M(p,q, —V) con-
verge to I'(M ), which is sufficient to show that the tor-
sions converge. For V, on the other hand, the Ray-Singer
torsion can be calculated explicitly (see the Appendix for
details). The result again depends on the flat bundle, and
thus on p and g; one finds that

T(V,E, 4|y)=—(cosh2] —cos2t)* , (3.3)

<
4

where / and ¢ are the length and torsion of the core geo-

desic of V. (“Torsion” here means not the Ray-Singe.
torsion, but the ordinary geometric torsion of the geo-
desic as a curve in three-space.) For p and ¢ large, / con-
verges to zero, but it is known [27] that ¢ takes on a dense
set of values in the interval [0,27], so T(V,E , ) varies
rapidly in the range (0,c]. Our result then follows direct-
ly from inserting (3.3) into (3.2).

It would be interesting to find a more detailed descrip-
tion of the behavior of the parameter ¢t for p>+g¢? large,
ideally leading to a result for the Ray-Singer torsion
analogous to (3.1). Such a description would allow us to
approximate the sum over p and ¢ by an integral, perhaps
permitting a more quantitative description of the diver-
gence of the wave function.

IV. IMPLICATIONS

We have seen that the Hartle-Hawking wave function
(2.10) diverges for at least one value of the spatial metric
h. A natural question is how often this behavior occurs.
If W[h] diverges for most values of 4, our result is essen-
tially negative—we will have merely shown that the
“leading instanton” approximation is not valid. If such
divergences are relatively rare, on the other hand, we
may have learned a good deal about W[4].

Let us first consider the exponent in (2.9). The volume
Vol(M) may be viewed as a real-valued function on the
space of instantons J(M, k). In our example,we produced
a bounded sequence of volumes by hyperbolic Dehn sur-
gery on a cusped manifold. For closed hyperbolic three-
manifolds, it can be shown that this is the only way to
produce such a sequence; in particular, the only accumu-
lation points of the volume in R correspond to manifolds
with at least one cusp [14,28].

By a simple doubling argument, the same is true for
manifolds with a totally geodesic boundary. Hence the
kind of divergence we saw above will only occur for
values of & that can be realized as boundary values of hy-
perbolic metrics on cusped manifolds. Most hyperbolic
manifolds have no cusps, of course, so this is likely to be
a significant restriction, although as far as I know this is-
sue has not been investigated by topologists.

The Neumann-Reid construction suggests, although it
does not prove, a much stronger restriction. In general,
one expects hyperbolic Dehn surgery to change the
boundary metric of a three-manifold, smearing out any
divergence in the sum over topologies. This did not
occur in our example for a very specific reason: the
boundary we have been considering can be realized as a
covering space of a rigid surface, the two-sphere with
three conical singularities. (“Rigid” means that the sur-
face admits only one constant negative curvature metric,
i.e., that its moduli space is a single point.) Only a few,
highly symmetric surfaces occur as covering spaces of
rigid surfaces, and it is plausible that the sum over topo-
logies will diverge only for such surfaces. If this is the
case, it may be possible to give a complete description of
the normalized Hartle-Hawking wave function as a sum
of delta functions at isolated points in moduli space.

The key question, of courses, is whether such results
can be extended to 3+ 1 dimensions. For n =4, the ex-
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trema of the action (1.1) need not have constant negative
curvature, and a detailed analysis becomes much more
difficult. But we can at least ask how the constant nega-
tive curvature manifolds contribute to the wave function.

Four-dimensional hyperbolic manifolds have a discrete
set of volumes, with only finitely many manifolds having
the same volume. In contrast with the three-dimensional
case, there are no longer any accumulation points. It is
still true, however, that the number of manifolds of a
given volume can grow rapidly as the volume increases.
According to Gromov [14], the number of hyperbolic
four-manifolds with volume less than x may grow as fast
as

x exp{exp[exp(4+x)]} . (4.1)

If the increase is nearly this rapid, we may again expect
entropy to dominate action in the Hartle-Hawking wave
function of the Universe.

Moreover, it is plausible that the sum over topologies
will again be dominated by highly symmetric spacetimes.
Topologically distinct hyperbolic manifolds with the
same volume typically arise when the boundaries of a
fundamental polyhedron can be glued together to form a
manifold in more than one way. As in the (2+1)-
dimensional case, this may be viewed as an indication of
underlying symmetry. This connection is admittedly
speculative, however; a more quantitative description
would clearly be of interest.
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APPENDIX: MATHEMATICAL DETAILS

The purpose of this appendix is to fill in some of the
mathematical details omitted from the text. We will dis-
cuss hyperbolic Dehn surgery, the Neumann-Reid con-
struction, and the computation of Ray-Singer torsion.

1. Hyperbolic Dehn surgery

In this section, we briefly summarize hyperbolic Dehn
surgery [28,16]. A cusp of a hyperbolic three-manifold M
can be viewed as an embedded circle that is “infinitely far
away” from the rest of the manifold in the hyperbolic
metric. Topologically, a neighborhood of a cusp is
diffeomorphic to T?X[ty, ), where T? is a two-
dimensional torus. (The circle itself is not part of M,
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which is complete but not compact.) Metrically, we can
take the upper half space model for H?, with the standard
constant negative curvature metric

ds’=1t " Xdx*+dy*+dt?) ; (A1)
a neighborhood of a cusp then looks like a region
N={(x,p,t):t>ty,z~z+ 1,2~z +7} (A2)

(see Fig. 2). Note that for fixed ¢, the metric (3.2) is Eu-
clidean, so the constant ¢ cross sections of (A2) are ordi-
nary flat tori with modulus 7.

To perform (topological) Dehn surgery, we remove a
small neighborhood K of a cusp, or more generally of any
embedded circle in M, and replace it with a solid torus
V=S'XD% M —K has a toroidal boundary where K
has been cut out, and associated with this boundary are
two commuting generators of 7 (M —K), say m and .
To glue in the solid torus ¥V, we first choose a closed
curve ¥ on the boundary along which to attach a cross
section {p} X D? of V. Once this disk is glued in, there is
no remaining topological freedom, since ¥ —{p}XD? is
topologically simply a ball, which can be glued in unique-
ly.

The curve ¥ can be written in terms of the generators /
and m as

y=m?l9 . (A3)

This expression will represent a simple closed curve if p
and q are relatively prime integers. The effect of surgery
on the fundamental group is to add one relation m?fl19=1
to m(M —K), that is, to kill one generator.

In general, one can say little about the geometry of a
manifold resulting from surgery. In fact, any three-
manifold can be obtained from Dehn surgery on a link in
the three-sphere [29]. However, Thurston [28] has shown
that if one performs Dehn surgery on a cusp of a hyper-
bolic three-manifold, the resulting manifold will itself ad-
mit a hyperbolic metric for all but a finite number of
choices of p and g. The process of creating this new hy-
perbolic manifold is called hyperbolic Dehn surgery.

Thurston’s result can be restated as follows. A cusped
manifold admits a unique complete hyperbolic metric.
But it also admits an infinite number of incomplete hy-
perbolic metrics, parametrized by relatively prime in-
tegers p and g, that can be completed to give nonsingular,

II'
S
!
1
H
.
;
«
i =t

FIG. 2. The neighborhood of a cusp of a hyperbolic mani-
fold, represented in the upper half space model of H®>. Note that
the area of a toroidal cross section is proportional to ¢ ~2, while
the distance from ¢, to ¢ is d =In(t/t,), so the area decreases
exponentially with proper distance.
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complete hyperbolic metrics by adding an appropriate
solid torus. This formulation makes it easy to describe
one sense in which the manifolds M, ,, converge to M,
as p2+qg*— co: it can be shown that the corresponding
distance functions converge [28,32]. Pictorially, a cusp
may be visualized as an infinitely long, exponentially
shrinking tube with a toroidal cross section (Fig. 2); as p
and g become large, the surgery affects the manifold far-
ther and farther out on this tube, leaving an increasingly
large piece of M  essentially unchanged.

This convergence is also reflected algebraically in the
holonomy groups I'(, ;). An element of I', . represents a
closed geodesic in M, ), and as p>+g°— oo, the geo-
desics converge to the geodesics of M. Consequently,
the holonomy groups also converge; in particular, if
85, ET(p 4 Tepresents a curve y in M, ,, — K, then the
8(p,q Will converge to the element g €T, representing y
in the holonomy of M . This result will be important
below in the analysis of Ray-Singer torsion.

2. The Neumann-Reid construction

The fundamental construction used in this paper is
based on the papers [23] and [24] of Neumann and Reid.
The particular variation used here is unpublished, and
was explained to me by Alan Reid.

An orbifold is a space locally modeled on R"/T", where
I is a finite group that acts properly discontinuously but
not necessarily freely. The set of points of R” at which
the action is not free projects down to a set called the
singular locus of the orbifold. A typical two-dimensional
orbifold is a cone of order n, O =R? /C,, where C, is the
group generated by rotations by 27 /n around some point
p. C, acts freely except at p, and the singular locus is
thus the apex of the cone. C, also acts on R® by rotation
around an axis; the singular locus is then a line corre-
sponding to this axis. By a (three-dimensional) hyperbol-
ic orbifold, we mean an orbifold locally modeled on
H?/T, where I is now a group of isometries of hyperbolic
three-space. Orbifold singularities then come from tor-
sion elements of T".

In [23], Neumann and Reid construct a set of hyper-
bolic three-orbifolds M (m,n), each having an underly-
ing space S2X [0, ) and a boundary consisting of a to-
tally geodesic two-sphere =(m,n) with three conical
points. The singular locus of one of these orbifolds is
shown in Fig. 3. A line in this diagram labeled by an in-
teger n corresponds to a cone angle of 27 /n; a vertex at
which lines labeled 2, 2, and n meet is locally R3/Dn,

i

r'(3,n)=(a,b,c,dla’*=b*=c’=d"=(ab)*=(bc)*=(cd)*=

where the subgroup representing the fundamental group
of the boundary 2(3,n) is the triangle group

A2,3,m)=(c,d|c*=d"=(cd)*=1) . (A5)
This presentation can be obtained by applying standard
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FIG. 3. The orbifold that forms the starting point of the
Neumann-Reid construction. A line labeled by an integer n
represents a singularity with cone angle 27/n. The underlying
space of this orbifold is S>X [0, « ); horizontal cross sections of
the diagram should be interpreted as two-spheres.

where D, is the dihedral group of order 2n.

The top boundary of Fig. 3 is thus a sphere with cone
points of cone angles 27 /2, 27 /m, and 27 /n. The bot-
tom boundary, on the other hand, is a “pillow cusp,”
with a neighborhood of the form K =F X (¢, ), where
F is a sphere with four cone points of cone angle 7. F has
Euler characteristic zero, and can be expressed as the
quotient of a torus by the cyclic group of order 2; that is,
a pillow cusp has an ordinary cusp as a double cover.

We previously defined hyperbolic Dehn surgery for an
ordinary cusp, but it can be shown that a similar pro-
cedure is possible for a pillow cusp. As in the case of an
ordinary cusp, surgery on the cusp of M, (m,n) produces
a family of orbifolds M, ;,(m,n), all but a finite number
of which admit hyperbolic structures. Moreover, this
surgery cannot affect the boundary Z(m,n), since a
sphere with three conical points is rigid, that is, it admits
a unique hyperbolic metric.

Now suppose that for some m and n, we can find a new
manifold M (m,n) that is a finite covering space of
M _(m,n), such that the boundary =(m,n) lifts to a sin-
gle connected surface S(m,n). In such a covering, the
cusp K will lift to a set of cusps K, and (p,q) surgery on K

will lift to some (p’,q’) surgery on K. The boundary
3(m,n) must be left invariant by such (p’,q’) surgery,
since it projects back to the fixed boundary 2Z(m,n) of
M (m,n). The set of such (p’,q’) surgeries on K, that is,
surgeries that are equivariant with respect to the cover, is
an infinite subset of the set of all surgeries, and we will
have thus obtained an infinite family of manifolds with
identical totally geodesic boundary =(m,n).

We must thus show that such a covering can exist. To
do so, let us choose m =3 and n > 6 a prime number such
that » =1(mod 4). We shall need a presentation of the

orbifold fundamental group of M _(3,n):

|
a
)
e

I
Z

techniques [30] to the construction of Ref. [23], in which
M . (m,n) is described explicitly in terms of reflections in
the faces of a polyhedron. Alternatively, it can be read
off from Fig. 3; a loop around a line with cone angle 27 /r
represents an element in I'(m,n) of order r, while rela-
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tions come from the requirement that the product of
loops completely encircling a vertex be contractible.

We will have completed our proof if the following con-
ditions are satisfied: (1) there exists an epimorphism ¢
from I'(3,n) to a finite group G, such that A(2,3,n) sur-
jects onto G; and (2) the kernel k of ¢ is torsion free. To
see that these conditions are sufficient, observe that the
cover corresponding to the subgroup kCT is a finite cov-
er of M _(3,n) with fundamental group «; by condition
(2), this covering space is a manifold, with no orbifold
singularities. Then by standard covering space theory,
condition (1) implies that the preimage of 2(3,n) is a con-
nected surface (see, for instance, section 5.11 of Ref. [31]).

To complete the proof, we must therefore construct the
map ¢ to a finite group. Let G, be the finite simple group
PSL(2,F,), where F, is the field of n elements. For n
prime such that n =1 (mod 4), some elementary number
theory shows that —1 is a square in F,. Let x €F, be
such that x?=—1, and let z=—1+2x,t=—4x(1
+2x)~!. We then define the epimorphism ¢ from I'(3,n)
to PSL(2,F, ) by

x t 2 z
a=1lo —x|» b= la+z 2|
(A6)
0 1 11
e~y 1| 94=o 1]-

Note that these each have determinant 1 in PSL(2,F, ).
We then have

—2x xz—2t —z 2+z
ab— 2—x 2x » be— 2 z ’
(A7)
0 1 x t—x
cd— ~1 0l da— 0 —x |°

and it is easily checked that the relations in (A4) are all
satisfied. Moreover, PSL(2,F,) is generated by ({}) and
(91 {), so A(2,3,n) surjects onto G,. Finally, as every ele-
ment of finite order is conjugate in I'(3,n) to one of the
elements (A6), (A7), the kernel is torsion-free [30]. Our
two requirements are thus met, and the proof is complet-
ed.

For these examples, we can compute the genus of the
boundary 2(3,n) explicitly. The Euler characteristic of
2(3,n) is x(2(3,n))=(6—n)/6n [28], while by construc-
tion, the degree of the covering is equal to the order of
PSL(2,F,). Thus

2—2g=x(3(3,n))= 66_'1” IPSL(2,F, )|
_ (6—n)n*—1)
 Ei (A8)

It may checked that the resulting genus is always an in-
teger, although typically a rather large one, when
n =1(mod 4).

3. Computing torsions

In this section, we compute Ray-Singer torsions for
surgered manifolds. (See [18,33] for more detailed
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definitions of these torsions.) Our starting point is a “glu-
ing formula.” Let E be a flat bundle over a manifold M,
and suppose that M can be written as a union of two
pieces M| and M, joined along a common boundary X.
Vishik [26] has then shown that

T(M,E)=T(M1,E!MI)T(MZ,EIMZ)T(Z,EIZ) , (A9)
where the determinants on M| and M, are defined with
relative (Dirichlet) boundary conditions. In particular,
for hyperbolic (p,q) Dehn surgery on a cusp of M, we
can take M, to be the solid torus V added by surgery, M,
to be M —K, and E to be the flat s/(2,C) bundle (see
Sec. 2) corresponding to the new hyperbolic structure on
the manifold M, ;) resulting from the surgery. The com-
mon boundary 2 is then a two-dimensional torus, and the
last term in (A9) can be omitted, since the torsion of a
closed even-dimensional manifold is always trivial.

We must first compute the torsion T(V,E(,,) for
V=8'XD? Since D? is simply connected, we can use
the product formula3

T(S'XD%E)=T(S'E| ; ¥P (A10)
where y is the Euler number, y(D?)=1. We thus need
merely evaluate the Ray-Singer torsion for a circle. As
Bar-Natan and Witten have noted [17], there are some
subtleties involved in the definition of the Laplacian be-
cause s/(2,C) is noncompact, but it is not hard to check
that the appropriate Ray-Singer torsion is

T(S',E)=|det'Ay| , (A11)

where the Laplacian acts on s/(2,C)-valued functions
¢ =¢°t, twisted by the holonomy H:

#(60+2m)=H '$(0)H . (A12)

Up to an overall conjugation that does not affect the
determinants, the holonomy around S takes the form

el+il 0

H= 0 e Uti|> (A13)

where / and ¢ have a geometrical interpretation as the
length and torsion of the “core geodesic S! of V. The
evaluation of the determinant (A11l) is then reasonably
straightforward: eigenfunctions take the form

a(8) b(6)
= le® —ae) “ld)
with
a(0+2m7)=al(0),
b(6+2m)=e 2!*ip(0) , (A15)

c(@+2m)=e¥itig(g) ,

3This relationship is proven by Ray and Singer for closed man-
ifolds [33], but the extension to manifolds with boundary with
relative boundary conditions is straightforward.
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and §-function regularization gives

T(S', E)=16mr*(cosh2] —cos2t)? . (A16)

An important caveat is necessary here: Eq. (A16) is
not quite independent of the metric in S'. The Laplacian
(A11) has zero modes, constant matrices ¢ that commute
with the holonomy, and the Ray-Singer torsion should
really be viewed as a section of the line bundle
(detH®)"!(detH'!). A canonical section exists only if one
has a metric with which to normalize harmonic forms;
the expression (A16) was computed with respect to the
metric d6” on the circle. This metric dependence must
drop out of the final expression for the torsion of the
manifold M, ., resulting from the surgery, since the La-
placians there have no zero modes (see below), but it
would be interesting to understand how this happens in
more detail. It was because of this ambiguity that the
constant ¢ was left unspecified in Eq. (3.3).

It is instructive to recompute (A16) in terms of
Reidemeister-Franz torsion (see [34] or [35] for a clear
explanation of this invariant; note, however, that the
quantity 7 in Ref. [34] is equal to —InT in our conven-
tions). One begins with the cellular version of the flat
bundle (2.7):

C(V,dV;E)=s1(2,C)® rC(V,dV) , (A17)

where C(V,3V) is a (relative) chain complex for the
universal covering space ¥ of ¥, and the holonomy group
I'=(H)=m (V) acts by deck transformations on ¥ and
by the adjoint action on s/(2,C). We can take the Pauli
matrices 0 and io? as generators for s/(2,C), and it is
evident from Fig. 4 that a basis for @(V,3V;E) consists
of the three-cells {0°®S,(ic“)®S} and the two-cells
{o‘@F,(ic?)® F}, with a boundary operator

(H '0°H —0®)QF if a=1,2,

0 ifa=3 (A18)

o’®S)=
(with a similar expression for the cells involving o).
The relative homology group H; is clearly generated by
{0°®S,(ic*)®S], while H, is generated by
{o’®F,(ic®)® F].

To compute Reidemeister-Franz torsion, we need
volume forms for C;, and H,. The volume forms for the
chain groups are determined by the preferred basis fixed
by the cell decomposition of V:

©,= A o*®@F)A((ic")®F) ,
0;= N 0*®S)A((ic)8S) ,

(A19)

H
S

F F HF
70T

1
'
'
i

FIG. 4. A cell decomposition for the universal covering
space ¥ of the solid torus V. Relative to the boundary 37, the
only cells are the three-cell S, the two-cell F, and their translates
by deck transformations.
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while volume forms for the homologies take the form
p,=h(o’®@F)A((ic®)®F) ,
uy=k(0’®S)A((io*)®S)

(A20)

for some constants 4 and k. We now choose an arbitrary
volume form for B, =3Cj, say

p=0(0'®S)A3(0’®S)Ad((ic")®S)A((ic?)®S) ,
(A21)

and write

W)= Meyen P A.uZ ’ (A22)

@3=m 44 (37 'p) Apsy .
The Reidemeister-Franz torsion is then defined to be

T(C(V,AV;E))=m gq/Meven - (A23)

It is easy to check that this expression agrees with
(A16), up to a constant factor depending on A and k.
This ambiguity again reflects the existence nontrivial
homology; the two expressions will agree completely if
we define the volume forms 1, and p; on the homology to
be dual to normalized volume forms on the cohomology,
where the normalization once again depends on the
choice of metric. It is worth noting that the dependence
of the torsion on the holonomy group { H ) comes entire-
ly through the boundary operator (A18), and can be ex-
pressed in terms of the determinant of the *“combinatorial
Laplacian” 3'9+39".

We are now left with the second term in (A9), the tor-
sion of the manifold M, =M , — K with flat bundle E,, .
This quantity is rather difficult to compute in general, but
some conclusions about its behavior can be reached.
Note first that the topology of M, is independent of the
choice of the surgery coefficients p and g; in fact, M, is
diffeomorphic to the cusped manifold M . Let us choose
a cell decomposition for this manifold once and for all,
with a corresponding set of deck transformations
v, Em(M,) that determine the gluing pattern of the
cells. The Reidemeister-Franz torsion will again be com-
puted from a finite set of determinants, whose entries are
fixed by the cell decomposition and by the representation
I, q of m(M;) in PSL(2,C). In particular, the only
dependence of the torsion on the surgery coefficients will
come through the dependence of the combinatorial La-
placian on a set of elements g, . (y;,)€L,, that
represent the gluing maps for M, ,, —K

But we saw above that the representations I, ,, con-
verge to I' as p2+¢q’>—> . In particular, the elements
8(p,9(7:) converge. Hence the determinants of the com-
binatorial Laplacians must also converge, and the tor-
sions T(M,, —K,E, ;) will converge to some number
T, which can be interpreted as the Reidemeister-Franz
torsion for the original cusped manifold M ., (with rela-
tive boundary conditions at the cusp). This guarantees
that T, is nonvanishing, since Reidemeister-Franz tor-
sion is always nonzero.
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Finally, let us return to the question of zero modes and
the possible metric dependence of the total torsion
T(M,.,E(,) In principle, this torsion is again
defined as a section of a line bundle:

(detH®)"(detH ')(detH?)™ !(detH?3)

~(detH®) " %(detH')?. (A24)

In the case of interest to us, however, this bundle does
not arise. Elements of HM, ,);E,, ) represent global
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Killing vectors of M, ,, [16], which are certainly generi-
cally absent. Elements of H'(M,,;E,,) represent
infinitesimal variations of the connection A/ in the space
of flat connections, that is, infinitesimal deformation of
the hyperbolic structure. But the boundary of M, is
totally geodesic, so M can be replaced by its (closed) dou-
ble for the purpose of analyzing these deformations. The
Mostow rigidity theorem [19] then guarantees that no
such deformations exist. Thus H® and H'! are trivial, and
any metric dependence must ultimately drop out of the
torsion (A9).
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