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Axial-vector coupling constants and chiral-symmetry restoration
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The isovector axial-vector coupling constant g„ is determined by using the method of QCD sum rules.

A sum rule for (g„—1) is obtained, and it is shown that, with standard values of the quark condensates,
g„=1.26+0.08. It is also shown that the isovector axial-vector coupling (g„—1)=0 in the limit in

which chiral symmetry is restored, and the quark condensate vanishes. A sum rule is also obtained for
the "isoscalar" axial-vector coupling constant g&, which is found to be 0.13 if the isovector values of sus-

ceptibilities are used. On the other hand, g„=—0.68 if the quark condensate is set to zero while

g„=—1.00 if both the quark and gluon condensates vanish in the event of chiral-symmetry restoration.
The values of g~ and g„allow us to deduce Au and Ad in the proton.

PACS number(s): 12.38.Lg, 11.30.Rd, 11.50.Li, 12.38.Aw

I. INTRODUCTION

The magnitude of the isovector axial-vector coupling
constant g~", abbreviated simply as g„, has long been of
considerable interest. The prediction of the Goldberger-
Treiman relation [1] that, for a free nucleon, g„=1.25,
consistent with its experimental value, is a remarkable
achievement of the theory of hadronic strong interac-
tions. At a momentum transfer q =0, this relation is
Mttg„=f g tttt, so that the axial-vector coupling con-
stant is determined by the pion decay constant f, the
pion-nucleon coupling constant g„zz, and the nucleon
mass M~.

It has also been of considerable interest to determine
g„ from the theories of electroweak interactions and
QCD. Although it is not possible to use the QCD La-
grangian directly for this purpose, since this would re-
quire the solution to the problem of determining the
structure of a nucleon and the low-energy interaction of a
nucleon with a gauge boson, it has been possible to use
the methods of QCD sum rules [2] to determine the value
of gz. Following the method of introducing an external
electromagnetic field [3] for the evaluation of nucleon
magnetic moments, studies of a nucleon in the presence
of an external axial-vector field have been carried out
within the framework [4,5) of QCD sum rules, with re-
sults consistent with the experimental value of g~ =1.26.
However, this result was obtained with a smaller value of
the quark condensate than that used to determine the
mass, the magnetic moments, and other static properties
of nucleons. Since one of the features of the method is to
be able to use the same condensate values for all physical
processes within a given system, this result might be tak-
en to suggest that the method of QCD sum rules may not

be totally adequate for determining the coupling of the
axial-vector current to nucleons. In particular, one
should use the same value of the quark condensate in
deriving the response of a nucleon to an external axial-
vector field to calculate g~ as in deriving the response to
an external vector field to calculate the magnetic dipole
moments. In the present work, we find that the solution
to this problem lies in the addition of terms consistently
up to dimension 8 (d =8); we obtain a value of g„con-
sistent with experiment by means of standard QCD sum-
rule parameters.

Recently, the polarized structure function of the pro-
ton g~&(x) has been measured by the European Muon Col-
laboration (EMC) [6] for the Bjorken variable x down to
—=0.01, making possible extraction of the first moment
jodx gf(x), which turns out to be considerably smaller
than the Ellis-Jaffe sum rule [7]. When combined with
the known values for g„and the F/D ratio, the EMC
data [6] yield a value for the "isoscalar" axial-vector cou-
pling g „(g„=b, u +b d in the language of the EMC data
analysis [6]) with a value gz =0.28+0.08, where the most
recent values of F and D have been used [8] in extracting
b, u and Ad from the EMC data [6]. In the context of the
QCD sum-rule approach, Belyaev, Ioffe, and Kogan [9]
were able, a few years before the EMC data came about,
to predict g~ =0.5, a value already significantly below
the naive nonrelativistic quark-model value gz =1. A
slightly smaller value g~ =0.3S was obtained somewhat
later by Gupta, Murthy, and Pasupathy [10], who also
used the QCD sum-rule approach. With the addition of
terms consistently up to dimension 8, we reinvestigate the
problem of gz and obtain g~ =0.13+0.08 significantly
lower than the previously reported theoretical values
[9,10] and in approximate agreement with, though some-
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what smaller than, that obtained from the EMC data.
It is the goal of the present authors to apply the

methods of QCD sum rules for the studies of weak in-
teractions of free hadrons and for those in nuclei. Of par-
ticular current interest are the values of g~, g„, and g~,
the induced pseudoscalar coupling constant, for the free
nucleon and for the nucleon embedded in a nuclear medi-
um. This has motivated us to carry out a study of g~
with emphasis on the role of chiral-symmetry violation,
since it is expected that chiral symmetry will be restored
at high densities and that at normal nuclear densities
chiral symmetry may be partially restored. Recently,
several authors using the method of QCD sum rules
[11,12] in nuclear matter and in the study of the Nolan-
Schiffer effect [13]have suggested that the quark conden-
sate, which vanishes in the chiral limit, is reduced in nu-
clear matter. A QCD sum-rule analysis of g„ in nuclear
matter [14] has also been carried out. Recently, the ques-
tion of the value of g~ in nuclear matter has become even
more urgent with the recognition [15] that the method of
using the correlation between magnetic dipole moments
and Gamow-Teller P decay lifetimes to obtain the often-
accepted value (of 1.0) for the value of g„ in nuclear
matter may not be reliable.

In the present work, we carry out studies similar to
those in Refs. [4] and [5] in which we trace out the role of
the various condensates which appear. In addition to the
well-known quark and gluon condensates of Shifman,
Vainshtein, and Zakharov [2] (SVZ), new condensates are
induced by the external axial-vector field Z„. At first

glance one worries that, with the introduction of new pa-
rameters, one will not be able to determine additional
properties probed by the external field. Here, as in Ref.
[4], we show that the sum rule for g„can be combined
with that for the mass to obtain a sum rule for g~ —1,
which yields predictions relatively stable against reason-
able variations in the Borel mass Mz. Because the quark
condensate plays the dominant role in the latter sum rule,
it follows that (g„—1)=0 if chiral symmetry is restored.
In addition, we obtain a value of g~ =1.26+0.08 with

standard values of the condensates. In this study we as-
sume that the Z field is static, and so no relations can be
obtained for gz. We intend to investigate g~ in the near
future.

II. QCD SUM RULE FOR g„—1 AND g„+g~

Although the method of QCD sum rules as originally
developed [1] was applied to the study of hadronic prop-
erties in the region of about 1 GeV, Ioffe and Sinilga [3]
developed techniques for embedding hadrons in an exter-
nal field in order to derive static properties in terms of
the condensates, including induced condensates which in-
troduce new paraineters. In Refs. [4] and [5] the method
was applied to an external static axial-vector field. We

briefly review the method here for an external axial-
vector field.

The starting point is the polarization function in an
external axial-vector field, which we call Z„. The corre-
lation operator II(p) is defined as [3—5]

i)(x) =e' '[u'(x) Cy„u (x)]y"y'd'(x),

(Oli)(0)lN(p) & =A~v~(p),

(2a)

(2b)

with C the charge-conjugation operator, a, b, c color in-
dices, and vz(p) the nucleon spinor normalized such that
UU =2M&. Embedding the system in an external Z„ field
and introducing intermediate states, we can express the
polarization operator in the limit of a constant external
field, Z„(x)=Z„,as [5]

g~&y5„+1 1

p —M~ p —M~

if we adopt the on-shell definition of the nucleon axial-
vector form factor

(x(p', ) ')lJ„'(0)lx(p, x) &

ux'(p )[gA(q )3 y5+gp(q')q„y5]u. (p» (4)

with q„—=p„' —p„and & =y„a". The term shown in Eq.
(3) corresponds to nucleon intermediate states; continu-
um contributions to II are shown simply by the ellipsis in
that equation. The axial-vector coupling constant g„ in

Eq. (3) is defined at q =0. Equation (3) is the expression
for the phenomenological form, in which II(p) is evalu-
ated at the baryon level. %hen evaluating the polariza-
tion operator II(p) at the quark level and comparing it
with Eq. (3), one is led to three sum rules involving g„,
which [5] may not be consistent among themselves, al-
though there is indeed one sum rule which seems most
appropriate for g~.

We note that Eq. (4) gives the on-shell matrix element
of the axial-vector current. In treating the correlator
II(p) in the presence of an external axial field Z„(x), one
may consider the slightly off-shell nucleon matrix ele-
ments, where additional off-shell form factors can occur.
For instance,

(x(p', x')i&5(0)lx(p, x) &

uq( p') G[, y„y+5Gq„y, +G, io+'y, ]ui(p),

(5)

with I'„=—p„'+p„. In the on-shell limit, this reduces to
Eq. (4) with g„=Gi +2M&G3 and gp:Gp G3. Among
the three sum rules which one obtains by comparing
coefficients ofp ZPy5, Zy~, and icr„+~p y~, there is one
sum rule in which only gz enters.

We now find the polarization function at the quark lev-
el by evaluating II(p) via the quark propagators in the
presence of gluonic and Z fields. The starting point is the
quark propagator

s,", =—(OIT[q (x)q,"-(0)]lo& .

Following the method of Ref. [3] including terms up to
the second order in the Taylor expansion, we find

II(p)—:i Jd x e'P'"(OlT[ri(x)il(0)]lo&,

where for the nucleon current we use a standard (but not
unique) form [16]:
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S' = ab

(ix —gx.Zxy5)+ g, G„" (xo." +o"'x)
2n x4 32 x2

+5' &qq &[
—

—,', (1+—,', x mii)+ —,', gy2ys+ —,', gx Z o. tty5+», gK( —,'x 2 —x Zx)y5]+ (6)

The first three terms in Eq. (6) are the perturbative free-
quark propagator and the quark propagator with a Z and
a gluon, depicted in Figs. 1(a)—1(c). The next five non-
perturbative terms, proportional to &qq &, are the quark
condensate and this same condensate in the presence of
gluonic and external Z fields, depicted in the five dia-
grams of Figs. 1(d)—1(h). The other quantities appearing
in Eq. (6) are the Z-quark coupling constant
(g =g„=—

gz for the isovector axial-vector coupling g„
or g =g„=g& for the isoscalar axial-vector coupling g„)S

and the condensate parameters defined by

&0lqg, o Gqlo&= —m,'&qq &,

&olqg, G„,y qlo& =gaZ„&qq &,

&0lqrp'sql0&=g&Z &qq & .

Our definition of s differs in sign from that of Ref. [5].
Although the last term in the quark propagator (6) differs
in sign and by a factor of 3 with that of Ref. [5], the sign
is due to the difference in definition and the factor of 3 is
absorbed in the definition of a. in Ref. [5]. In addition to
the quark and gluon condensates, one has the parameter
mo and the two susceptibilities ~ and g. We shall show
that for the sum rule for (g„—1) there is a very weak
dependence on ~ and g. The parameter mo does enter
the mass sum rule and also that for gz —1.

As in Refs. [4] and [5], we find it most useful to use the
sum rule which is derived with the Borel transformation
[1] of the coefficient of the covariant p ZPy5 after the

Fourier transform of both the phenomenological and
quark-level forms of the polarization function II(p). As
pointed out in detail in Ref. [5], this sum rule depends
less on the treatment ef excited states than the other
ones. The processes which enter the calculation are
shown in Figs. 2(a) —2(h). These diagrams can readily be
evaluated by using the relationship

& 0l T(g(x)F/(0) ) I0 &

2E —E 'Tr [S(x)„y„CS(x)'„' Cy„]

Xysr~s(x)f'r"rs

Note that Figs. 2(b) and 2(h) are evaluated with the aid of
the identity for the gluon condensate:

&g,'G" G ~&= (g g tt
—g ttg )&g,'G'& . (9)

On the other hand, Figs. 2(f) are evaluated using the rela-
tion

0

cI-2

L &
8-2

f-2 f —3

FICr. 1. Diagrams included in the quark propagator of Eq.
(6).

FIG. 2. Processes included in the polarization function lead-
ing to the sum rules when the coefficients of p.ZPy~ and Py5
are compared.
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&q'G A~ &z=9'6()' ~„.+&„.l'. )rs &qG 7'pV&,JMV a 5

2L 4/9+ + ( 2G2)
18 288L

PJy(gg + AM21 ) exp( MN/Ms ) (1 la)

where a = —(2n) (qq) and I. =0.6211n(10M21), corre-
sponding to AQcD 0. 1 GeV with the Borel mass MB in
GeV and g—:(2m) Az/4. The most important terms on
the left-hand side (LHS) are the first term and that pro-
portional to a, corresponding to Figs. 2(a), 2(c),
and 2(g), respectively. The factors Eo = 1 —e

E, =1—(1+x)e ", and E2=1—(1+x+—,'x )e ", with

x = W /M21 =(2.3 GeV )/M21 (see Ref. [3]) are used to
correct the sum rule to obtain consistent MB dependence
for contributions from excited states through perturba-

(10)

with G = ,'6—~p G" A"/2 .Note that, in Eqs. (9) and
(10), all the field operators are evaluated at x =0.

In addition to terms included in Refs. [4], [5], [9], and
[10],we have added Fig. 2(h) and others so that contribu-
tion are included consistently up to dimension 8 (d =8).
Note also that Figs. 2(a) —2(h) enter the sum rules when
the coeScients of p Zpy5 and Zy5 are compared. On
the other hand, the processes which enter the sum rule by
comparing the coefficients of i o„+"p'y5 are depicted in
Figs. 3(a)-3(d).

After carrying out a Borel transformation to improve
convergence, we obtain a sum rule for g ~:

MBE2 MB MB

8L 32L4/9 4/9 g~ O 68/8118L

tive QCD techniques [9,16]. They also serve to restrict
the range of the integration and increase the weight given
to the nucleon. %e have thus made the usual assumption
in Eq. (1 la). The constant A is introduced to represent
the residual continuum contribution to the dispersion in-
tegral. Note that only the standard quark and gluon con-
densates and the susceptibilities v and g enter, and that
the term involving the latter is numerically small.

On the same footing, we may obtain the sum rule for
g„(with g„=gd = 1):

MBE2

8L 4/9 +
M

(g, G )Eo+ yaMsE,32L'" ' ' 6I.'"
MB 2 4/9

18L 18
1

( 2G2)
288L

=g (g„+A M21 ) exp( Miv /—Ms ) . (1 lb)

This is the sum rule for the "isoscalar" axial-vector cou-
pling constant g„; it agrees with that of Ref. [10], except
that their Ir should be a/3. It is assumed that the suscep-
tibilities and W are identical to those for the isovector
case. This assumption can be investigated [17], but we
adopt it here for simplicity. The most important terms
on the left-hand side are the first term and that propor-
tional to yaM21, corresponding to Figs. 2(a), 2(d-l), and
2(d-2), respectively. Note that the susceptibility y is very
important in the sum rule for gz, but only makes a small
correction to g~.

In order to find a sum rule for (g„—1), we make use of
a Belyaev-Ioffe sum rule [16] for the determination of the
nucleon mass:

M M

8L 32L

1

2
a mo =P~ exp( —Miv/Ms ) . (12)

24MB'

Note that the first two terms in the left-hand side of
the two sum rules [Eqs. (1 la) and (12)] are equal. By sub-
tracting Eq. (12) from Eq. (lla), one obtains a sum rule
for (g„—1) involving the condensates a, m11, and the sus-
ceptibilities v and g. These parameters have been es-
timated to be [2,3,16,18]

C —]

L
c —2

a =0.55 GeV, Ka =0.140 GeV",

ya =0.70 GeV, (g, G ) =0.47 CxeV

Mo 0.8 GeV

(13)

d —1 d —2

FIG. 3. Processes included in the polarization function lead-
ing to the sum rule when the coeScients of iver ~"p "y, are
compared.

Because sc is less well known than the other constants, we
also consider ~a = —0. 140 GeV in order to estimate
(roughly) the error of the sum-rule method. The parame-
ter g, has been determined [3] through the mass sum
rule to be P&=0.26 GeV . In Eq. (13) we use the stan-
dard value [3] of the quark condensate. Subtracting Eq.
(12) from Eq. (11a), we obtain a sum rule very similar to
one obtained [4] by Belyaev and Kogan:
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a m
2L 4/9+

9 24 MB2

zaMB

18 L 68/81 0E

Equations (14) and (15) are our main result. It is clear
from Eqs. (13) and (14) that, for (gz —1), the quark con-
densate (represented by a) dominates and that the in-
duced condensates (proportional to the susceptibilities y
and ir) are not important. This is not so for the "isoscal-
ar" (gz ) sum rule, and it causes greater uncertainty in
our results for this quantity.

In our numerical analysis, after moving the factor
exp( —MN/M~) to the LHS, we compare the LHS to a
straight-line approximation C+DMB. In practice, for a
given Borel mass MB, we may determine the straight line
which goes through the points M~+5M& (with, say,
5M& =0. 1 GeV) and then compare the values of the LHS
and RHS of the sum rule at MB. When both sides agree
with the desired accuracy, the sum rule is said to hold to
that accuracy and it allows for extraction of the constants
C and D.

We obtain solutions for the (g„—1) sum rule [Eq. (14)]
for values of the Borel mass MB ~ 1.8 GeV. It is worri-
some that such large values of MB are present in our
analysis, since it is expected that MB is of the same mag-
nitude as the mass of the baryon of interest. That is, one
expects solutions for MB in the range of 1 GeV. Larger
values of MB might appear to indicate that our gz is dis-
torted by coupling to baryon resonances and perhaps oth-
er states of higher energy. However, in our analysis these
continuum contributions to the sum rule for (g„—1) are
very small. Continuum contributions show up at two
places for (g„—1): (1) the term proportional to A and (2)
the deviation of Eo from unity in Eq. (14). The former is
very small, and we obtain almost identical solutions to
Eq. (14) if we let Eo = 1. Therefore we conclude that the
continuum contributions are small and are handled
reasonably well in our calculation, even through MB is
larger than expected. The large values of MB are still
puzzling, and may be a consequence of the fact that in
the sum rule for (gz —1) the continuum contributions of
the g„and mass sum rules almost cancel.

For the g„+gz sum rule [Eq. (15)], we also obtain

+ „,ya &g,'G'&
288L'"

=PN [(g„—1)+AM+ exp( —MN/M~ ) . (14)

This sum rule is only very weakly dependent on ga; its
dominant contribution on the left-hand side is the first
term. The second term is less important, and the other
ones are small.

Analogously, we obtain, by adding together Eqs. (11a}
and (1 lb),

2 2
MB 1 MB

16L4/9 g G &Ep + 4/9 yaM&E, — 6, IraEO
6L 9L

+—a'L4/9+2 1
x &g,'G'&

9 144L MB

=P~(g~+gq+ A'M~) exp( —MN/M~) . (15)

solutions for values of the Borel mass MB ~1.8 GeV.
The situation here, however, is quite diFerent: The con-
tinuum corrections provided by E0, E1, and E2 are quite
important for our final results. For this reason we have
examined the dependence of g~ on the value of MB. We
seek solutions to Eq. (15) for g„+g„simultaneously with
the mass sum rule [Eq. (12)] by fixing the value of the nu-
cleon mass at its physical value and adjusting PN accord-
ingly. We can obtain solutions of the gz sum rule for
M~=1.2 GeV, but with about a 35% increase in the
value of the parameter Pz. The resulting g„ is not
significantly changed. In other words, the value of g„ is

quite insensitive to the value of MB for MB & 1.2 GeV.
Numerically, we obtain (with M~ ~ 1.8 GeV)

gq =1.26+0.08,
g~s 0 13+0 08

(16a)

(16b)

gq = 1.30+0.08,

gq = —0.56+0.08 .

(17a)

(17b)

That is, the induced condensates are not very important
for g„,but the situation for g~ is completely diFerent.

Indeed, the quark condensate a almost completely
determines (g„—1). Thus, if we take a =0.0, corre-
sponding to vanishing quark condensate, we find

g~ = 1.00+0.02, (18a)

There are a number of points to note in understanding
the significance of the result shown in Eqs. (16a) and
(16b}. First, the errors shown are based, presumably, on
variations in the parameter A (used to represent the re-
sidual continuum contribution) and uncertainties in the
quark susceptibility ~. This method yields an approxi-
mate uncertainty of 30%%uo in (g„—1). We have intro-
duced other parametrizations of the continuum, such as
those discussed in Ref. [5], with no significant alteration
in our result.

A most satisfactory aspect of our result is that we ob-
tain a value of g„consistent with experiment with a
value of the quark condensate parameter a which gives
rise to the correct magnetic moments of nucleons [3]. On
the other hand, the value for g„, which is very sensitive
to the susceptibility g, is not in agreement with the EMC
data. The EMC data, together with an analysis of
strange-baryon decays, yield [6,8]

g„=hu +hd =0.28+0.08,
a value slightly larger than ours. [Note that bu and b,d
extracted from the EMC data contain contributions from
antiquarks, which have been neglected in our prediction
(16b).] The sensitivity of our result to the induced con-
densate and susceptibilities can be judged by the fact that
Gupta, Murthy, and Pasupathy [10] obtain g„=0.35
with a 20%%uo smaller value of a.

If one takes ~=y=0, so that the last two terms in Eqs.
(14) and (15) vanish, the resulting value of g„ is almost
the same as before, but the value of g„changes substan-
tially:
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g~ = —0.68 . (18b)

In the perturbative limit of free quarks, in which the
gluon condensate is also zero, we find

g~ ——1.00 . (18c)

(19)

with v=p q/M, k the magnitude of the pion three-
momentum in the laboratory frame,
v, =m (1+m /2M~), and cr(rr p) the tot—al ~+p and
m p cross sections. From the PCAC (partial conservation
of axial-vector current) relation, we have

f'„m'„= —2m, (qq) . (20)

In the cr model, f vanishes with (qq ) [20], so that Eq.
(19) gives gz ~1 when (qq ) ~0, in agreement with our
result. Note, however, from Eq. (14) and the discussion

This follows directly from the sum rule for g~ —g~ —2,
which vanishes in this limit; since g~ =1, Eq. (18c) fol-
lows immediately. It is clear that g~ is very sensitive to
the immersion of a nucleon into a nuclear medium. The
value for g~ is that expected when chiral symmetry is re-
stored at high densities or high temperature. The values
g„=—1 and g„=1 imply Au =0 and hd = —1, a very
strange result, but the free-quark perturbative limit is not
physical. The error given in Eq. (18a) indicates the ex-
pected size of higher-dimensional terms which would ap-
pear in the chiral-symmetric limit. Note that the ~ and y
condensates each contribute terms of the order of 0.01,
but that they tend to cancel [see Eq. (14)].

It is interesting to speculate from this result on the
value of g~, the value of the axial-vector coupling con-
stant in finite nuclei. If one uses the result of Cohen,
Furnstahl, and Griegel [11],that the quark condensate is
reduced by about 50% at nuclear matter density, one
would naively expect that gz = 1.15 in finite nuclei. As it
is in a many-body environment, however, other covari-
ants may appear [11,12], which may change the result for
gz and might even result in a g~ being near the free-
nucleon value. On the other hand, the value for g~*,
which is likely to dier significantly from the free-space
value of approximately zero, may have very important
consequences for the measurements on the polarized
structure function of a proton bound in a nucleus.

As a footnote, it is interesting to compare our result to
the Adler-Weisberger sum rule [19],which can be written
as

following that equation that g„—1 ~ (qq ), while Eqs.
(19) and (20) seem to imply g„—1~ (qq) if m and
o(vr . p)—are independent of ( qq ). Furthermore, the
method of QCD sum rules refers to the physics at the
scale characterized by Ms, while Eq. (20) is a low-energy
theorem. What is remarkable is that both methods yield
similar numerical results for gz.

III. CONCLUSION

In this work we have reexamined the problem of ex-
tracting both the isovector and isoscalar axial-vector cou-
pling constant gz and gz via the method of QCD sum
rules. Our major contribution lies in recalculating g~
and g~ including terms consistently up to dimension 8

(d =8), resulting in values of g„and g„consistent with
experimental findings by means of standard QCD sum-
rule parameters, and in studying the limits of chiral-
symmetry restoration. By using sum rules for g~ —1 and

g~ +g~, we have shown that almost all of the departure
of g~ from 1.0 arises from the quark condensate. We find

gz =1.26+0.08 and g„=0.13+0.08 with standard
values of the condensates. We find g~ = 1.00+0.02 in the
chiral-symmetry limit of (qq)=0. 0, certainly an in-

teresting result. In the chir al limit, we also obtain
g„=—0.68 (if only the quark condensate vanishes) or
g„=—1.00 (in the free-field limit), also an interesting
and somewhat puzzling result.
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