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Equations governing the nonradial oscillations
of a slowly rotating relativistic star
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The nonradial perturbation equations of a slowly rotating star are derived in the framework of
general relativity. We assume the stellar rotation is slow and include the rotational effect up to
first order. The oscillation modes of a nonrotating star are completely separated by the spherical
harmonic indices l„m and the parity. The eigenfrequencies are degenerate with respect to m at fixed
I,. In the presence of rotation, however, the degeneracy with respect to m is removed and different
modes are mixed with each other. The odd-parity mode with I„m is coupled with the even-parity
modes with I, 6 1,m, and vice versa. The basic equations derived here will give a new estimate for
the instability of the relativistic rotating star due to gravitational radiation reaction.

PACS number(s): 04.30.+x, 97.60.Gb, 97.60.Jd

X. INTRODUCTXON

Despite the long history of relativistic rotating stars,
there still remains the exact evaluation of the normal
modes of the nonradial oscillations and the determina-
tion of the stability limit. Chandrasekhar [1] has shown
that rapidly rotating Newtonian stars with uniform den-
sity are secularly unstable against the nonaxisymmetric
perturbations due to viscosity or gravitational radiation
reaction. See also Ref. [2] for a combination of both ef-
fects. This instability is subsequently demonstrated to
be generic for all rotating stars [3]. For the stability of
the equilibrium state, it is necessary to obtain the eigen-
frequencies of the oscillations or to use the variational
principle. The stability limits for the rotating Newto-
nian polytropes are calculated in terms of the variational
principle. (See, e.g., Ref. [4].) The extension to relativis-
tic rotating stars is left open.

The study has recently developed in two aspects to-
ward determining the eigenfrequencies for relativistic ro-
tating stars. In Newtonian gravity, Ipser and Lindblom
[5] have reformulated the perturbation equations in terms
of Eulerian perturbations and obtained a simple pair of
second-order eigenequations. They have succeeded in di-
rectly obtaining the eigenfrequencies of the nonradial os-
cillations for the inhomogeneous rotating stars and de-
termined the stability limits. The first post-Newtonian
corrections to be included in the results were recently
formulated [6].

In general relativity, Chandrasekhar and Ferrari [7]
and Ipser and Price [8] have reexamined the nonradial
pulsations of nonrotating stars and presented simple sets
of basic equations. The former use the diagonal gauge
and the latter the Regge-Wheeler gauge. The rela-
tionship between them is discussed in Ref. [9]. Chan-
drasekhar and Ferrari [10] have extended their work to
the pulsations of a slowly rotating star. The angular ve-
locity 0 of the star is supposed to be slow and the equa-
tions are expanded in powers of e = A/QGM jRs, where
M and R are the mass and radius of the star. They have

included the first-order effect. They have found that the
odd-parity and even-parity modes are mixed in the rotat-
ing star and that the coupling between them is subject
to Laporte's rule, while both modes are completely sepa-
rated in the nonrotating star. As an example, they have
calculated the sextupole oscillation of the odd parity in-
duced by the quadrupole mode of the even parity.

However, their analysis is limited in two points. (i)
They have only shown how the odd-parity modes in a
spherical star are affected by the coupling with the even-
parity modes. The opposite problem remains, that is,
how the even-parity modes are affected by the odd-parity
modes. (ii) They have limited themselves to azimuthally
symmetric perturbations, because their coordinate sys-
tem is valid only for such perturbations. In this paper,
we consider the same problem as Chandrasekhar and Fer-
rari [10],but in a different gauge, i.e., the Regge-Wheeler
gauge, in which we can deal with the nonaxisymmetric
perturbations as well as the axisymmetric ones. We also
examine point (i).

In Sec. II, we summarize the basic equations governing
stationary equilibrium. The linear perturbation equa-
tions are derived in Sec. III. If we neglect the rotational
effect in the results of Sec. III, we have the basic equations
for the nonradial pulsations of the nonrotating spherical
star. The derivation and results are shown in Sec. IV for
later convenience. We include the effect of rotation in
Sec. V. The rotational correction can be regarded as the
source terms for the equations of the nonrotating star. In
Secs. VI and VII, we apply our results of Sec. III to the
vacuum case outside the star. The perturbation equa-
tions correspond to those of slowly rotating black hole
space-time. The equations relevant to our analysis are
summarized to be self-contained. The basic equations
for the Schwarzschild black hole are given in Sec. VI. The
rotational correction to be included is shown in Sec. VII.
Finally, the implications of our results are discussed in
Sec. VIII.

A similar expansion technique in e is applied to the ra-
dial pulsations [11]. The calculation is performed up to
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e2. The radial oscillations couple the modes with a spher-
ical harmonic index l = 0, 1, 2. In this paper, we will re-
strict our consideration to the nonradial oscillation with
Lt, & 2, which is associated with the gravitational wave.
Otherwise, some equations in Sec. III are meaningless
because there are fewer degrees of freedom. We use the
geometrical units of c = G = 1.

and

—1

a~=(1 — ~, M=r

(4)

2e"(M+~I s), e"(g+p)(M+~I ')
V

r2 I r2

II. STEADY CONFIGURATIONS

In this section, we shall summarize the basic equa-
tions which describe the steady configurations. (See, e.g. ,
Ref. [12].) We assume the star is slowly rotating with a
uniform angular velocity A = 0(e) and keep only the
effects linear in the angular velocity. In this approxima-
tion, the star is spherical because the centrifugal force
deforming the shape is of the order e2. The metric can
be written as

ds' = g~'„~d~"dx

e"dt —+ e"dr + r (d8 + sin 8 dP )
2idr sin—8dtdg,

where v and A are functions of the radial coordinate r
only and ~ = O(s) is also a function of r.

The four-velocity up to the order e is given by

m" — r.(g+ p)e"r ——m' —4rc(g+ p)e"m = 0, (5)r
where the prime means a derivative with respect to r and
~ = 47r. The function m is of the order e, defined as

The equations in (4) are the same as those of the non-
rotating spherical star. That is, the star is the same
configuration as the nonrotating state. Up to the first
order of the rotation, the new effect is the dragging of
the inertial frame due to the rotation of the star, which
is determined by Eq. (5).

In the vacuum outside the star, we have

2M 2J
e =e-'=1—,~=n— (~)

where two constants M and J are the total gravitational
mass and the angular momentum.

[u', u", u, u@] = [e ~ 0, 0, Ae "~
] (2)

III. PERTURBATION EQUATIONS
We assume a perfect fluid so that the energy-momentum
tensor is given by

~pv = (g + p)&p&v + pgpv r

where g and p denote the energy density and the pressure,
respectively. We shall further restrict our consideration
to the barotropic case for simplicity, p = p(g).

From the Einstein equations, we have the equations

In this section, we shall write down ten components of
the linearized Einstein equation. We first consider the
metric perturbation as

gpv gp~ + ~pv)(0) (8)

where g„ is the background metric given in See. II. As-
suming the metric perturbation h„ is small, we can lin-
earize the Einstein tensor as

—2ha„„= h„„. ' —(f„,„+f„,„)+2R. p h. p+ h

—(R hpa + R „"va)+ gpv(f ' —h .p' ) + Rhpv —gpv R hap,

where

f„=h„' . (10)

R „~„,R ~, and R are the Riemann, Ricci, and scalar curvatures calculated by the background metric g„.We may
limit the calculations up to order ~ in our present context.

Now we shall specify the gauge freedom. The following four conditions can be imposed (Regge-Wheeler gauge)
[13,14]:

gay = 0, gyp = gee sin 8,

Bs (gis sin 8) + By (gi~/ sin 8) = 0, Bs(g„s sin 8) + B~(g„~j sin 8) = 0.

Under these conditions, we can take the metric perturbation as the forms
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) Ho, lm Yimi htr hrt —) H1.,lmYim ~ hrr —e ) H2, imYim ~

L,m L,m L,m

htg = hgt ——)
bairn(

8—yYim/sin8), ht4 = hyt = ) ho, im(sin88gYim),
L,m L,m

(12)

h„g = hg„= ) hq, im( 8y—Yi /sin 8), h„y = hy„= ) hq, im(sin 88g Yi ),

hgg = h~~/sin 8 = r ) Ki Yi, hgy =
hing

= 0,
L,m

where Yim(8, P) [oc Pim(8)e' j is the spherical harmonic and Pim(8) is the associated Legendre function. The
fun«ions Ho, lm, Hl, lm) H2, im) Kim, ho, im, and h& i depend on r and t only.

The perturbations of the energy-momentum tensor are described by an appropriate sum of three functions for the
fiuid perturbations: Rim(r, t), Vim(r, t), Uim(r, t), the density perturbation 6gim(r, t), and the pressure perturbation
6pim(r, t). The explicit forms are given in Appendix A. Since we consider the barotropic case, i.e., p = p(g), we have
one relation between the density and pressure perturbations:

6pi = —6gi —= C 6gi .— u —= 2

dg

Ten components of the Einstein equation 6G» ——2rc6T» can be written as the following types: Eqs. (14)—(16),
(18), and (19). From tt, tr, rr components and the sum of 88 and PP components, we have

) ((AI l + Ai l cos 8)Yim + BI l sin 88g Yim + C&~ l8yYim) = 0 (I = 0 to 3),
L,m

(14)

where the functions Ai and Ci are some linear combinations of Hoim, Hi im, H2im, Ki, Rim, Vim, 6gim, and

6pim and therefore depend on r and t. On the other hand, the functions Ai and Bi are some linear combinations
-(I)

'
(I)

of ho,i, hi, i, and Ui and, hence, depend on r and t The f.ormer set belongs to the so-called even-parity mode and
the latter the odd-parity mode. The explicit forms for these functions are given in Appendix B.

From t8, tP, r8, rP components, we have

) ((ni + ni cos8)8g Yim —(P&~
~ + PI

~ cos8)(8yYim/sin8)
L,m

and

+g& (sin8Yi ) +(i Xi + yi (sin8Wim)) = 0 (J = 0, 1) (15)

) &(PI i+PI lcos8)8gYi + (nI ~++I ~ cos8)(8yYi /sin8)

+(i (sin8Yim) + yi Xim —(i (sin8Wim)) = 0 (J = 0, 1) (16)

where Xi and Wi are functions of 8 and P, defined as

Xi = 28~(8g —cot 8)Yi, Wi =
~

8g —cot 88g— , 8~~Yi .
sin 8 ) (17)

The functions ni, Pi, (i, and (i are some linear combinations of the functions belonging to the even-parity
(J) -(J) (~) (~)

mode, while the functions Pi, a.i, g&, and yi belong to the odd-parity mode. The explicit forms are given in
(z) (z) (J) (z)

Appendix B.
From 8$ component and the subtraction of 88 and PP components, we have

).{fim8gYi +gim(8~Yim/sin8) + si (Xi /sin 8) +tim(Wim/sin8)) = 0

and

) &gim8gYim firn(8yYtm/ sin 8) —tim(Xim/sin 8) + sim(Wim/ sin 8)) = 0,
Lm

(19)
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where sl and jim are some linear combinations of the functions belonging to the even-parity mode and tlm and gl
to the odd-parity mode. The explicit forms are given in Appendix B.

Ne t we shall decompose the above equations to a specific mode with l, m. Multiplying Yl to Eq. (14) and
integrating over the solid angle, we have

Alm + imClm + Ql 1m[Al 1m+ (l —1)Bl 1m] + Ql+1m[Al+1m —(l + 2)Bi+1m] = 0,

where we have used the orthogonality condition and the following formulas for Ytm.

cos eYlm = Ql+1m Yl+1m + Ql —1m Yl —1m ~

(20)

(21)

s11108s Ylm —Ql+lmlYl+1m Ql —1m(l + 1)Yl lm

with

(22)

(l —rn) (l + m) (l + 1 —m) (l + 1 + m)
(2l —1)(2l + 1)' +

(2l + 1)(2l + 3)
(23)

In a similar way, Eqs. (15) and (16) yield

l(l+ 1)nl +im[(l —1)(l+2)(l —pl —(l ]+Ql 1m(l+1)[(l —2)(l —1)gI 1 +(l —1)nl 1
—

ril 1 ]

and

—Ql+1 l[(l+2)(l+3)yI~i, —(l+2)nI+, —rlI~i, ]
= 0 (24)

l(l+1)pl +irn[(l —1)(l+2)yI +nl +@& ]
—Ql 1m(l+ l)[(l —2)(l —1)(l 1

—(l —1)pl 1 + (l 1 ]

From Eqs. (18) and (19), we have

+Q+ -l[(i+2)(i+3)(',', +(l+2)P', ', +&, ] =o (25)

l(l + 1)slm —im flm —Ql 1m(l + 1)gl 1m + Ql+1ml gl ~1m = 0 (26)

l (l + 1)tlm + irnglm —Ql 1m(l + 1)fl 1m + Ql+ 1ml fi+1m = 0. (27)

and

P,
' ' = « = o (J = o, 1) (28)

Al ——nl ——sl =0 (I=Oto3, j=o, l). (29)

We also specialize to a single Fourier mode with e ' '.
In this way, the basic equations (20), (24)—(27) depend
on r only.

It is easy to observe the quantities of the order e are
~ (I) (I) (I) -(J) (J) (J) (J) (J)involved in Al, Blm, Clm, nlm, Plm, realm, (lm, (lm,

, jim, and glm, while not in Al, nl, Pl, slm, and
tlm. For the nonrotating case, the perturbation equations
reduce to

generate with respect to m. In the presence of rotation,
there are some terms proportional to m. Thus the degen-
eracy is removed. In addition, Eqs. (20), (24)—(27) show
the couplings with opposite parity mode. The odd-parity
mode with l, rn couples with the even-parity modes with
l + 1, rn and vice versa.

We refer to the equations for the nonrotating star as
the zeroth-order equations and the equations including
the terms of the order e as the Brst-order equations.
The first-order correction can be regarded as the source
terms of the zeroth-order equations. In the source terms,
we may use the zeroth-order solutions and simplify the
source terms. In the following sections, we will show this
explicitly.

Equation (28) constitutes a set of hp lm, h1 l, and Ul

with parity of (—1)'+1, while Eq. (29) constitutes a set
of Ho, &m~ H]. , tm& Hg )m, K)m, Rtm~ Vtm~ ~8m, and 6plm
with parity of (—1)'. The fundamental equations for the
nonrotating star are decoupled by the spherical harmonic
indices t, m and the parity. These equations are in fact
independent of m; that is, the eigenfrequencies are de-

IV. ZEROTH-ORDER EQUATIONS
INSIDE THE STAR

In this section, we shall summarize the equations of
the order eo, which describe the nonradial oscillations of
nonrotating spherical stars. This problem has been stud-
ied since the work of Thorne and his collaborators [14].
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A. Odd-parity modes

We first consider the odd-parity mode and solve a set
of Eq. (28). From t~~ = 0, we can solve ho im as

ho, lm = ~(v —A)/2

(X( r)',

where we have defined a function Xi~ as

We shall, however, review the derivation and the basic
equations, which are necessary to include the rotational
correction.

shear stress. We denote X& as the solution of Eq. (32),(o)

which will be used in the next section.

B.Even-parity modes

We shall solve a set of Eq. (29). The basic equations
of even-parity mode become a fourth-order system of dif-
ferential equations. There are several methods to choose
a set of equations [7,8,15,16]. We here derive the basic
equations obtained by Ipser and Price [8]. They choose
Hp t~, K~~ and their derivatives as the basic variables
and all other variables are eliminated. From si~ = 0, we
have

~i, lm = &
(X-v)/I'2 Xlmr. (31) +2,lm = +O, lm

[X ]
&(v—A)/2( (v —A)/2X&

„(2(n+ 1)

=0,

l6M
r3 +~(g —p) I

x~
r

(32)

From PI
) ——0, we have a basic equation: From o,

&

——0, we can solve Hi, t as

„/'= —e
I Hoi —Koi

2e~
+ s (M+rpr )Ho, tm Ir (36)

where

n = (t —1)(t+ 2)/2. (33)

From P&
) ——0, the fluid perturbation can be expressed

as

~~m = ~(g+ p)e "ho, im (34)

Thus the basic equation of the odd-parity mode is a
second-order differential equation, which represents the
propagation of gravitational wave inside the star [14].
The oscillation mode of this parity is classified as the
torsional mode and does not pulsate unless there is the

From A& ——0, the pressure perturbation 6p~~ can be
written as

n, 6p( = Ho) + s(nr+4M+2~pr )Hpi3

(r —3M —~pr )Z;
1 3 I

2r2 m

1+ 2(o e "r2 —n)K(~. (37)2r2

The density perturbation bgi~ is given by Eq. (13) in

terms by Spy . Using these equations for At —0 and

AI ——0, we have the basic equations

and

~A

L, [Hp, ~~, Ki~]—:(Ki~ —Hp, ~~)" ——
&

[2r —10M + r(g —5p)r ](K~~ —Hp, i~)'

~A 4~A
+ &(a e "r ——2n)(Ki~ —Hp, im, )+ 4 [3Mr —tcgr —e (M+zpr ) ]Hp, ~~r r

=0

~A
L( ) [Hp, )~, Ki~]—:Kt'~ ——q[(r —3M —epr )C —3r + 5M + rgr ]KI'r

~A 1 -2+ 2[a e "r C——n(C +1)]Ki + —(C —1)Hp&

~A
+—[(nr+ 4M + 2epr )C —(n+ 2)r + 2zgr ]Hp, t

=0.

(38)

(39)

From Al ——0 and al ——0, the quantities describing perturbations of the fluid Rlm and Vlm can be expressed as(~) (o)

iO.Rlm = Hp i~ 2 4 [o e r —2(n + 1)e"(M + rcpr )]Hp i~

2 —v 2
~2~A —v

+ (a e "r —n —1)K& + (r —3M —rpr )Kt~2r2 2r2



4294 YASUFUMI KOJIMA 46

e—A

ioVj = Ho i + 2 [nr+ 4M —z{g —p)r ]Hei — (r —3M —epr )Ki' + (o e r —n)Ki2r 2r3 2r2 2r2 (41)

In this way, we have a fourth-order system of differential equations for H0 l and KL, which govern the oscillation

of the even-parity mode. We will denote Ho( &) and Kt ) as the solutions of Eqs. (38) and (39), which will be used in
the next section.

V. FIRST-ORDER EQUATIONS INSIDE THE STAR

In this section, we shall include the rotational effect up to the first order. We have to solve Eqs. (20), (24)—(27)
instead of Eqs. (28) and (29). We can regard the additional terms AI, B&( ), C&( ), nI ), Pt ), r)I ), (&, (&(

f)~, and gi~ as the source terms for Eqs. (28) and (29). In these source terms, we may use the zeroth-order solutions
and eliminate the higher-order derivative of some functions, e.g. , Ho'& . In this way, the source terms can be expressed

by X&,Hs &, and K& and their first-order derivatives. The procedure to derive basic equations is the same as(o) (o) (o)

shown in Sec. IV.

A. Odd-parity modes

Using the same definition for X(~ as in Eq. (31), we can solve ho i~, as Eq. (30) but with some additional terms.
Corresponding to Eq. (32), the basic equation of the odd-parity mode becomes

(P+3v) jg /L —1m P ~l+17n P0L LmJ = Lm+e r x l —1m + r w L+1m )0' I',n —n jo. I',n —n+jo

where Is is the second-order differential operator defined in Eq. (32). The source terms are given by

I v

N~~ = 2u'e"—"Xi + 2o u+ r(g+ p)e m+ (n(2r —5M —Kpr ) —re ") X&n+1 n+1 r2

(42)

(43)

+i~1m = 2e-~u)'
(r —3M —rprs) + (2z(g+ p)r e " + (r —3M —Kpr )(M+ rpr )(C —1)) K&+i~

+ — (cr e "r —ny)(C —1)(M+ ~pr ) K&+i
2ny e (d 207 —2 (0)

r r3

—2e "~'+ ((M+ rprs)(C —1) + 2e(g+ p)rs) Hs(i)~i

2~'e-~
(nor+4M —r(g —p)r )

+ [4K(g+p)r +{ngr+4M —~(g —p)r )(C —1)] Ho, ~,
2m(M + vprs) 3 3 -~ (0) (44)

where

n = (I —2)(l + 1)/2, n+ ——l(l + 3)/2.

The fluid motion, corresponding to Eq. (34), is also modified, but the expression is omitted here.

(45)

B. Even-parity modes

Next we shall derive the basic equations for the even-parity mode. The relation (13) is unchanged if the first-
order rotational effect is included. Corresponding to Eqs. (35)—(37), we can solve H2, i~, Hi, i~, and bpi with some
additional terms. Eliminating K2 l, K1 L, bpL, and bgl in terms of these equations, we eventually have a pair of
second-order differential equations. The basic equations can be written as

L(j) [H K ]
~(~) + —(4+v)/2 qi i~ l —im + ~i+i~ i+1m {46)(n+ 1)o i (n —n )o (n —n+. )cr

where I, and I, are the second-order difFerential operators defined in Eqs. (38) and (39), respectively. The source(1) (~)

terms for J = 1 are given by
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2 I

EI ~ = (r —M + epr3) + (2m+ (u)cr e "r(C —1)

[(M+ rpr )(r —M+ epr )(C —1) —4Mre "
r3

+2(r —M+ epr )rgr —2(r —3M —~pr )zpr ] Ho&

2(u'e"
+ —2o r~'e + (r —M+ zpr )(nr+ 4M —z(g —p)r )r3

2m + 41 o2eA-v
+ ((nr+4M)(C ~ —1) + 2+(pC + g)r )+2&so e "((n+1)e"—1)r

+
2me~" (M + ~pr3)

[(nr+4M —K(g —p)r )(r —M+ Kpr )(C —1) —4(nr+4M)«3 3 —2
r5

+ 4(M+ &(g+ p)r')rpr'+ 4(2r —3M)«r'] +o,tm

u)'e"
+ 2a~r~u'e " — (r —M+ zpr )(r —3M —zpr ) —o e (2m+ u)(r —3M —zpr )(C —1)r2

W

2me" (M + rcpr3) (e"
(r —3M——rpr )(r —M + rrpr )(C —1)r3 qr

3r+10M—+2m(g+3p)r
~
+ ~ (M —~(2g+p)r ) K&

2''e"
(r —M + rpr ) + ( 2m+sr)cr e "r (C —1)

2m+~ o'e" " 4nme"
(nr(C ~+1)+4(M+rpr ))+ 3 (o e "r +2M+ 2rpr )

2me2~
(o~r~e "—n)(M+ zpr )(r —M+ epr )(C —1) K( (47)

and

D&+, —— ((—3n+5ny+4)r+ (n+ ny)e (M+ ~pr ))
(y) 4M 3

—16m(n —n~ —1)me (g+ p)r — ((n —ny)r+re —2rpr ) X&+&
A 8(np + 1)ere" 3 (o)I

+ —4(n —ny)o e" "res'

2A

+ 3 [(nny+ 3n+ —3n+ n~ + 4)r e + (7n+ 2n~ —8)Mre
4e 2 2 —A —A

+n~ Mr + repr (nre "+ n~(r + 2M + 2+pr ))]

16~(g+p)e"m
((n —1)r + n~e" (M + ~pr3))r

8(ng + 1)e"(u ((n+n++1)r —2(n+e +1)(M+ rpr )) X&+,
3 (O)
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The source terms for J = 2 are given by
I

E& —— ——((n+1)(C —1) —4e )+ [{(n+2)r—M+ rcpr )(C —1) —2re +4r(g+p)r ] Hot
I

+ ——{(n+1)e"(M+ Kpr )(C —1) —2nr —8M+ 2r.(g —p)r )
2~e~

2—coo e (C —1) — ((r —M+ rpr )[r —4M+ r(g —p)r ]
—(n+ l)(r+ M+ 3rpr )r)

[(n + 1)r(3r —3M —r(2g —p)r ) + 2(r gr ) —7y M gr3 —5' gprs —ygr4

—20M —13&Mpr + 17Mr —5(jcpr ) + 4pcpr —3rz] &
&

+ —((n+1)r(C —1) —4(r —3M —rpr ))+o e 'r(2m+a)(C —1)2r

[((n+ 1)r e "+(r —M+ rpr )(r —3M —Kpr ))(C —1) + 2Kgr (2r —5M —Kprs)

2(re "——epr )(r —3M —tcpr ) +2tcpr e "] Kt

2 2 —v+ — (ore—"(C. —1) +2n) +4mo e "(C —2+ r(g+ p)r e")
r

((r —M + rpr ) (C —1) —2re "+ 2rc(g + p) r )

—~o e" ((n+1 —e ")(C +1) +4e —2r(g+ p)r ) K& (49)

and

D~+
— —4a ((n —ny —1)C —2ny —1)(2} I —2

(2z(g+ p)r + (n+1+ e )(C —1) —2e ) X&+~
4(ng + l)e"~ 2 —A —2 (o}I

2~'e~
[((nz++ n~)r —2(n —1)re ")(C + 1) +2nr(ny + e ")+4ny(2M —Kgr )]

W

[(oze "r3 —(n+ 2n~+ 2)r + 2M)(C —1) + 2re "—2e(g+ p)r ]

—16rnym(g+ p)e Xt+
(o} (50)

In a similar way, some terms due to the rotational effect
are included in the equations describing the fluid motion,
Eqs. (40) and (41), but those expressions are omitted
here.

A. Odd-parity modes

It is easy to derive the basic equation from the analysis
of Sec. IV. Equations (30) and (31) reduce to

VI. ZEROTH-ORDER EQUATIONS IN VACUUM

In order to determine the eigenfrequency of the non-
radial oscillation, it is necessary to connect the inte-
rior perturbation equations with the exterior ones. In
this section, we review the basic equations of the order
eo, which correspond to the perturbation equations of a
Schwarzschild black hole [17,18]. The perturbations of
Einstein equations are given by the condition (7) and
0 = p = ~g)m = ~p)m = &)m = V)m = Utm = 0. The ba-
sic equations are obtained by solving Eqs. (28) and (29)
under these conditions.

and

e I
&o,&m = . (Xi~r),—XCT

~l, lm = e xlm~.A

The basic equation (32) becomes

Lp[X(~] —= e "(e "X,' )'

q t 2(n+1) 6M)+o. —e X( = 0.
r2 r3 j

(53)
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It is easily checked that the remaining equation P&i
l ——0

is automatically satisfied. We denote Xl as the solution
of Eq. (53), which will be used in the next section.

B. Even-parity modes

1
L, [Hp,i, Hz, i,Ki ] —= —Hi i + e"(Ki + Hp, i )

2Me"
+ . H1lm =o,

ZOT

Next we consider the even-parity mode. We can re-
duce the order of differential equation, because there is
no dynamical degree of the freedom for the fluid motion.
From sl ——0, we have

H2, lm Ho, lm —0 (54)

From A&
——0, n&

——0, and o.I
——0, we have the fol-

lowing differential equations for Hp, im, Hi ~m, and Kim

e"(r —3M)
[Hp, lm~ H1, lm& Kim] = Kim + g Kim

l n+1
Ho, lm + . H1, lm = 0

T ZCTT

(55)

-(s), e"(r —3M)
L, [Hpi, Hi i,Ki ]

—= Hpi + Ki

e~(r —4M)
2 Ho, lm

( ~„n+I& 1
-~ o e —

~ ~

—. Hr)
) la

=0. (57)

Using these equations in AI ——0, we have an identity
among Hp, lm& H1, lm, and Klm:

A 2 4 A 2 2 A,
~ 2 3I[Hp, im, Hz, im&K~m]—:(o r e" —nr —Mr+ M e")Kim+ (nr+ SM)rHp, im+ [o r —.—(n+1)M]Hi im = 0.

We can also check the remaining equations AI l ——AI
l ——0 are automatically satisfied. Thus we have three first-order

differential equations and one identity. We can therefore reduce to a second-order system of the differential equations.
For example, we may solve Eqs. (55) and (57) after eliminating Hi tm by Eq. (58). If we prefer a second-order
differential equation, we can transform to the Regge-Wheeler function Xim or the Zerilli function Zi from Hp i and
Klm aS

1
X~m =

2 s (3a Mr —n(n+1)r(r —3M))Ki + (n+1)r(nr+ 3M)e "Hp, ~ma2rs —n+1 M (59)

X& ——
z s ( are" (nr + 3—M) + n(n+ 1))((n+ 1)r —SM)Ki

+(3a Mr —n(n+1) r —3(n+1)Me ")Hp i (60)

r
ayers —(n+ 1)M

nr2 —3nMr-
nr+ Klm —«HO, lm, (61)

Zl
o rae" (nr + 3M) —n (n + 1)rs —Sn2Mr2 —9nM r —9Ms

[o'r' —(n+ 1)M](nr + 3M)'
n2 (n + 1)rs + Sn(2n + 1)Mr2 + 15nM r + 18M

[o r —(n+ I)M](nr + 3M) (62)

The function Xim satisfies the Regge-Wheeler equation (53) and Zi satisfies the Zerilli equation

e-"(e "Z,' )'+ o'— ( (n+n1)ra+ 3n Mr +9nM r+9M ) Zi =0.nr+SM 'rs (63)

In the following argument, however, we will use K&, Hp &, and Hz i, the solutions of Eqs. (55)—(58), to avo&d the
confusion concerning the parity.
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VII. FIRST-ORDER EQUATIONS IN VACUUM

46

In this section, we shall include the effect of the order e in the perturbation equations for vacuum. The procedure to
derive the basic equations is the same as shown in Sec. VI. Some source terms will be included in the basic equations
of the nonrotating case. We can represent the source terms by Xl,Xl, Kl, Ho l, and H& l

(o) (o) (o) (o) (o)
)

A. Odd-parity modes

The odd-parity equation becomes
A

&0/ 1m—+l 1m— &Q i+1m Fl+1m ~i
Lc[xtm] = — mN(m + + I)n —n n —n+ r

where Lo is the second-order differential operator defined in Eq. (53). The source terms are given by

Nlm = 6e—2A

Xl + 2o
r s (n(2r —5M) —re "j Xtn+1r' (65)

and

El+1m = —6' e Kl(o) (66)

We can check the consistency of the remaining equation, in which the 6rst-order effect is included corresponding to
(') =o.

B. Even-parity modes

We turn our consideration to the even-parity mode. The relation (54) between H2 ~ and Hc, ~ becomes

+2,lm +O, lm = plod)r e K(s) 4zqt gm4)
[( )

(o)I
( )

(o)
l77L gy n n l 1fA

cT n —n+
(67)

The basic equations, (55)—(57), become

o( ' n —n n —n+
(68)

where L, ), L( ), and L, are the first-order differential operators, defined in Eqs. (55)—(57). The source terms for
I = 1 are given by

r+3M
~

K"' 'H"' "+'H(')
2r '(n+1 ™r™r '™2ior

(69)

Dt+I
——4(ny + 1)X&+& + -[(n+ 1)(ny + 1)e"—2(2n~ —1)]X&+& (7o)

The source terms for J = 2 are given by

e2A
@(2)

[ 2o r + (n+1)r—e "+r —9Mr +15M ]K&im
—

2(n + 1)r2

+ [(n —2)r + 7M]HO'~ — . , I

—2r + 5M
I Hl, tm

eA (o)

2(n+ 1)r ra,

lm 2ior2
(71)

Dt+, ———2(n~ + 1)re"X&+I —(6n —16ny —4)e"X&+z

The source terms for J = 3 are given by

(72)

(o)
(2r —M) + r —3M

~
K( , (o'r'e'+ n+ l)H. . .

2r2 ( n+1 r r (2(n+ 1) r ' 2ior~
(73)
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DI+l ——(6n —4ny —4)Xl+~ + [(ny+ 1)(o r e" + n) —4n~++1+ (3n —5ny —2)e ~]X&~+~~
r

The identity (58) becomes

(74)

o( ' n —n n —n+

where I is the algebraic equation for Ho l~, Hl l~, and Kl~, defined in (58). The source terms are given by

eA ~2r3 r 0'ri 1 = —
~

(2nr+3M)+ (r —3M)M
~
K ——

~

+2M
~

Hi 1 + . Hlm 2 ~n~1 ~
lm 2 ~n+1 ~

P, lm 2&& 1,lm

(75)

(76)

D&~fz
———2r ((2n+ 3)(n~ + 1) —3(n —n~ —1)e ")Xl+&

+2re"[(ny+1)a r +3(n —ny —1)re "—(ny+1)((2n+3ny+3)re "+(n+1)M)]Xl+~
(77)

We can also check the consistency of the two remain-
ing equations, in which the first-order effect is included

corresponding to AI
1 ——AI 1 ——0. In this way, the ba-(o) (3)

sic equation for the even-parity mode is the second-order
system of the differential equation. It is possible to elim-
inate one function, e.g. , Hl, l by Eq. (75), and solve two
differential equations for the remaining functions.

VIII. CONCLUDING REMARKS

The basic equations governing nonradial oscillations of
a slowly rotating relativistic star are Eqs. (42), (46), (64),
(68), and (75). These equations explicitly represent how
the modes in a spherical symmetric star are mixed due
to stellar rotation. We expect that the degeneracy with
respect to the azimuthal spherical harmonic index m is
removed like the Zeeman splitting, because some terms
depend on rn . The basic equations for the odd-parity
modes are a second-order system both inside and outside
the star. There is a regularity condition at the center and
a boundary condition at infinity. The outgoing wave con-
dition is normally used for the latter condition. On the
other hand, those for the even-parity modes are a fourth-
order system inside the star, and a second-order system
outside the star. There are two regularity conditions at
the center. We impose the boundary condition that the
Lagrangian change in pressure must vanish at the stellar
surface. The interior perturbations are smoothly con-
nected with the exterior perturbations. The outgoing
wave condition is imposed for the perturbation at infin-
ity. In this way, we have an eigenvalue problem. In a
subsequent paper, we will solve these equations numeri-
cally and obtain the eigenfrequency as a function of the
angular velocity. The prospects and the implication are
given here.

The basic equations describe two important phenom-
ena. One is the rotationally induced oscillation of the
opposite parity mode, as partially examined by Chan-
drasekhar and Ferrari [10]. We can generalize their cal-
culations, that is, the oscillation of the even-parity mode
excited by the odd-parity mode as well as that of the

odd-parity mode by the even-parity mode.
The other is the rotational shift of the eigenfrequency.

We shall assume there exists only the even-parity mode
for the zeroth solution for simplicity. The first-order
correction changes the eigenfrequency of the even-parity
mode with m g 0. The quasinormal modes of nonra
dial oscillations in a nonrotating star are so far studied.
The eigenfrequency is a complex number. The real part
means the oscillatory frequency and the imaginary part
represents the damping rate due to the gravitational radi-
ation reaction. Thus, the nonradial pulsations are stable
for the nonrotating star. As the stellar rotation increases,
the eigenfrequency and hence damping rate changes. We
expect that the sign of the imaginary part changes for the
large angular velocity for particular modes; that is, the
modes become unstable. This corresponds to the secular
instability of the nonaxisymmetric perturbations due to
the gravitational radiation reaction. In this way, we will
have a new estimate for the critical angular velocity for
a stably rctating star by the approximation of the slow
rotation, hut fully relativistic treatment. The instability
sets in for a more slcwly rotating star as rn increases.
This means our approximation is good for such large m
modes.

ACKNOWLEDGMENTS

I would like to thank B.F. Schutz for useful discussions
at the beginning of this work. This work was supported
in part by the Grant-in-Aid for Scientific Research on
Priority Area of Japan (03250212, 04234209).

APPENDIX A

The perturbations of the energy-momentum tensor are
given in this appendix. Ten independent components
bT„„ in the Regge-Wheeler gauge [Eq. (12)] are given
by
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STtt —e ) [(Sglm gHo, lm)Ytm + 2flK (Uim sin 88eYi + Vim&yYtm)],
Lm

(Al)

STtr = ) [(gHi, lm + e & +im)Yim + (g + p)flhl, lm(sin 8~0Yim)]~ (A2)

ST„„=e" ) (Spim + pH2 i )Yim,
Lm

(A3)

STte = ) [(gho, im + e"K Uim) (B~Yim/ sin 8) —e K Vim~eYim]
Lm

(A4)

STt~ = —) [(gho, im+ e t~, Uim)(sin88eYim) + e"r VimByYim
Im

+(fISp,m —(g + p)~(Ho, im/2 —Ki ) + ~Sgi-)" » ' 8Yi-]

ST„e = —p) hi i (ByYi /sin8),
Lm

STry ——) [phi, im(sin8cigYim) + ~r sin 8(K &im + (g+ p)e Hi, lm)Ylm]&
Lm

(A7)

STe~ = mr sin 8) [z Vim(BOYtm) —(r Uim+ (g+ p)e hp, im)(&4»im/s'n8)],
Lm

(A8)

STeg =r') (Spi +pKi )Yi,

STy~ = r sin 8) .[(Spim+ pKim)Yim+ 2m(((g+ p)e "ho,im+ K Uim)(sin88eYi ) + r 'VimByYim)]~
Im

where we have used the definitions

K(g+ p) e" " 'Su' = ) .RmYi
Lm

(A10)

(All)

K(g+ p)e " r Su = ) [VimBeYim —Uim(ByYi /sin 8)], ( 12)

K(g+ p)e ~ r sin 8Su~ = ) [Vi ByYi + Uim(sin8cteYim)].
Lm

We have also expanded the density and pressure perturbations as

Sg = ).SgimYi, Sp = ).Spi Yi

Lm Lm

(A14)

APPENDIX B

In this appendix, the functions appeared in Eqs. (14)—(27) are given. A prime and a dot mean a derivative with
respect to r and t, respectively.

The coefficients in Eqs. (14) and (20) are

AI ——2e" "Ki" + (3r —5M —tt, gr )Ki — H2ir r
(l —l)(l + 2)e e

Kim ——
~ [l(l + 1) + 2 —4rcgr ]H2, im + 4~e Sgim,r r

At ——2Ki' + 2 (r —3M —Kpr )Kim — H2, im —
z Hi, i—m —4e"Rim,

(i), 2e" s 2 l(l + 1)
r r ' r
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Ai ——2e Kim—(2) 2eA 3 / 4e " 2
(r —M+ ~prs)K, ' — Hi i + H—o ir r ' r

+ s Kim —,Ho, im+, (1+2~pr )H2, i m+4«&pi m,

(l —1)(l + 2)e" l(l + 1)e"
A

r r r

Aim ——e "(Ho'im Kim) + e (Kim+ H2, im) —2e Hl im

+ [r+ M &(g 2p)r ]Ho i + (r —M+ rpr )H2i
1 3 / 1 3 /

r
1 2e 3——[2r —2M —r(g —p)r ]Ki — (r —M —zgr )Hq im-r2 r2

+ 2[l(l+1)+8&p ]H2im+'4&ypim,2r2

t(t+1)
2 0lmr

(B4)

-(o)

-(y) 2l(l + 1)u)
lm 2 1 lm) (B6)

-(2) 4l(l+ l)~e" "
lm r2 ho, im, (B7)

(3) 2l(l + 1)cue
lm r2 O, lm& (B8)

e-~u) .
(ho, im

—hs, im) —[e "cu' —2K(g+ p)ur](ho, —hg im) + h, im

2 A / 2+—
s [e "~'r + ~(g + p)r (40 —2(u) + (l(l + l)r —4M)u)]ho im + 8e QUim,r (B9)

(&) -V '/ 24)e
Bim = —cue "(ho im

—hl, lm) + ho, im 2 4, im~ (BIO)

—V —V

(~'r + 4~)(ho im
—hy, im) + s [u'r —e"u(l(l + 1)r + 4M + 4zprs)]ho im,r r (B11)

2e
Bi ——2ide " "(ho'i —hi i ) + 2 [e "r &u'+v(r —3M —K(g+ 2p)rs)lho, i

2e (d 0

(r —M —~gr )hi ir

—V

2 [2(r —M + Kpr )~' + 4pc(g + p)r2Q

——z(4e (M+ rcpr ) —l(l + 1)r +4Mr —4tcpr4)]ho i +4~@'&

(B12)

—A 2
Cim = 2u(e "Hy im

—H2, im —Kim) — 2[e "r u' —u(4—M—2r(g —p)r )]Hi i +80e Vir (B13)

1
im = 'd(Ho, im e Hz, im) —

2 2 [r w'+ 2e"ur(r —3M —Kpr )](Ho i + Hz i ), (B14)

—V
——2~e" "Kim — (id'r + 4ur)Hi im,r

—V

Ci ———~e (2e "HI. i
—2H2i —Ki ) —

~
[u'e r +2id(r —M —~gr )]Hi, im+4~Vim.

The coefficients in Eqs. (15), (16), (24), and (25) are

1
Hx im + H2, im + Kim ——

2 [2M —K(g —p)r ]Hq im —4e Vim,

(BI6)

(B17)
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(&) —v
A

3
~trn Ho Lm + Klm + e Hl, bn + g (r 3M &pr )Ho lm, ~ (r M + &pr )H2 Im~r

-(o) -A ~ -A 21
o., = 2~—e h, )

——[3e r ~ +2~(r —M —~gr )]hg(~,3 (B19)

~e "(ho, i + h&, &~) q
[3~'r 2~e"(M+ ~pr )]ho, t~ (B20)

g~-A
pI = e "(ho, ( hy, ~ ) &(g + p)r(ho, ~

—hl, l ) hl, l

1
s [l(l + 1)r —4M + 2z( g + p) r ]ho, ~

—4e U~ (B21)

2e (l —1)(l + 2)
P, = e "(h'o) —hg ) ) — ho(r r (B22)

P&
——~(2K~~ —Hq ~~),

-(o)
(B23)

P&~
———~e Hi, tm~

-(~) (B24)

(p) (J
() = 2Ho, ~ (B25)

ue "
() (B26)

1
X, = —~e "ho,Lm,

— z[e "r ~'+2~(r —3M —rpr )]hqt~, (B27)

—V —V

(ho ( + hy, )~) —
s (u) r —2u)e (M + rpr )]ho ) (B28)

[e r (u'+ 2~(r —3M —zpr )]hg, (~,(o) l(l + 1) (B29)

3l(l+ l)cue ", l(l+1)e
9&~ (ho, lm h&,le) + s [r u' —2ure" (2r —3M + rpr )]hp t~, (B30)

+ ~{r+M —e(g —2p)r j ~
Ho t~+ 2ue (r —M —rgr )Hq, t~

—w(r —M+ zpr ) ~
Hz &~+ 2w(3r —5M —rgr )Kt'~

———(ur e "(Ho') —2K)" —2e "H~( ) —u)r e (Hs(~+K(~)
(cu'r'e

lir2e
+

2 r

+I
t'l(l + 1)cu ~

2
+2m(g+ p)Ar

~

Ho )~ —[l(l+ l)u)+4r(gm+ pB)r ]Hg t

)
—[l(l + 1)u+ 4r(g+ p)Ar ]Kt~ —4z(mug~~ + Mpt )r, (B31)

u'r e " l(l+ l)ue
(,~ = ~r e K&~ — (Hot~ —Hs l~+2Kl~) — Hq, t~+4~r Rl~.

The coefficients in Eqs. (18), (19), (26) and (27) are

1
st = —

2
(Ho, ~

—H~, I ),

(B32)

(B33)
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1
tlat e hp, lm e h~ t

——&[2M —~(g —p)r ]hg /~,r (B34)

ft =mr e "K/ +4mr V/

g/~ = e " "u'r (hp/ h&&~) —e "[2e "ru' —/(l+1)tv+4m(g+p)mr ]hp/ —4ror Ut (B36)

[1] S. Chandrasekhar, E//ipsoida/ Figures of Equi/ibrium
(Yale University Press, New Haven, 1969); Phys. Rev.
Lett. 24, 611 (1970).

[2] L. Lindblom and S. L. Detweiler, Astrophys. J. 211, 565
(1977).

[3) J.L. Friedman and B.F. Schutz, Astrophys. J. 222, 281
(1978); J.L. Friedman, Commun. Math. Phys. 62, 247
(1978).

[4] R.A. Managan, Astrophys. J. 294, 463 (1985); J.N. Ima-
mura, J.L. F]I'iedman, and R.H. Durisen, ibid. 294, 474
(1985).

[5] J.R. Ipser and L. Lindblom, Phys. Rev. Lett. 62, 2777
(1989); Astrophys. J. $55, 226 (1990).

[6] C. Cutler, Astrophys. J. $74, 248 (1991).
[7) S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London

A4$2, 247 (1991).
[8] J.R. Ipser and R.H. Price, Phys. Rev. D 4$, 1768 (1991).
[9] R.H. Price and J.R. Ipser, Phys. Rev. D 44, 307 (1991).

[10] S. Chandrasekhar and V. Ferrari, Proc. R. Soc. London

A4$$, 423 (1991).
[11] J.B. Hartle, K.S. Thorne, and S.M. Chitre, Astrophys J..

176, 177 (1972).
[12] J.B. Hartle, Astrophys J.. 150, 1005 (1967); S. Chan-

drasekhar and J,C. Miller, Mon. Not. R. Astron. Soc.
167, 63 (1974).

[13] T. Regge snd J.A.Wheeler, Phys. Rev. 108, 1063 (1957).
[14] K.S. Thorne and A. Campolattro, Astrophys. J. 149, 591

(1967); R. Price and K.S. Thorne, ibid. 155, 163 (1969);
K.S. Thorne, ibid. 158, 1 (1969); J.R. Ipser and K.S.
Thorne, ibid. 181, 181 (1973).

[15] S. Detweiler and L. Lindblom, Astrophys. J. 292, 12
(1985).

[16] Y. Kojima, Prog. Theor. Phys. 77, 297 (1987); 79, 665
(1988).

[17) F.J. Zerilli, Phys. Rev. D 2, 2141 (1970).
[18] S. Chandrasekhar, The Mathematica/ Theory of B/ack

Ho/ea (Clarendon, Oxford, 1983).


