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We write the Einstein field equations for the irrotational tilted Bianchi type-V cosmological models
as an autonomous differential equation in terms of expansion-normalized dimensionless variables.
The theory of dynamical systems is then used to give a complete qualitative description of the
evolution of the models with nonextreme tilt.
PACS number(s): 98.80.Dr, 04.20.Cv, 02.90+p.

I. INTRODUCTION

The Bianchi cosmologies play an important role in the-
oretical cosmology and have been much studied since the
1960s. A Bianchi cosmology represents a spatially homo-
geneous universe, since by definition the spacetime ad-
mits a three-parameter group of isometrics whose orbits
are spacelike hypersurfaces. These models can be used to
analyze aspects of the physical Universe which pertain to
or which may be affected by anisotropy in the rate of ex-
pansion, for example, the cosmic microwave background
radiation, nucleosynthesis in the early Universe, and the
question of the isotropization of the universe itself [1].

A Bianchi cosmology is said to be orthogona/ if the fluid

velocity vector is orthogonal to the group orbits. Other-
wise the model is said to be tilted [2]. A tilted model is

spatially homogeneous relative to observers whose world
lines are orthogonal relative to the group orbits, but
is spatially inhomogeneous relative to observers comov-
ing with the fluid. Recently the present authors used
expansion-normalized variables to write the Einstein field
equations (EFE's) for the orthogonal Bianchi cosmologies
with a perfect fluid source as an autonomous difFerential
equation (DE) [3]. This enables one to use the theory of
dynamical systems to describe the evolution of the mod-
els qualitatively, in a way which is particularly simple
from a physical and geometrical point of view. In the
present paper we show that this choice of variables also
provides an efFective method for studying the evolution
of tilted Bianchi cosmologies.

Since our objective is to illustrate the method in a
simple context, we consider a class of models for which
the resulting state space is three-dimensional, namely the
tilted Bianchi cosmologies of group type V with an irrota-
tional fiuid. These models are anisotropic generalizations
of the Friedmann-Roberston-Walker (FRW) models with
negative spatial curvature. In a tilted Bianchi cosmology
the tilt can become extreme in a finite time as measured
along the fluid congruence, with the result that the group
orbits become timelike. This means that the models are
no longer spatially homogeneous [4]. While a complete
analysis of all orbits in the three-dimensional state space
could be given, we have decided to concentrate on the

orbits which correspond to models in which the tilt does
not become extreme.

In this paper, we assume that the cosmological fluid
satisfies a linear equation of state

p = (V —1)P,
where p is a constant. Of particular interest are the val-

ues p = 1 (pressure-free matter) and p = s ( a radiation
fluid). In addition, the value p = 2 (a stiff fluid) has
been studied in connection with the early Universe. Fur-
thermore, values of p which satisfy 0 & p & s, while

physically unrealistic as regards a classical fluid, are of
interest in connection with inflationary models of the
Universe. In particular, the value p = 0, for which the
fluid can be interpreted as a positive cosmological con-
stant, corresponds to exponential inflation, while the val-

ues 0 & p & 3 correspond to power law inflation, in FB%
models [5].

The locally rotationally symmetric (LRS) tilted
Bianchi V models, which correspond to orbits in a two-
dimensional subset of our state space, have been studied
qualitatively by a number of authors. The most detailed
work is that of Collins and Ellis [4], who write the EFE's
for these models as a two-dimensional autonomous DE.
The right-hand side of the DE is not analytic, however,
and this results in the different FRW models, which are
an important special case, being identified. This diffi-

culty is avoided in our approach, as will be explained
later.

The plan of the paper is as follows. In Sec. II we use
the orthonormal frame equations of King and Ellis [2] to
derive the basic autonomous DE in terms of expansion-
normalized variables. In Sec. III we give the equilibrium
points of the DE, and derive general results concerning
the asymptotic behavior of the orbits. We analyze the
two-dimensional invariant subset which corresponds to
the locally rotationally symmetric (LRS) models, and use

a monotone function to show that the dynamics in this
subset determines, to a large extent, the dynamics in

the three-dimensional state space. This enables us to
give a complete analysis or the orbits for which the tilt
is nonextreme. In Sec. IV we provide the cosmological
interpretation of the phase portraits, and in Sec. V we
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comment on some mathematical aspects of the problem.
The Appendixes contain some of the technical details.

As regards motivation and background, this paper de-

pends to a large extent on Wainwright and Hsu [3] (WH).
In Sec. II, it is also assumed that the reader is famil-
iar with the orthonormal frame formalism of Ellis and
MacCallum [6]. We use geometrized units with c = 1,
8vrG = 1, and sign conventions of MacCallum [7]. In ad-
dition, familiarity with some basic concepts and results
in the theory of dynamical systems is assumed in Secs. III
and V. We refer to WH for a brief summary and further
references.

II. DERIVATION OF THE AUTONOMOUS DE

In the WH approach to the Bianchi cosmologies, the
basic variables are the commutation functions associated
with a group-invariant orthonormal frame. These vari-
ables are then rescaled using the rate of expansion scalar
so as to make them dimensionless.

King and Ellis [2] (see page 225) have shown that for
tilted Bianchi models of group type V with an irrotational
fluid, an invariant orthonormal frame can be chosen so
that the commutators have the form

(eo, e ] =8 (t)ep,

[e, ep] = [a (t)bp" —ap(t)6 ']e, ,

where 8 P(t) is diagonal, and a~(t) = b~ aq(t). Greek
indices take on values 1 to 3, and are raised by means
of 6 P. In addition, eo is the unit normal to the group
orbits t = const, and the fluid velocity u lies in the 2-

space spanned by eo and eq. Following King and Ellis

[2], we write

one constraint.
The stress-energy tensor for a perfect fluid is

&.b = pv. ub+P (unsub+ g.b), (2.4)

where q~n~ = 0, n~bnb = 0. It follows from Eqs. (2.1),
(2.4), and (2.5) that

y, = (1+p sinh P)p,

P = (P —1+ sP sinh P)P, ,

(2.6)

and that the nonzero components of q and vr b are

qq ——pj, sinh P cosh P, 7rqq = —spy sinh P.2

The autonomous DE for the basic variables

(8, o'~, o', aq, v) may now be obtained from the field
equations as given by King and Ellis [2] [see Eqs. (2.16)
and (1.34)] or MacCallum [7] [see Eqs. (3.14) and (3.15)].
In either case, it is necessary to do some manipulations
in order to obtain an evolution equation for v.

Evolution equations

1 2 2» 1 (3p —2)+(2 —p)v8= —-8 —-(cr +o ) —— p,3 3 + 2 1+ (p —1)v2

and as discussed in the Introduction, we assume that

(2.5)

In order to write the EFE's in terms of the basic variables,
it is necessary to decompose the stress-energy tensor with
respect to the unit normal to the group orbits n = eo.
Following King and Ellis [2] we write

T,b = p n, nb + p(n, nt, + g,b) + 2q&~nbi + ~~b,

u = cosh P ec + sinh P eq, (2.1)

where P is called the hyperbolic angle of tilt.
The 8~p(t) are the frame components of the rate of

expansion tensor of the normal congruence to the group
orbits, and determine the rate of shear tensor according
to

o p=8 p
—s8b p,1

where 8 = 8 ~ is the rate of expansion scalar. The quan-
tity ay(t) determines the curvature of the group orbits.

It is convenient to introduce new shear variables ac-
cording to

a = ~~(oz2 —oss) ) (2.2)

and a tilt variable v according to

0+ ———(8 —2vag) o+,

o = —8~

ag = s(2o+ —8)ag,

v(1 —vz)
'U =

3[1 —vz(p —1)]
[2cr+ + (3p —4)8 —6(p —1)agv].

Constraint equation

ivy, + 2[1 + (p —1)v ]aqo+ ——0.

De6ning equation for p

p = -'(8 —a+ —cr —9a, ).2 2 2 2

v = tanh P. (2.3)
Auxiliary equation

The basic variables (8, cr+, o, aq, v) describe the
physical state of the cosmological model at time t. The
Einstein field equations lead to an autonomous DE in R5
for these variables, together with one constraint. When
we rescale the basic variables, the evolution equation for
8 decouples, leaving an autonomous DE in R4 subject to

p = [
—78+ 2pagv+ s7(20+ —8)v ].1+vz(p —1)

In these equations, an overdot denotes the derivative

&, along the eo congruence.
Motivated by WH, we now introduce expansion-
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normalized dimensionless variables Z+, Z, and A ac- given by Eq. (2.11), subject to a constraint
cording to

G(X) =0, (3.2)
3Gy

8
(2 7) given by Eq. (2.12), and subject to the inequalities

3p0= —.
g2

We introduce a dimensionless time variable 7 by

(2.8)

The density p, is replaced by the density parameter 0,
which is defined by

v &1. (3.3)

(Z+, Z, A, v) ~ (E+,Z, —A, —v)

Since the DE (2.11) is invariant under the transforma-
tions

dt 3

d~ 8
(2.9)

(Z+, Z, A, v) + (Z+, —Z, A, v),
Finally, the deceleration parameter q of the normal con-
gruence is defined by

we can restrict our considerations without loss of gener-
ality to the invariant set defined by

d8—= —(1+q)8 (2.10) A&0, and Z &0. (3.4)

v
v(l —v2)

[2Z+ + (3p —4) —2(p —1)Av].
1 —(p —1)v~

Constraint equation

pvA+ 2[1+ (p —1)v2]AZ~ = 0.

Defining equations for 0 and q

(2.12)

[see WH, Eq. (2.22)].
The evolution equations can now be written in dimen-

sionless form, with a prime denoting &" .

Evolution equations

E~ = —(2 —q —2Av)E+,
~'=-(2-q)~-,

(2.11)
A' = (q + 2Z+) A,

The state space for the DE is the compact subset D of
IR defined by the restrictions (3.2), (3.3) and (3.4). The
subsets of D defined by Z+ ) 0 and E+ ( 0 are invariant,
as follows from the evolution equation for Z+. We shall
denote these invariant sets by D+ and D, respectively.
Since the state space D is compact, the solutions of the
DE are defined for all real values of ~. This implies that
the solutions of the DE define a dynamical system on D
(see WH, section 3.1), and we can thus apply the theory
of dynamical systems.

The structure of the DE and of the constraint also im-
plies the existence of various lower dimensional invariant
sets.

(1) The two-dimensional (2D) subset defined by v = 0
is invariant, and describes the orthogonal (i.e. , untilted)
models. It follows from the constraint equation that ei-
ther A = 0, giving the untilted Bianchi I models, or
Z+ ——0, giving the untilted Bianchi V models. The phase
portraits for these invariant sets are given in Figs. 1 and
2.

0=1—A —Z —E

1 [3(2-~) + (» —6)v')~
q = 2 —2A

2 1+ (p —1)v2

Auxiliary equation

(2.13)

(2.14)

(2) The 2D subset defined by Z = 0 is invariant,
and describes the tilted LRS Bianchi V models. This
invariant set is analyzed in detail later in this section
(see Figs. 5—11).

(3) The one-dimensional subset defined by Z+ ——Z

0' = 0
[ 2q —(3p —2) + 2pAv

1 + (q —1)v'

+(2q(~ —1) + 2&~+ —(2 —&))v'].
(2.15)

III. C}UALITATIVE ANALY'SIS C g +

We have shown that the evolution of the tilted irro-
tational Bianchi V cosmologies is governed by a DE in

= F(X), X = (Z+, E,A, v), (3.1) FIG. 1. This figure shows the phase portrait for the un-

tilted Bianchi I models (v = 0, A = 0), for 0 ( p & 2.
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——Z
(b) R

C,':Z, = —,'(4-3~),
Z = kz/3(2 —p)(3p —2), A = 0,
0(v&1 or —1(v(0 with 3 &p&2.

The isolated equilibrium point M represents flat space-
time. It depends on p, and if p = s it coincides with the
Milne equilibrium point M. The four lines of equilibrium
points C+ represent particular Kasner vacuum solutions.

(c)
F:—-)-—--———Z

R

(d)

FIG. 2. This 6gure shows the phase portraits for the un-

tilted Bianchi V models (v = 0 = E+). The four cases are (a)
0 & p & —,', (b} p = —',, (c} —', & p & 2, (d) p = 2.

2&:Z+ ——Z =0 0&A&1 withe= —,~ + — ) 3'

0 is invariant, and describes the FRW models with zero
or negative spatial curvature (see the orbit F ~ M in
Figs. 2 and 5—11 to follow).

These invariant subsets play an important role in de-
scribing the qualitative properties of the orbits of the
DE.

We now begin the qualitative analysis by investigating
the local stability of the equilibrium points of the DE.
The equilibrium points are found by solving the system
of equations F(X) = 0, G(X) = 0 [refer to Eqs. (3.1),
(3.2), (2.11), and (2.12)]. The procedure is routine, and
we state the results below.

Equilibrium points with zero tilt
(v =0)

I':Z+ ——Z =2=0 with0&p&2,

M: Z+ ——Z = 0, A = 1 with 0 & p & 2,

Equilibrium points with extreme tilt (v~ = ].)

7'G = (0, 0, 0, p), (3.5)

and hence in a neighborhood of F one can uniquely
solve for v and reduce the DE to a DE in Z+, Z
and A. At the Milne equilibrium point M, we have

M: Z+ ——Z = 0, A = 1, v = 1 with 0 ( p & 2,

M: Z+ ——Z = 0, A = 1, v = —1 with 0 & p & 2,

K+: Z+ + Z = 1, A = 0, v = kl with 0 & p & 2,

'8: Z = 0, A = 1+Z~, v = 1, —1 & Z+ & 0

with 0 & p & 2.
Since the tilt is extreme, these equilibrium points do not
correspond to exact Bianchi solutions.

Local stability of the equilibrium points
We are interested in equilibrium points which are

sources or sinks. The analysis of the local stability of
the equilibrium points is complicated by the presence of
the constraint equation G(X) = 0. One has to use the
constraint to eliminate one of the variables, thereby re-
ducing the DE to three dimensions. Unfortunately the
constraint is such that one cannot globally eliminate one
variable: which variable can be eliminated depends on
the equilibrium point. At the FRW equilibrium point F,
the gradient of the constraint function | is

K: Z+ + Z = 1, A = 0 with 0 & p & 2, 7'G = (2, 0, 0, 0), (3.6)

17:0&Z~+Z (1, A=O withe=2.
The isolated equilibrium points F and M represent, re-
spectively, the flat FRW model with equation of state
parameter 7 and the (vacuum) Milne model iC is a c. ir-
cle of equilibrium points which correspond to the Kas-
ner vacuum solutions (see WH, Table 3). E is a line of
equilibrium points which represent special FRW models
which exist only if p = s. V is a disc of equilibrium points
which correspond to the 3acobs stiK fluid solutions (see
WH, Table 3).

Equilibrium points with intermediate tilt
(0&v'& X)

M:E+ ——Z =0, A=1, v=
2(~ —1)

with s &p&2, and

and hence in a neighborhood of M one can uniquely
solve for Z+, and reduce the DE to a DE in Z, A
and v. On the Kasner circle K, we have

7'G = (0, 0, 2Z+, 0). (3.7)

It follows that there are two exceptional points, namely,
Z+ ——0, Z = +1, at which the constraint surface is
singular (it is easy to show that these are the only points
in state space at which 'VG = 0). Except at these two
exceptional points on K, we can eliminate the variable A
on K and reduce the DE to one in Z+, Z, and v.

In this way, we can calculate the eigenvalues of the
linearization of the DE at the equilibrium points, which
are given in Appendix B. We can use the eigenvalues
to identify all sinks and sources as follows: (1) If 0 &

p ( s, the point F is a sink; (2) if s & p & 4s, the
point M is a sink; (3) if s & p & 2, the point M is a
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sink; (4) if 2s & p & 2, the arc of the Kasner circle iC

defined by Z+ & 2(4 —3p) is a source (see Fig. 3); (5) if
0 & p & 2 the arcs of the Kasner circles K+ defined by
Z+ & 2 (4 —3p) are sources (see Fig. 3).

A Monotone function
Since 0 & 0 implies q & 2 by Eq. (2.14), the evo-

lution equation for Z implies that Z is a monotone
decreasing function along all orbits with Z ) 0 and
0 & 0. This fact significantly restricts the evolution at
late times, since as proved in Proposition C.l, it implies
that

lim Z = 0
7 ~+OO

(3.8)

A & 0.

In Fig. 4 we have drawn the intersection of the constraint
surface with the cylinder 0 = 0 and the planes v = 0 and
v = +1, and have also labeled the equilibrium points for
the case 3 & p & 5, all of which lie on the boundary.
Note that only two points of the Kasner circle K, labeled
Q and T in Fig. 3, lie on this surface.

In order to sketch the orbits one would like to project
this surface into one of the coordinate planes. This is
not possible since some of the orbits in the boundary
are parallel to the coordinate axes (see Fig. 4). We thus
"open out" the surface in a continuous manner, by bend-

R.
It ~g +

T It
It I It
It I It
It

I
It

It It
It

Qg,

1(

It C+ It
It It
It It

Wt

'R

FIG. 3. This 6gure shows the stability properties of the
Kasner circles K, K+, which are given by Z+ + Z = 1. The
lines of equilibrium points C+, which lie in the plane Z+ ——

2 (4 —3p), ~ & p & 2, subdivide each Kasner circle into two

arcs, the heavy arc being a source.

for all orbits with 0 & 0. Thus the asymptotic behavior
as w —t +oo of all orbits with 0 & 0 is determined by the
asymptotic behavior of the orbits in the 2D invariant set
Z = 0. which we now study in detail.

The invariant set Z =0
The invariant set Z = 0 is a surface in K, defined

by the constraint Eq. (3.2) with Z = 0:

G(Z+, O, A, v) = 0,

with the boundary of the surface defined by the inequal-
ities

ing the lines TT+ and MM+ downwards, and bending
the lines QQ and MM upwards, thereby obtaining a
plane image of the surface, as in Figs. 5—11.

There are seven qualitatively distinct types of behav-
ior, as p varies from 0 to 2 (see Figs. 5—11). For 0 & p & s
the equilibrium point M is not in the physical region of
state space. When p = 5, the equilibrium point M en-
ters the physical region, coinciding with M, then moves
along the line M M (Fig. 8), and merges with M when

p = s (Fig. 9). Finally, M moves along the line MM+
(Fig. 10) and merges with M+ when p = 2. The de-
tails of the portraits of the orbits can be deduced using
the local stability of the equilibrium points and the main
theorem on the asymptotic behavior of planar DE's [8j.
The theorem can be applied separately to the invariant
sets Z+ & 0 and Z+ & 0. Note that there are no in-
terior equilibrium points, and hence no limit cycles. In
addition, there are no heteroclinic cycles (a closed path
consisting of sequentially oriented orbits), as follows by
consideration of the orbits on the boundary. The pres-
ence of nonisolated equilibrium points complicates the
analysis to some extent. However, if 0 & p & 2 the line
of equilibrium points '8 is a source in the invariant set
Z+ & 0. In the cases p =

3 and p = 2 there are addi-
tional nonisolated equilibrium points, and it is necessary
to use the DE itself in the analysis.

Behavior at early times

As mentioned earlier, if 3 & p & 2, the arc of the Kas-
ner circle defined by Z+ & 2 (4 —3p) is a source (see Fig.
3), and so for these values of p, there exists a set of orbits
of positive measure in state space for which lim v = 0.T~—OO

We observe that if p & 3, this arc is confined to the in-

variant set D+ while if p & 3, the arc intersects both D+
and D

Behavior at late times

On account of Eq. (3.8), all orbits with A & 0 are at-
tracted to the invariant set Z = 0 as ~ t +oo (see
Proposition C.l). We can now use Propositions C.2 and
C.3, together with Figs. 5—11, to draw the following con-
clusions concerning the orbits with 0 ) 0, v2 & 1 and
A ) 0 in the three-dimensional state space D.

(1) If 0 & p & s, all orbits are asymptotic to the
equilibrium point I' as ~ + +oo.

(2) If 2s& P & ss, all orbits are asymPtotic to the
equilibrium point M as ~ ~ +oo.

(3) If s & p & s, all orbits in D and a set of orbits of
nonzero measure in D+, are asymptotic to M as 7 ~ oo.

(4) If p = s4, all orbits in D, and none in D+, are
asymptotic to M as 7. ~ +oo.

(5) If 4s & p & 2, all orbits in D, and none in D+, are

asymptotic to M as v. ~ +oo.
Apart from a few exceptional orbits, the remaining or-

bits are asymptotic to equilibrium points with extreme
tilt as w —+ +oo.

Orbits with nonextreme tilt

We can now draw the following conclusions concerning
the existence of orbits with nonextreme tilt.
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V
M

Q

F

FIG. 8. This figure shows the orbits in the invariant set
Z =Ointhecase 5 &p& 3.

FIG. 4. This figure shows the invariant subset E = 0
in the case 3 ( p & 5. The bold lines and curves are the
intersection of the constraint surface 0 = 0 with the vacuum
boundary 0 = 0 and with the planes v = 0 and v = +1.

F
FIG. 9. This figure shows the orbits in the invariant set

Z = 0 in the case p = 3.

FIG. 5. This figure shows the orbits in the invariant set
Z = 0 in the case 0 & p & 3.

Q

F

Q
,C+ FIG. 10. This figure shows the orbits in the invariant set

Z =Ointhecase 3 (p&2.
FIG. 6. This figure shows the orbits in the invariant set

Z = 0 in the case p = 3.

M

Q

Q

FIG. 7. This figure shows the orbits in the invariant set
Z = 0 in the case 3 ( p ( 5.

F Q

FIG. 11. This figure shows the orbits in the invariant set
Z = 0 in the case p = 2.
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(1) If s & p & s, there exists a set of orbits in D+
which are asymptotic to the Kasner circle iC as ~ ~ —oo,
and which are asymptotic to the Milne equilibrium point
M as r —+ +oo. This set of orbits has nonzero measure
in D. We shall refer to these orbits as class I orbits, and
describe them symbolically by writing Ki ~ M. Here
K~ denotes an equilibrium point on the Kasner circle K
with E+ & 2(4 —3p) & 0.

(2) If s & p & 2, there exists an open set of orbits in
D which are asymptotic to the Kasner circle as ~ ~ —oo
and which are asymptotic to the tilted equilibrium point
M as r ~ +oo. This set of orbits has nonzero measure
in D. We shall refer to these orbits as class II orbits, and
describe them symbolically by writing K2 ~ M. Here
Kz denotes an equilibrium point on the Kasner circle lC

with 0 & Z+ & q(4 —3p).

IV. MODELS WITH NONEXTREME TILT

We regard the variables X = (E+,Z, A, v) in the DE
(3.1) as determining the (dimensionless) dynamical state
of a cosmological model at an instant of time. In order to
specify the physical state (8, sr+, o, ai, v) one has to give
in addition the rate of expansion 8(r). This is determined
according to

8(r) = 8(rp) exp
I [1+q(u)]du [,

3
8( )

The asymptotic form of 8 implies that the improper in-
tegral

—oo & r & oo, (4.1)

as follows from Eq. (2.10). Here q is expressed in terms
of (Z+, Z, A, v) through Eqs. (2.13) and (2.14). Finally
the clock time t along the normal congruence is deter-

mined by 8(r) through Eq. (2.9).
Equation (4.1) shows that to each orbit there corre-

sponds a one-parameter family of cosmological models

(unless the orbit is an equilibrium point; see WH, p.
1419). We choose the parameter 8(rp) to be positive,
so that the normal congruence is expanding. It then fol-

lows from Proposition A.2 that the fluid congruence is

expanding (8 & 0).
In a tilted Bianchi cosmology, an initial big-bang sin-

gularity does not necessarily occur (see, for example, Ref.

[4]). However, if an orbit approaches the Kasner circle K
as 7 ~ —oo the corresponding cosmological model does

have a big-bang singularity at a finite time in the past.
We justify this as follows. Since v -+ 0 and q —+ 2 as

~ —+ —oo, the evolution equations for 0 and 8 imply that
0 = Ooe3~ »~ and 8 —Ooe 3~, so that p, = poe
Thus as r ~ —oo, p, ~ +oo and by Eq. (2.6), the energy
density p, of the Buid also diverges. It follows from Eq.
(2.9) that the clock time along the normal congruence
between ~q and ~q is

3

8(u)
(4.2)

At the end of Sec. III, we showed that there are
two sets of orbits (class I and class II) which corre-
spond to cosmological models with nonextreme tilt (i.e. ,

lim, y~ v~ & 1). We shall refer to these models, whose
evolution we now discuss, as models of class I and class
II.

Asymptotic behavior

By the preceding discussion, the models of class I and
class II evolve from a nontilted Kasner-like big-bang sin-
gularity at a finite time in the past. Since q & 0, Eqs.
(4.1) and (4.2) imply that t —+ +oo as 7 ~ +oo, so
that the models expand indefinitely into the future. The
models of class I approach a nontilted Milne-like future
asymptotic state as r -+ +oo. Since the dimensionless
shear of the normal congruence tends to zero as 7. ~ +oo,
(Z~ ~ 0), and the tilt tends to zero, the dimensionless

shear of the fluid congruence tends to zero [Z~ ~ 0; see
Eqs. (A3), (A4) and (A6)). The models of class I thus
isotropize at late times. Since the orbits of class I form a
set of nonzero measure, this behavior is typical for i rrota
tional tilted Bianchi V modelswith s & p & s. However,
since there are sets of orbits of nonzero measure for which
the tilt becomes extreme, this behavior is not generic .

At late times, the models of class II approach a tilted
asymptotic state which corresponds to flat spacetime as
described by the equilibrium point M. It follows from Eq.
(A3) that the dimensionless fluid shear does not tend to
zero, and so the models of class II do not isotropize at late
times. In addition, the fluid acceleration is dynamically
significant at late times since the dimensionless accelera-
tion scalar U does not tend to zero [see Eq. (A5)]. Since
the orbits of class II form a set of non-zero measure, this
behavior is typical for ir7vtational tilted Bianchi V models

with 3 ( p ( 2. However, since there are sets of orbits
of nonzero measure for which the tilt becomes extreme,
this behavior is not generic.

Intermediate evolution

One can also draw conclusions about the possible inter-
mediate evolution of the tilted Bianchi V models. By this
we mean the evolution for finite values of ~. The class I
orbits are written symbolically Kq ~ M, where Kq rep-
resents the initial state and M the final state. For sim-

plicity we restrict our considerations to the LRS-invariant
set Z = 0. Then Ki coincides with Q in Figs. 4, 7, and
8. One can identify various sequences of orbits which join
Q to M, and pass through various saddle points:

(1) Q~I" ~M (for s &p& s, Figs. 7and8).
(2) Q~Q ~M ~M (for s &P&ps, Fig. 7).

(3) Q ~ M ~ M (for s & p & s, Fig. 8).
We shall refer to these sequences as heteroclinic se-

3

8(u)

converges, and thus the big-bang singularity occurs at a
finite time in the past. We take this as the origin of t,
and then the clock time t since the big-bang (as measured
along the normal congruence) is
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quences. For each such sequence there is a set of orbits
of nonzero measure which are approximated by the se-

quence, and each orbit determines a one-parameter fam-
ily of cosmological models.

One thinks of the evolution of the cosmological model
as being described by a point in state space moving along
an orbit of the DE. The velocity of the point is given
by the vector Beld on the right-hand side of the DE.
Near an equilibrium point the velocity will be close to
zero, and the moving point will slow down and linger
near the equilibrium point. However, if the equilibrium
point is a saddle point, the moving point will eventu-
ally be repelled (unless it happens to be on the stable
manifold). Thus, during a certain time interval, the evo-
lution of the cosmological model will be approximated by
the self-similar model which corresponds to the equilib-
rium (saddle) point. For this reason, we shall refer to the
saddle points in a heteroclinic sequence as intermediate
asymptotes.

Consider the sequence (1). A cosmological model
whose orbit is approximated by this sequence starts in
a nontilted Kasner-like state corresponding to the equi-
librium point Q. Then the orbit follows the orbit Q ~ F,
and approaches the FRW equilibrium point F, which
means that the model isotropizes, while approximating
a Bianchi I model. Finally the orbit follows the separa-
trix I' —+ M, so that the model is approximated by the
FRW model with negative spatial curvature. The model
is tilted (v ( 0) throughout the evolution, but the tilt
remains small (~ v ~(( 1).

Consider the sequence (2). A cosmological model
whose orbit is approximated by this sequence, starts in
a nontilted Kasner-like state Q. As the orbit approaches
Q, the tilt becomes close to extreme (v —1). As
the orbit approaches M, the tilt remains near extreme
and the spatial curvature becomes dynamically signifi-
cant (A 1). Finally, as the orbit approaches M the
model isotropizes and the tilt tends to zero. At no time
during the evolution is the matter density dynamically
significant (i.e. , A = 0). It is of interest to keep track
of the fiuid shear, as described by Z+ [see Eqs. (A3),
(A4), and (A6)]. Note that E = 0. It follows from

Eqs. (A3) and (A6) that near Q, Z+ = 1, near Q
Z+ = —

2 (3p —4), near M, Z+ —
2 (3p —2), and near

M, Z+-Q.
One can analyze the sequence (3) in a similar way.

V. MATHEMATICAL ASPECTS OF THE
PROBLEM

In this section we comment on some mathematical as-
pects of the problem, mainly from a dynamical systems
perspective.

A DE with a constraint

In the formulation of the EFE's for the orthogonal
Bianchi models of class A using expansion-normalized
variables (see WH), one obtains a DE

= F(X),

where the vector field F is analytic. The present situation
is difFerent in that the basic variables are also required
to satisfy an algebraic constraint G(X) = 0, which de-
fines an invariant subset. Since this constraint cannot be
eliminated globally, one has to describe the evolution by
using a DE in R", with the physical state space being
the above invariant subset. This subset is a hypersurface
with boundary, which is smooth except at two points on
the boundary. Note that VG = 0 and G(X) = 0 only at
the points (Z+, Z, A, v) = (0, +1,0, 0).

In the LRS case (Z = 0), this invariant subset is
a smooth hypersurface (a two-manifold with boundary)
which cannot be projected globally onto any of the co-
ordinate planes (see Fig. 4). In Ref. [4], when discussing
the LRS case, Collins and Ellis essentially eliminate our
variable A, and use Z+ and v as variables. The result
of this elimination is that in their diagrams the FRW
equilibrium point F, the Milne equilibrium point M and
the nonsingular orbit F ~ M, which describes the FRW
model with negative spatial curvature, are superimposed.

A gradientlike DE
A gradient DE, that is, one of the form

GX

dt

where V is a Ci function, generates a particularly simple
dynamical system, since the ~-limit and o.-limit set of any
orbit contains only equilibrium points (see, for example,
Ref. [9]). This implies that there is no recurrent behavior
of any sort, that is, no periodic orbits or recurrent orbits.
In addition, homoclinic orbits and heteroclinic cycles are
excluded (see Ref. [10] for this terminology). The reason
for this simplicity is that the potential function V is a
monotone (strictly increasing) function along nonsingular
orbits, since ~+ = VV VV.

The cosmological DE (2.11) is not a gradient DE, ex-
cept when it is restricted to the Bianchi I invariant subset
A = v = 0. Nevertheless, the DE satisfies all the above
properties of a gradient DE, because Z is a monotone
function along generic orbits, and the orbits in the invari-
ant set Z = 0 are sufficiently simple (see Figs. 5—11).

Structural stability

It can be argued that, when describing a physical sit-
uation mathematically using a DE, the DE should be
structurally stable. Intuitively this means that a suffi-
ciently small change of the DE does not change the qual-
itative behavior of the solutions. We refer to Ref. 11 for
a simple introduction to this topic.

The autonomous DE's that are associated with the
EFE's exhibit two features which imply that they are
not structurally stable. First, they admit saddle connec-
tions, that is, orbits which are positively asymptotic and
negatively asymptotic to distinct saddle points [12]. In
the present situation saddle connections occur in the het-
eroclinic sequences, examples of which were given in Sec.
IV.

The second structurally unstable property of the DE's
associated with the EFE's is that they admit nonisolated
equilibrium points, the most important being the Kasner
circle K (see WH). In the present situation we have the
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circles iC, iC+, the lines C+, '8 and P, and the disc 'D

Nonisolated equilibrium points also occur in problems in
population dynamics and chemical kinetics [13],but have
not been studied extensively in the dynamical systems
literature. An exception is the book by Aulbach [13].

The implication of this structural instability of the
DE's that are associated with the EFE's is not clear, and
is probably worthy of further study. In any case, it should
be noted that a DE that is structurally unstable with re-
spect to general perturbations, may be structurally stable
if the DE and the perturbations possess some symmetry
property [14].

Bifurcations

The analysis in Sec. III shows that as the equation
of state parameter p varies, two types of bifurcations oc-
cur (see Ref. [15] for a brief introduction to this concept).
Bifurcations are usually associated with a transfer of sta-
bility.

Zranscriticat bifurcations:
(1) At p = ~s, the equilibrium point M passes through

M and enters the physical state space. M loses stabil-
ity, and M gains stability (compare Figs. 7 and 8).

(2) At p = s, the equilibrium point M passes through

M, leading to a gain of stability by M and a loss of
stability by M (compare Figs. 8—10).

Line bifurcations,
(1) The line P of equilibrium points appears at p = s,

and leads to an exchange of stability between F and M
(compare Figs. 5—7).

(2) The lines C+ join the circle iC to the circles iC+

(see Fig. 3), for s & p & 2, and lead to an exchange of
stability between the circles iC and iC+, with iC gaining
stability as p increases.

Line bifurcations occur in other analyses of the EFE's
[16], and in population dynamics, but to the best of our
knowledge, have not been studied systematically in the
literature.

VI. CONCLUSION

solved in the orthogonal (not tilted) case [22] but not in
the tilted case, although some particular tilted solutions
are known [23]. The nontilted equilibrium points will,
however, play an important role in the qualitative anal-
ysis of the tilted models, since they lie on the boundary
of the tilted physical state space. For example, in the
present paper, we have shown the existence of an insta-
bility of the Kasner solutions, that is associated with the
presence of tilt. This instability is generated mathemat-
ically by the lines of equilibrium points C+ that branch
out of the Kasner circle. Thus, even if the tilted equilib-
rium point problem cannot be solved completely, it may
be possible to study the stability of the nontilted equi-
librium points in the full tilted state space, and thereby
gain insight into the evolution of the tilted models.
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APPENDIX A: PROPERTIES OF THE FLUID
CONGRUENCE

ec ——cosh pea + sinh pe&

eq = sinh pea + cosh peq.
(A1)

In a tilted Bianchi cosmology, there are two preferred
timelike congruences, the normal congruence n and the
fluid congruence u, and hence two types of preferred or-
thonormal frame. It is convenient, as we have done,
to perform the mathematical analysis in a geometrical
frame (e ), which is adapted to the normal congruence

(eo ——n). For some aspects of the interpretation, how-

ever, it is necessary to work in a physical frame (e ),
which is adapted to the fluid (eo = u). In the present
situation the two frames are related by a I orentz trans-
formation in the two-space spanned by eo and eq.

We have given a complete analysis of the qualitative
evolution of tilted irrotational Bianchi V cosmological
models. However, our results only give a glimpse into
the evolution of the class of all tilted Bianchi cosmolo-

gies, for which the state space is eight-dimensional (class
A models) or seven-dimensional (class B models). We
refer to Rosquist and Jantzen [19] and Bogoyavlensky

[20] for a derivation of a DE which governs the evolution
of the general class of tilted Bianchi models. We note,
however, that their choice of basic variables differs from
ours.

It is thus natural to ask whether one can hope to ex-
tend the analysis of the present paper. The first step is to
find all the equilibrium points of the DE. The equilibrium
points correspond to transitively self-similar solutions of
the EFE's [21], that is, solutions which admit a four-

parameter similarity group acting transitively on space-
time. So the problem becomes finding all Bianchi models
which are transitively self-similar. This problem has been

We now express the kinematical quantities of the fluid

in terms of Z~, Z, A and v. Let 8, o~p and u~ denote
the expansion scalar, the shear tensor and the accelera-
tion vector of the fluid congruence relative to the physi-
cal frame (e~). It follows that o~p is diagonal, and that
u~ = uqb . As with the normal congruence [see Eqs.
(2.2) and (2.7)], we define the dimensionless shear vari-
ables

P

g+~+ A

8

P

Z
8

It follows from Eqs. (Al) by using the commutators, Eq.
(2.3), and the evolution equation for v —= eo(v), that

We also define the dimensionless acceleration variable by
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8= 8,
v'1 —vz

' (A2)
M: —2, —(3p —2), (3p —4) (eliminate Z+)

E:—2, 0, —2 (eliminate Z+)
11+Z~ ———(1+Zp —vA), (A3) lc: 0, 3(2 —p), 2Z+ + (3p —4) (eliminate A)

U = (p —1)v,

where

(A4)

(A5)

2 —p (3p —4) (5p —6)
j(j)(910)(eliminate Z+)

t."+ . 0, 3(2 —p), 0 (eliminate A)

(1 —vz)

1+ (p —1)v
(A7)

as follows from Eqs. (2.3) and (2.6). Observe that the
transition between the geometrical frame is well defined
if and only if vz & 1 (i.e., p is finite). In the limit vz ~ 1,
the normal congruence becomes null.

We now derive an inequality which implies that 8 and
8 have the same sign.

Proposition A. I: If 0 ) 0 and vz & 1 then

(1+Z+) —A ) 0.

Proof. Suppose that (1+ Z+)z = Az. Since A ) 0,
1+Z+ ——A. It follows by eliminating A and Z+ from
Eq. (2.13) using Eq. (2.12), that

[1 + (p —1)v ]Z + (1 —v) [1 —(p —l)v]A = 0,

a contradiction. Thus (1+Z+)z —Az does not change
sign on the subset defined by 0 ) 0 and vz & 1 and since
it is positive at the equilibrium point Il, it is positive on
the whole set. 0

Comment: The geometrical interpretation of this in-
equality is given in Ref. [17].

Proposition A.9: For nonvacuum models (0 ) 0) with

nonextreme tilt (vz & 1), 8 ) 0 if and only if 8 ) 0.
Proof We can rear. range equation (A6) to obtain

B= (1 —v) [3(1+ v) —2vA] + 2vz [(1 + Z+) —A]

3[1 —(p —1)vz]

Proposition A. l implies that A & 1+Z+, and since v
1 and 0 & A & 1, it follows that B ) 0. The desired
conclusion is an immediate consequence of Eq. (A.2).

APPENDIX 8: EIGENVALUES OF THE
LINEARIZATION OF THE DE AT THE

EQUILIBRIUM POINTS

We list the eigenvalues of the linearization of the DE
at its equilibrium points, which are given in Sec. III.

3 3 1P: ——(2 —p), ——(2 —p), —(3p —2) (eliminate v)2 '
2 '2

3 —2vA + vz(2Z+ —1)
3[1—(~ —1)v'l

The relation between the fluid density P and the normal
density p is

M+: —2, 0, 2, (p & 2) (eliminate Z+)

M: —2, —4, —2(5q —6)
, (0 & p & 2) (eliminate Z+)

2 —7

lC+: 0, 2(l + Z+), — [2Z+ + (3p —4)] (eliminate A)

'H: 0, —2(1+Z+), 2(1 —2Z+) (eliminate A)

Z' = —(2 —q)Z (Cl)

It follows from Eq. (2.14) and the assumption 0
0 that q & 2. Thus Z is monotone, and hence
lim + Z = L (exists). Second, by the LaSalle in-
variance principle [18] the u-limit set of a nonsingular
orbit I' with 0 ) 0 must satisfy

cu(F) c (Z = 0) u (q = 2).

Suppose that L g 0. Then ~(F) C (q = 2) and
hence lim +~q = 2. It follows from Eq. (2.14) that
lim~ +~A = 0 and lim~ ~~(Z2++ Zz ) = 1, which im-
plies that lim + Z~ ——M ) —1. Since q+2Z+ ——(q—
2) + 2(Z+ + 1), the evolution equation A' = (q+ 2Z+)A,
implies that if v is sufficiently large, then A & 0, contra-
dicting lim + A = 0. %'e conclude that L = 0.

This proposition shows that the ~-limit set of any non-
singular orbit with 0 ) 0 is contained in the invariant
set Z = 0. More information can be obtained if we
consider the cases 3 C p & 2 and 0 & p ( 3 separately.

APPENDIX C: ASYMPTOTIC BEHAVIOR AS
'P ~ +OO

Proposition C.l: lim + Z = 0, for all nonsingular
orbits with 0 ) 0.

Proof. If v = 0, the result is known to be true, since
untilted nonvacuum models of Bianchi type I or V are
known to isotropize, except for the Bianchi I models with

p = 2, which correspond to the equilibrium points (singu-
lar orbits) in the disc 17. This is the reason for excluding
singular orbits in the statement of the proposition.

We now consider the case v P 0, which implies, by Eq.
(2.12), that A g 0. The evolution equation for Z is



4252 C. G. HEWITT AND J. WAINWRIGHT 46

Proposition C.B: If 3 & p ( 2, then for all orbits I'
with 0 & 0, v ( 1 and A & 0, the a-limit set u(I') is
one of the equilibrium points M, M, and M

Proof. By Proposition C.l, u(I') c S = (Z
Oj. The set S contains the isolated equilibrium points
(T, T+, Q, q, F, M+), the line 7t' of equilibrium points,
and the isolated equilibrium points (M, M, M) (M 6 S
if and only if s ( p ( 2). It can be shown, by studying
the eigenvalues, and using the DE restricted to appropri-
ate invariant sets, that the stable manifolds (attracting
sets) of the first set of equilibrium points and of the line
'8, satisfy at least one of 0 = 0, vz = 1, A = 0. Further,
orbits with E = 0 and hence orbits with E sufficiently
close to zero, are repelled by these equilibrium points (see
Figs. 7—10). Thus the desired conclusion follows.

Comment: It follows that the class of orbits referred
to in Proposition C.2 satisfies

lim E = lim Z+ ——0,
7 ~+OO 7 ~+OO

lim A = 1.
7 ~+OO

lim Z = lim Z+ —— lim A = lim v = 0.
7 ~+OO 7 ~+OO V'~+OO T~+OO

The diferent possibilities in Figs. 7—10 are distinguished
by the limiting value of e.

Proposition C.8: If 0 ( p ( 3, then for all orbits I' with
0 & 0, v ( 1, the u-limit set ~(l') is the equilibrium
point I'.

Proof. The proof is similar to that of Proposition C.2.
Because of the exchange of stability between F and M
that occurs at g = 3, all orbits are attracted to F.

Comment: It follows that the class of orbits referred
to in Proposition C.3 satisfies
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