
PHYSICAL REVIEW D VOLUME 46, NUMBER 10 15 NOVEMBER 1992

Dependence of density perturbations on the coupling constant in a simple model of inflation
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In the standard inflationary scenario with inflaton potential VI,'4) =M ——'A,4, the resulting density

perturbations 6p/p are proportional to k' . Upper bounds on 6p/p require A. ~ 10 ". Ratra has shown

that an alternative treatment of reheating results in 5p/p ~ k ', so that an upper bound on 5p/p does

not put an obvious upper bound on A, . We verify that 5p/p ~ A,
' is indeed a possibility, but show that

A, ~10 "is still required.

PACS numbers, s): 98.80.Cq

The inflationary paradigm [1—4] explains many mys-
teries of large-scale cosmology. It also provides a source
of density fluctuations, which act as the seeds for struc-
ture formation, and predicts that these fluctuations have
a Harrison-Zel'dovich spectrum [5—8]. The main prob-
lem with the standard inflationary scenario is that it re-
quires very small self-couplings of the inflaton field 4 in
order to produce mass fluctuations with the correct am-
plitude of 5p/p = 10 at the horizon crossing. This is
because 5p/p ~ A,', where k is the quartic self-coupling
of tp. It turns out that 5plp5 10 requires 1L, 10
Many models have been constructed which attempt to
make such small couplings arise naturally.

However, Ratra argues that a very small coupling may
not be necessary [9]. He finds that the dependence of
5p/p on A, is sensitively dependent on "reheating, " that
is, on how the transition from the inflationary era to the
radiation-dominated era is modeled. In the standard
inflationary scenario, the reheating transition takes place
in few Hubble times. In Ratra's alternative scenario,
reheating is instantaneous (which means, in practice,
much less than a Hubble time). In this case Ratra finds
that 5p/p is proportional to 1L, , a dramatically different
result. Since, as Ratra points out, the reheating process
is quite complicated, involving nonequilibrium thermo-
dynamics of a quantum field in curved space, we should
be cautious about adopting a specific model of it unless
we are convinced that its predictions are robust. It is
therefore extremely important to check this point, and to
see whether or not a small 5p/p can result from a cou-
pling which is larger than X=10

We have reanalyzed Ratra's results for the simple po-
tential

V(N) =M —
—,'AN

where M is a constant, and +=0 at the start of inflation.
Of course, this potential is unbounded below and must be
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modified for 4)4,„, where 4,„=(4/A, )' M and is
defined via V(4,„)=0. This potential was originally in-

tended to mock up a Coleman-Weinberg potential in a
gauge theory (in which case A, -g, where g is the gauge
coupling). This possibility was subsequently discarded
(since A, -g is much too large), but the prediction for
5p/p from the potential of Eq. (1) was throughly ana-
lyzed in both the standard scenario and in Ratra's alter-
native scenario, and therefore provides a good test case.
Ratra has also analyzed several other possible potentials,
but we will not do so here. All of our results will apply
strictly to the potential of Eq. (1); we will have nothing to
say about Ratra's other models, although it would be in-
teresting to compare his results for an exponential poten-
tial with those of, for example, Ref. [10].

Ratra's analysis includes a complete rederivation of the
fluctuation amplitude and spectrum, making use of
gauge-noninvariant variables followed by careful
identification of the gauge-variant modes. However, the
final result can (necessarily) be derived using the more
standard gauge-invariant formalism of Bardeen [11). In
fact, we can simply use the final formula of Bardeen,
Steinhardt, and Turner (BST) [8], without reference to its
long derivation. Many other analyses have confirmed
this formula, except for small differences in the overall
normalization. These will not be relevant, however.

The BST formula for 5p/p for a perturbation with
wave number k which first crossed out of the horizon at
time t, and then reentered during the matter-dominated
era is

5p 1 H

p 5sr C(t )

Here H is the Hubble parameter during inflation, related
to M via H=(8m/3)'r M /Mp„wh. ere Mp, is the Planck
mass. The field @(t) is treated as a classical, spatially
uniform, background field; quantum fluctuations in N are
what ultimately result in the density fluctuations of Eq.
(2).

Clearly, to compute 5p/p we need to compute 4(t, ).
To do so, we use the equation of motion
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4+3H4 —A4 =0

which follows from the potential of Eq. (1). This equa-
tion is easy to solve in the slow-rollover approximation,
where we neglect 4. When this approximation is valid
we find

(4)

3
5p 3 H
p 5m',

[alternative scenario] . (10)

4 reaches 4, . This is the scenario that Ratra refers to as
"rapid reheating. " If 4 «(b,P) '

@sR, then Eq. (8)
yields

Here t~ is the time when inflation ends, and 4, is the
value of 4 at this time: 4&» =4(t» ). At the moment we
will leave 4, as a free parameter, but of course we must
have 4, ~ @max. The slow-rollover approximation breaks
down when 4=3H4; using Eq. (4), this occurs when
4 =4sR, where

' 1/2

H.3
SR

Thus we must also have 4» & @sR. Using Eq. (5) we can
rewrite Eq. (4) as

—1/2
4(t)= 4, '+2@sR2H(t, t)— (6)

Then we can use 3H+=A,4, valid during the slow-
rolling epoch, to compute 4(t, ). The factor of H(t, t,)—
which appears is related to k and M via

=69+ ln(kU/k)+ ln(M/Mp&),

where kU is the wave number of the present Hubble ra-
dius (2n/kU ——10 .cm), and we have implicitly assumed a
reheating temperature of order M. (This is not essential,
and was done only to simplify the formula. ) We ultimate-
ly find

3H 3/2
+2(EP)4

p 5m',
(8)

This is the key equation from which we will be able to un-
derstand the difference between the standard scenario
and the alternative scenario.

In the standard scenario, inflation ends when the slow-
rollover approximation breaks down: once 4 exceeds
+sR, the field moves rapidly to the minimum of the po-
tential. Thus, in the standard scenario, we have
4, =@sR. Since AP »1, Eq. (8) implies

' 1/2
5P 8 (gp)3/2g1/2
p 5~ 3

[standard scenario] . (9)

This is the usual result; in particular, we see that 5p!p is
proportional to A, '/, and that 5p/p & 10 for bP&45 re-
quires A, ~ 10

Ratra, however, suggests that @, should not be
identified with @sR. Instead, he proposes that N, may be
much less than Nsz. Strictly within the context of the
potential of Eq. (1), this is not possible. However, we can
consider a modified potential, one which drops quickly to
zero for 4)4, . In this case, inflation would end when

We see that now 5p/p is proportional to A, ', confirming
Ratra's result.

Let us now examine what limits, if any, can be placed
on A, in the alternative scenario. Since we have a new free
parameter 4, it would seem that we could increase A, yet
keep 5p/p fixed by simultaneously decreasing 4„This is
correct, but only as long as we remain within the range of
validity of Eq. (10), 4» «(bP) '

@sR. From Eq. (5),
however, we see that @sR decreases as A, increases, so
larger values of A, put tighter constraints on the allowed
values of 4, in the alternative scenario. To get a global
overview, let us start from Eq. (8), which is always valid.
Consider keeping A. fixed, and varying 4, in order to
minimize 5p/p. It is clear from Eq. (8) that minimizing
5p/p with A, fixed requires maximizing 4, . But the max-
imum value of 4, is @sR, and 4, =@sR just results in the
standard scenario. This implies that, for a given value of
k, the smallest possible 5p/p is achieved in the standard
scenario. Thus, achieving the same value of 5p/p in the
alternative scenario requires a smaller value of A, than is
needed in the standard scenario. For example, to get
5p/p=10 with b,P=60 requires A, =4X10 ' in the
standard scenario. In the alternative scenario with
4»= —,'0(bP) ' 4sa, we find that A. =3X10 ' is re-
quired. More generally, it is easy to check that
4» =10 '(b,P) '

@sR requires A, =3 X 10 ' " for
v~1. Thus we conclude that, while it is possible to ar-
range a potential for which 5p/p~k ', the upper limit
on A, actually decreases, which is the opposite of the
desired goal.

Also, we see that getting 5p/p ~ A,
' does not really de-

pend on how much time it takes for reheating to occur,
but rather on when inflation ends. The important point is
whether 4, is larger or smaller than (hP) '

@sR. If
4»»(bP) @sR, then inflation ends due to the in-
creasing acceleration of 4 in a smooth potential; this is
the standard scenario. If 4, « (b,P) '

@sR, then
inflation ends due to 4 crossing a sudden, sharp feature
in the potential; this is the alternative scenario. We feel
that the two scenarios would be more aptly named "late
turn off" and "early turn off," corresponding to whether
inflation ends after or before @ reaches (hP)
rather than "slow reheating" and "fast reheating. " As
we have seen, whether 5p/p is proportional to A,

' or
' does not actually depend on the speed of reheating,

but rather on the value of the field when inflation ends.
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