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I analyze the interplay of gauge and global symmetries in the theory of topological defects. In a two-

dimensional model in which both gauge symmetries and exact global symmetries are spontaneously bro-

ken, stable vortices may fail to exist even though magnetic flux is topologically conserved. Following

Vachaspati and Achucarro, I formulate the condition that must be satisfied by the pattern of symmetry

breakdown for finite-energy configurations to exist in which the conserved magnetic flux is spread out in-

stead of confined to a localized vortex. If this condition is met, vortices are always unstable at
sufficiently weak gauge coupling. I also describe the properties of defects in models with an "accidental"
symmetry that is partially broken by gauge-boson exchange. In some cases, the spontaneously broken

accidental symmetry is not restored inside the core of the defect. Then the structure of the defect can be

analyzed using an e6'ective field theory; the details of the physics responsible for the spontaneous symme-

try breakdown need not be considered. Examples include domain walls and vortices that are classically

unstable, but are stabilized by loop corrections, and magnetic monopoles that have an unusual core
structure. Finally, I examine the general theory of the "electroweak strings" that were recently dis-

cussed by Vachaspati. These arise only in models with gauge-boson "mixing, " and can always end on

magnetic monopoles. Cosmological implications are briefly discussed.

PACS number(s): 98.80.Cq, 11.15.Ex, 11.17.+y

I. INTRODUCTION

A gauge theory that undergoes the Higgs mechanism
will in many cases contain topologically stable defects
[1,2]. For example, in two spatial dimensions, the classi-
cal field configurations may be classified by a conserved
magnetic flux, such that there are infinite energy barriers
separating configurations with different values of the
magnetic flux. The configuration of minimum energy in
at least one of the nontrivial magnetic flux sectors is then
expected to be a localized vortex with magnetic flux
trapped in its core, a static soliton solution to the classi-
cal field equations. %'hen the theory is quantized, the
vortex survives as a stable particle in the spectrum. The
corresponding defect in three spatial dimensions is a
one-dimensional string.

But it was recently noted by Vachaspati and
Achucarro [3] that, even if magnetic flux is topologically
conserved, and a finite-energy gap separates the nontrivi-

al flux sectors from the vacuum sector, there may be no
stable vortex solutions. This can happen if, in addition to
the spontaneously broken gauge symmetry, there is also a
spontaneously broken exact global symmetry, and so ex-

actly massless Nambu-Goldstone bosons in the spectrum.
The nontrivial magnetic flux sectors may theo contain
configurations of finite energy in which the magnetic Aux

is spread out over an arbitrarily large area, and it be-

comes a dynamical question whether the energy is mini-

mized by the localized vortex or the configuration with

unlocalized magnetic flux. Vortices that are potentially
subject to this instability were called "semilocal" in Ref.
[3], in recognition of the important role played by the

global symmetry.

The purpose of this paper is to give a systematic ac-
count of the interplay of gauge and global symmetries in
the classification of topologically stable defects, in a more
general setting than considered in Ref. [3]. I will formu-
late the criterion for the existence of finite energy
configurations that carry a topologically conserved mag-
netic flux that is unlocalized, and will note the existence
of both vortices and domain walls that are classically un-
stable, but are stabilized by quantum effects involving
gauge boson loops. I will also discuss "semilocal mono-
poles" that, while always classically stable, can have a
different kind of core structure than the usual gauge
theory monopoles. Finally, I discuss some general prop-
erties of "electroweak vortices, " which are classically
stable even though they carry no topologically conserved
flux [4].

Throughout this paper, the term "semilocal" has a
more general meaning than in Ref. [3]. In the original
usage of Ref. [3], semilocal defects arise in models in
which gauge symmetries "mix" with exact global sym-
metries. I extend this usage to encompass models with
approximate global symmetries as well. The original no-
tion might be called "strict semilocality" and the extend-
ed version "generalized semilocality. " In practice,
though, the context will typically leave no ambiguity
about what sense of the term is meant, and no modifier
will be needed.

The general approach adopted here is especially suit-
able for models in which gauge or global symmetries are
dynamicalIy broken, or for any scheme in which it is con-
venient to "integrate out" the detailed physics responsi-
ble for the symmetry breaking. Assuming that the
relevant gauge couplings are weak, the semilocal defects
discussed here can be studied using an effective field
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theory in which only light degrees of freedom are re-
tained. The typical size of the defects is larger than the
distance scale associated with the symmetry breakdown
by an inverse power of the weak gauge coupling. The dis-
tinguishing feature of "semilocal" defects, then, is that
their detailed structure can be analyzed without ever con-
sidering the "restoration" of the spontaneously broken
symmetry.

In Sec. II, I describe the general class of models that
will be considered in this paper. These models have an
"accidental" symmetry, and part of this symmetry is
gauged. The accidental symmetry is spontaneously bro-
ken. To determine the unbroken gauge group, we need to
solve a "vacuum alignment" problem.

The general theory of semilocal vortices is discussed in
Sec. III. Two cases are considered. In the first case,
there are exactly massless Nambu-Goldstone bosons, and
the topologically conserved magnetic flux need not be
confined. Stable vortices may exist for a range of values
of the gauge coupling, but vortices become unstable when
the gauge coupling is sufBciently weak. In the second
case, there are light "pseudo Goldstone" bosons; vortices
become classically unstable at weak gauge coupling, but
are stabilized by quantum corrections. Then the acciden-
tal symmetry is not restored inside the core of the vortex.

Section IV concerns semilocal domain walls and mono-
poles. These are always stable. They resemble the semi-
local vortices in the second case above; the core of the de-
fect has an unusual structure, because the accidental sym-
metry is not restored inside the core.

Examples that illustrate the general theory are present-
ed in Secs. V and IV. The models in Sec. V have elemen-
tary Higgs fields. The models in Sec. VI do not; instead,
the spontaneous symmetry breakdown is dynamical.

The criterion for the existence of configurations with
unconfined magnetic flux is further discussed in Sec. VII.
I show that finite-energy configurations can exist in
which the conserved magnetic flux is "spread out" only if
gauge and global symmetries "mix;" the unbroken global
symmetry group must have generators that are nontrivial
linear combinations of spontaneously broken gauge sym-
metry generators and global symmetry generators.

The general theory of electroweak vortices [4] is de-
scribed in Sec. VIII. These carry no conserved magnetic
flux, yet are classically stable. Their distinguishing
feature is that they become stable semilocal vortices in
the limit in which some gauge coupling approaches zero.
This is possible only if the pattern of gauge symmetry
breaking admits gauge-boson mixing. (In other words,
there are unbroken gauge generators that are nontrivial
linear combinations of generators that belong to distinct
invariant subalgebras of the gauged Lie algebra. ) I note
that electroweak strings can end on magnetic monopoles,
and compute the magnetic charge of the monopole. I
also discuss the Aharonov-Bohm interactions of elec-
troweak strings, and point out that an electroweak string
cannot be used to detect the "quantum hair" of an object.
Finally, I comment on the "embedded defects" recently
discussed by Vachaspati and Barriola [5] and remark that
embedded monopoles are always unstable.

Section IX contains some concluding remarks, includ-

ing comments on the implications of electroweak strings
for particle physics and cosmology.

II. GENERAL FORMALISM

I will consider a class of gauge theories that can be
characterized as follows [6]. In the limit of vanishing
gauge couplings, the theory respects a group G,pp

of
global symmetries that is spontaneously broken to the
subgroup H, „„.' (G, „„is a finite-dimensional com-
pact Lie group that we will assume is connected. ) In this
limit, the theory has a degenerate vacuum manifold, and
massless Nambu-Goldstone bosons, characterized by the
coset space Gapprox ~Happrox

Now suppose that a subgroup Gg g
of 6

pp
is cou-

pled to gauge fields. The gauging intrinsically breaks the
G

pp symmetry and partial ly lifts the vacuum degen-
eracy. The surviving exact symmetry group is the sub-
group of 6approx that preserves the embedding of GgaUge

—1
exact Ig Gapprax~gGgaugeg Ggaugel

Since 6,„,is an invariant subgroup of G,„„„andG,x„,
is compact, G,„„, has the local structure G,x„,-6,„,XG~„"„t', but it may also include discrete auto-
morphisms of Gg g

' these will be relevant to the discus-
sion of domain walls below.

The unbroken gauge group H,„, is the intersection
Gg g

with H pp, and the unbroken exact symmetry
group H,x„, is the intersection of G,x„, with H pp„x.
However, these unbroken groups cannot be determined
by group theory alone. There is, in general, a nontrivial
issue of "vacuum alignment" that must be resolved by
the dynamics of the theory [6]. If we fix the embedding
of Gg,„g, in G,pp„„ then these intersections depend on
how H

pp „ is embedded in 6, p„„, in other words, the
unbroken groups depend on how the vacuum is chosen
from the (approximate) vacuum manifold G,pp„„/
H

pp
The gauge interactions lift the degeneracy of the

approximate vacuum states, and determine the align-
ment. The lifting of the degeneracy is a quantum effect
arising from gauge-boson loops.

Once the alignment is determined, we can divide the
6, p„„/H, p „,„Nambu-Goldstone bosons into three
classes. The Gg g /Hg g

bosons are absorbed by gauge
fields. The Gexact ~ exact bosons that are not
Gg,„,/Hg, „,bosons remain exactly massless. And the

acquire nonzero masses due to the gauge interactions;
they are "pseudo Goldstone" bosons [7].

Though it will often be convenient to think of the
breakdown of G,pp

to H
pp „as due to the condensa-

tion of an elementary Higgs scalar, the above discussion
makes no assumption about the mechanism of the sym-
metry breakdown. In particular, it applies to the case of

I use this notation because the 6 pp symmetry will typically
be broken when the gauge interactions turn on.



4220 JOHN PRESKILL

a theory that contains no elementary scalars at all, in
which the condensate is a composite operator bilinear in
elementary fermions, as in technicolor models [6,8].

The symmetry-breaking scheme outlined here some-
times suffers from the Aaw of "unnaturalness, *' or the
need to fine-tune bare parameters. For example, in a
theory with elementary scalars, it may be that the most
general Higgs potential of renormalizable type (a quartic
polynomial in the Higgs field) that is invariant under the
6,„„,symmetry is not also invariant under the larger
G

pp „symmetry. Then radiative corrections wil 1 induce
divergent symmetry-breaking terms in the potential that
must be removed with suitable counterterms. This
scheme is unnatural in the sense that the feature that the
G

pp x symmetry is broken on ly by radiative correct i ons
(and not by terms in the classical Higgs potential) results
from a delicate cancellation between bare parameters and
radiatively induced renormalization of parameters.

This naturalness problem is typically avoided in mod-
els without elementary scalars, and sometimes in other
cases as well. Examples will be discussed in Secs. V and
VI.

III. VORTICES

Given the pattern of symmetry breakdown described
above, let us classify the nonsingular classical field
configurations that have finite energy, in two spatial di-
mensions [1]. For the Higgs field potential energy to be
finite, the Higgs field must reside in the exact vacuum
manifold G,„„,/H, „„,on the circle at r = ~. For the
Higgs field gradient energy to be finite, the Higgs field
must be covariantly constant on the circle at r = ~.

Since G,„„,acts transitively on the exact vacuum man-
ifold (assuming no exact "accidentally degeneracy"), we

may perform a G,x„, transformation that rotates the
Higgs field at the point (r = oo, 8=0) to a standard value

Since it is covariantly constant, the Higgs field on
the circle at infinite must lie in the orbit of the gauge
group acting on 4o; it can be expressed as

4(r = oo, 8)=D [g(8)]tIio, g(8) E6,„, ,

g (0)=e, g(2n. ) EH,„, ,
(3.1)

2Actually, there is an ambiguity in this correspondence when

H~,. „~, is non-Abelian and disconnected. This ambiguity can be

resolved if we consider patching together distantly separated

configurations; it has no effect on the ensuing discussion.

where D is the representation of Gg g
according to

which 4 transforms. Equation (3.1) associates with each
finite energy field configuration a closed path in the coset
space G,„,/H, „, that begins and ends at the trivial
coset. Thus, the nonsingular field configurations of finite
energy can be classified by the fundamental group
mt(6, „,/H, „,). There is an infinite energy barrier
separating configurations that correspond to different ele-
ments of this group, while configurations that correspond
to the same element can be smoothly deformed one to
another, while the energy remains finite.

Because G,„,C G t C G pp, we have the inclusion

Ggauge /~gauge C Gexact /~exact C Gapprox /+approx (for th
eoset spaces are obtained by the action of the groups on
ct~o). Thus, there are natural homomorphisms:

~1( gauge Hgauge ) ~1( Gexact Hexact

1( exact / exact ~1(6approx Happrox )

(3.2)

each loop in G,„,/H, „,is also a loop in G,„„t/H„„t

Gapprox approx '

We can distinguish three types of elements of
vrt(Gg, „,/H, „,), according to whether the element be-

longs to the kernel of these homomorphisms. First con-
sider an element that is not in the kernel of either
homomorphism. This means that the corresponding non-
contractible loop in the gauged vacuum manifold
G,„,/H, „,remains noncontractible in the (larger) ap-
proximate vacuum manifold. Hence, the finite-energy
field configurations associated with this loop cannot lie in
the approximate vacuum manifold everywhere. Each
field configuration must therefore have a "core" some-
where where the Higgs field potential energy density is
nonvanishing. If we minimize the energy in this topologi-
cal sector, we will obtain a static vortex solution to the
classical field equations, or perhaps a configuration of two
or more widely separated vortices.

Second, consider a nontrivial element of
at(6 .,„,/H, „,) that is in the kernel of the first
homomorphism. This means that the corresponding non-
contractible loop in 6,„,/H, „, can be contracted in

the exact vacuum manifold 6,„,.„/H, „„t.Hence, we can
construct finite-energy configurations in this class that
live in the exact vacuum manifold everywhere, and have
no Higgs field potential energy.

(Because 6,„„, has the local structure G,„,,,—
Ggauge XG,xact', this kernel can be nontrivial only if

there is mixing of gauge and global symmetries. That is,
H„„, must be nontrivial, and there must be 0,„„,gen-
erators that are linear combinations of G,„,generators
and Gexact generators. I will discuss this point further in

Sec. VII.)

To understand these configurations better, consider the
classical field theory in the limit of infinite gauge cou-
pling. Then the gauge field is nondynamical —gauge
fields carry no energy. Still the gauging has nontrivial
consequences, for Higgs field configurations that differ by
a gauge transformation are effectively identified. The
physical vacuum manifold is not G,„„t/H„„„but rather
this coset space with the action of the gauge group G a„e
modded out. That is, it is the space Morblt of Gg g

or-
bits on Gexact IIexact

In this limit, the configurations such that the Higgs
field lies in the exact vacuum manifold everywhere have
only gradient energy. And gradient energy in two spatial
dimensions is scale invariant. Thus, if we find the
configuration of this type that has minimal energy, there
will actually be an infinite set of such configurations,
parametrized by an arbitrary size scale. What we have
constructed is a two-dimensional "Skyrmion" [9] (or
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"global texture" [10]) associated with a topologically
nontrivial mapping from the two-sphere (the plane plus
the point at infinity) to the physical vacuum manifold

M„b;t. Its energy will be

2m Skyrmion (3.3)

where U is the symmetry breaking scale and C is a numer-
ical constant of order 1, for v is the only relevant scale.

Now let us reintroduce the gauge field kinetic term.
The Skyrmions that we have constructed carry nonzero
magnetic flux. (The gauge field cannot be a pure gauge
everywhere, because it is topologically nontrivial on the
circle at infinity, and is smooth on the plane. ) When the
gauge field dynamics turns on, this flux will want to
spread out. The Skyrmion of infinite size now will have
the lowest energy; in fact, its gauge field energy will van-
ish.

What we have found, then, is that in a sector whose
"magnetic flux" is characterized by a noncontractible
loop in Gs,„s,/H, „, that can be contracted in

G,„„,/H, „„„configurations of finite energy can be con-
structed such that the flux is spread out over an arbitrari-
ly large area. This sector is separated from sectors with
other values of the flux by an infinite energy barrier. But
within this sector there are configurations in which the
energy density is arbitrarily small everywhere (although
the total energy is bounded from below by CU ). Notice
that this is possible only in a theory that contains exactly
massless Nambu-Goldstone bosons, for only then can a
scale-invariant Skyrmion exist.

In a magnetic flux sector of this type, there will of
course also be configurations in which the magnetic flux
is trapped inside a vortex core where the Higgs field
leaves the exact vacuum manifold. It becomes a dynami-
cal question (not a topological one) whether the vortex
configurations or the spread-out configurations have
lower energy. In the limit of large gauge coupling, the
vortex energy is

2m vortex (3.4)

where C' is a numerical constant of order one, indepen-
dent of coupling constants. [The leading contribution to
the vortex energy that depends on the Higgs potential is
of order ()(,/e )v, where A, is a scalar self-coupling and e
is the gauge coupling; it can be neglected in the limit
e ~00.] The vortex is stable, in this limit, if C (C.
Whether this is the case depends on the detailed
geometry of the vacuum manifold. But a definite state-
ment can be made about the opposite limit of weak gauge
coupling. In this limit, the vortex carries enormous mag-
netic flux that must spread out. Any configuration with a
Higgs field core that remains bounded in this limit carries
an energy that scales like

m„,„„„—U ln(1/e ) . (3.5)

This behavior results from the competition between
Higgs field gradient energy of order v ln(r) and magnetic
field energy of order 1/(e r ), where r is the size of the
region occupied by the flux. Thus, when the gauge cou-
p1ing is sufficiently weak, the Skyrmion configuration

minimizes the energy, and there is no stable vortex in this
flux sector.

Even if the Skyrmion minimizes the energy in a mag-
netic flux sector, there may be a vortex configuration
(with finite core size) in the same sector that is classically
stable. The vortex will then be metastable and will decay
via quantum tunneling. From the Euclidean path in-
tegral viewpoint, the instanton configuration that medi-
ates the decay is a "global monopole [11]." In the limit
of infinite gauge coupling, this is a configuration with a
nontrivial Higgs field core, where the Higgs field on a
large sphere surrounding the core assumes the nontrivial
mapping from the two-sphere to the exact vacuum mani-
fold that is associated with the Skyrmion. For finite

gauge field coupling, this configuration has magnetic flux
that enters the core from a narrow tube (the vortex) and
then spreads out and returns to infinity (the Skyrmion).
Similarly, a string in three spatial dimensions is metasta-
ble for this range of parameters, because the string can
break by nucleating a global monopole-antimonopole
pair. The long-range interaction energy between a pair of
global monopoles with separation r is Cv r [with C
defined by Eq. (3.3)], so it is energetically favorable for
the monopole pair to form if the string tension is greater
than Cv . These decay processes are further discussed in
Ref. [12].

Finally, consider an element of m. ,(G,„,/H, „s, ) that
is in the kernel of the second homomorphism in Eq. (3.2)
but not the first. This means that the corresponding non-
contractible loop in Gs,„,/Hs, „s, remains noncontracti-
ble in G,„„,/H, „,«, but can be contracted in

G, z„„/H, „„.Hence, we can construct configurations
in this flux sector such that the Higgs field lies in the ap-
proximation vacuum manifold everywhere, but not
configurations that lie in the exact vacuum manifold
everywhere. When the gauge coupling is sufficiently
weak, the vortex solutions become classically unstable,
and the flux wants to spread out. But quantum correc-
tions due to gauge-boson exchange prevent the vortex
from spreading to infinity.

IV. DOMAIN %'ALLS AND MONOPOLES

Within the symmetry breaking scheme formulated in
Sec. II, we may also consider the properties of topological
domain walls and monopoles. Though there are no unex-
pected instabilities, these defects can have some unusual
properties that are worthy of note.

A. Domain walls

The nonsingular configurations that have finite energy
in one spatial dimension are classified by the group
~o(G,„„,/H, „„,). For the Higgs field potential energy
to be finite, the Higgs field must take a value in the exact
vacuum manifold Gexact/IIexact at both points at infinity.
By performing a suitable 6,„„,transformation, we may
choose the Higgs field at x = —~ to assume the standard
value 4O. Two configurations can be smoothly deformed

%e need not be concerned with the ambiguity in this
classification that can arise when 0,„„,is non-Abelian.
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one to the other while the energy remains finite if and
only if @(x= co ) for both configurations lies in the same
connected component of the exact vacuum manifold. By
minimizing the energy in a nontrivial sector, we con-
struct a static domain wall solution to the classical field
equations (or perhaps two or more distantly separated
domain walls).

A nontrivial element of mo(G,.„„t/H, „„t) may be in the
kernel of the homomorphism

~0( Gexact / exact ~0( approx / approx ) (4.1)

that is, a vacuum state that is not connected to 4o in the
exact vacuum manifold may be connected to 4O in the
approximate vacuum manifold. Then the domain wall
will be classically unstable. It can be deformed to a
configuration that has no classical Higgs potential ener-

gy, and it will then want to spread out to minimize its
gradient energy. But the quantum corrections to the
effective Higgs potential, generated by gauge-boson ex-
change, will prevent the domain wall from spreading
indefinitely, and will stabilize it.

B. Monopolies

~2( gauge /Hgauge )~~2( G exact /Hexact ) (4.2)

has a trivial kernel. This is because H,„„,has the general
globalm Hexact Hexact X exact ) /H discrete &

w discrete

a discrete invariant subgroup of Hggggg XHggggg Thus, a
loop that is noncontractible in H,„, remains noncon-
tractible in H,„„,. We conclude that there are no "semi-
local monopoles" that are precisely analogous to the sem-
ilocal vortices considered in Ref. [3]—in a configuration
with nonzero magnetic charge, the Higgs field cannot lie
in the exact vacuum manifold everywhere.

But there can be nontrivial magnetic charge sectors
that contain configurations such that the Higgs field lies
in the approximate vacuum manifold everywhere. These
sectors are associated with noncontractible loops in

H,„,that are contractible in H,pp„„, or in other words,
with the kernel of the homomorphism

In order that a field configuration have finite energy in
three spatial dimensions, the Higgs field must take values
in G,„,«/He„„t on the two-sphere at r = oo, and must be
covariantly constant on the two-sphere. Thus, nonsingu-
lar finite-energy configurations are classified by [1]

(G2gau/gHegau)g=en. , (H ,„g)g/m, (G ,„g)g; they are as-
sociated with noncontractible closed paths in H,„„be-
ginning and ending at the identity, that are contractible
in Gg,„g,. The element of n, (H,„,) associated with a
nontrivial sector identifies the topologically conserved
inagnetic charge of that sector [13,1].

The homomorphism

have only gradient energy and magnetic field energy.
The gradient energy makes them want to shrink, but they
are prevented from collapsing completely by their mag-
netic field energy.

These "semilocal" magnetic monopoles have a different
core structure than the usual gauge theory monopoles.
"Heavy" broken gauge fields are excited in the core, and
the embedding of G,„,in G,pp „varies in the core, but
the spontaneously broken G, „„symmetry is not *'re-

stored" anywhere. It is a dynamical question, depending
on the details of the Higgs potential, whether the realiza-
tion of the G

pp „symmetry actually changes inside the
core of the monopole configuration with minimal energy.

I should clarify the difference between semilocal mono-
poles and the monopoles that arise in typical grand
unified theories. It is a general feature, shared by semilo-
cal monopoles and monopoles of the usual kind, that the
realization of the gauge symmetry must be different in-
side the monopole core than in the vacuum (at least at an
isolated point inside the core). This is not to say that the
gauge symmetry is fully restored inside the core. In the
SU(5) model, for example, if we ignore the electroweak
symmetry breakdown, a Higgs field in the adjoint repre-
sentation breaks the gauge symmetry to [SU(3)
XSU(2)XU(1)]/Z6. Inside the core of the minimally

charged magnetic monopole, the stability group of the
Higgs field is reduced to a subgroup of the symmetry of
the vacuum [15]; namely, [SU(2) XU(1)XU(l)XU(1)]/
[Z6 X Zi ]. At the center of the core, this symmetry
is enhanced to [SU(2) X SU(2) X U(1) X U(1) ]/
[z,xz, ].

This example illustrates the generic case. The symme-
try H„„ inside the core is a subgroup of the symmetry

H,„,in the vacuum. The topological magnetic charge
of the monopole can be characterized by a noncontracti-
ble closed path in H„„that begins and ends at the identi-

ty. In order for the Higgs field to be smooth, this symme-
try must enlarge at the center of the core to

H„„„,DH„„, such that this closed path in H„„can be
contracted in H„„„,. We see that H„„„,cannot be con-
tained in Hz, „g„but it is not necessary for H„„„,to con-

In a semilocal monopole, too, the subgroup H„„„,of
G

g g
that preserves the Higgs field at the center of the

core is not contained in H~,„g,. But this is achieved even

though the stability group of the Higgs field is H pp„„
everywhere. The realization of the gauge symmetry
changes inside the core because the relative alignment of
H

pp
and 6,„, adjusts there. This means that the

core of the monopole can be accurately described in an
"effective field theory" that describes physics below the
scale of the symmetry breakdown, as I will discuss in
more detail in Sec. VI.

~2( Ggauge /Hgauge ) ~2( Gapprox /Happrox (4.3) V. EXAMPLES

Ignoring quantum effects, these monopole configurations

4We need not be concerned with the ambiguity in this
classification that can arise when Hg, „g, is disconnected and
non-Abelian.

I will now apply the above discussion to a sample mod-
el. When all gauge interactions are turned off, the

5Note that the term "semilocal monopole" is used differently

here than in Refs. [3] and [14].
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Lagrange density of this model is H,„„„=U( 1 ) v(x Z2 v,
(5.1) where U(1) v is generated by

(5.11)

G, „„=SO(4)~H, „„=SO(3), (5.2)

and there are three Nambu-Goldstone bosons, plus one
massive Higgs field with a mass

7tl =A, US (5.3)

It is convenient to write the Higgs field as a two-by-two
matrix

(m +in"o )—=
2 2 1

(5.4)

which transforms under G,»„„=[SU(2)LXSU(2)R ]/Z2
according to

4~UL@U~ . (5.5)

where a =0, 1,2, 3. Thus, in this limit, the symmetry
breaking pattern of the model is

Q = YL + YR (5.12)

and the Z2 z is generated by the charge-conjugation
operation

(-'v:(t' (5.13)

1 e2U2
4 (5.14)

This model has no stable domain walls or rnonopoles,
but it has a topologically conserved magnetic flux
classified by n((U(1)R)=Z. The vortex configuration
with unit flux has the asymptotic behavior

i8

P(r = oo, g)= 0 (5.15)

that anticommutes with Q. Of the three Nambu-
Goldstone bosons, one is absorbed, and the other two
remain exactly massless. The U(1)R vector boson ac-
quires the mass

A. Unstable vortex

1 1
Yg =diag (5.6)

Then the exact symmetry of the model is

G,„„,=(SU(2)L X [U(1)R (&&Z2 R ])/Z2, (5.7)

where Cx denotes a semidirect product. Here the Z2 z is
generated by the charge conjugation operation

—
42

&R:0—=
')i'2

This operation commutes with SU(2}L, but anticommutes
with Yz.

~R YR ~R YR (5.9)

it is a nontrivial automorphism of the U(1)R gauge group.
In this case, the G, „x symmetry is "natural, " because
the potential in Eq. (5.1) is the most general quartic po-
tential with the G,x„, symmetry.

Here Gexact acts transitively on Gapprox~~approxs so the

alignment problem is trivial. Any Higgs field in the
G pp /0 pp „can be rotated by a G,x„, transformation
to the standard form

Let us briefly recall the model that was analyzed in
Ref. [3]. It is obtained by gauging the U(1} subgroup of
one of the SU(2)'s. We choose to gauge the U(1)R gen-
erated by

—2e g (Skyrmion)
(

2 pg
2 +g 2

(5.16)

where a is an arbitrary distance scale, and e is the gauge
coupling. As Hindmarsh [16] observes (see also Ref.
[14]), the exact vacuum manifold, with the gauged U(1)R
moded out, is the manifold CP'=S, and Eq. (5.16) is the
Skyrmion solution of the CP o model in two spatial di-
mensions. Its covariant gradient energy (in two dimen-
sions) is

2m Skyrmion (5.17)

which is thus the energy of the configuration with the
magnetic flux spread out to infinity.

There is also a Nielsen-Olesen [17] vortex solution,
with /=0 at the origin. Its mass equals the Skyrmion
mass for p—=A, /(e/2) =ms/(M =1, and it is lighter than
the Skyrmion for p & 1 [18]. Thus, there is a stable vortex
for p& 1. But for p) 1, the Nielsen-Olesen vortex solu-
tion is heavier than the Skyrmion, and the vortex is un-
stable. The analysis of Hindmarsh [16]and of Achucarro
et al. [19] indicates that there are no metastable vortices
in this model. For p) 1, the vortex is classically unsta-
ble, and the magnetic flux wants to spread out.

Since n. ,(G,„„,/H, „„,)=0, the first homomorphism in
Eq. (3.2) has trivial kernel, and a cylindrically symmetric
"Skyrmion" configuration can be constructed that has
this asymptotic behavior, and lives in the exact vacuum
manifold everywhere; it is

r

re"
y(skyrmion)( 8} U

( 2+ 2}—1/2
a

U

0 (5.10) B. Quantum stability

The gauge symmetry is completely broken, and the un-
broken exact symmetry is

Now consider gauging

G,„s,=[U(1)L XU(1)R]/Z2 (5.18)
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generated by YL and Yz. The exact symmetry of this
model is

O'z ( L + R )v Z =BLCOSO BRslnH,

p~ =0, 3 =BLsinO+BzcosO,
{5.25)

C L:p~ i—o2$. ,

C ~.P~ i cr2—$'; (5.20)

C I flips the sign of YI, and Ca flips the sign of Y~.
Unfortunately, the G,pp, symmetry is not natural in

this model. The quartic interaction term (lg, l

—
IP2I }

is invariant under G,„„„buthas not been included in Eq.
(5.1). I will nevertheless analyze the effect of symmetry-
breaking quantum corrections in this model, to illustrate
the earlier general discussion. Natural models can be
constructed (notably including models without elementa-
ry scalar s, in which the spontaneous breakdown of
G, „„is dynamical), but they are more complicated to
construct and analyze. Examples will be discussed in Sec.
VI.

There is a nontrivial alignment problem in this model,
which we can resolve by minimizing the one-loop
effective potential. If the Higgs doublet has the vacuum
expectation value

G,„„,=([U(1)L CXZ, I ] X [U(1)„CXZ,~ ])/Z, , (5.19)

where the Z2's are generated by the charge-conjugation
operations

3
m poa 2 eLe„u in[(eJ +ez )v /4M ]128~

(5.26)

the mass goes to zero as either gauge coupling turns off.
Since there is a spontaneous broken U(1) gauge symme-

try, there is a topologically conserved magnetic flux, and
vortex configurations can be constructed that have Z flux
trapped in the core. If we ignore the quantum correc-
tions to the effective potential, the stability of the vortices
can be analyzed just as above, except that the critical
coupling becomes P=A, /[(eL+ez )/4]=ms/pz =1. For
I3&1, the vortex becomes classically unstable, and the
magnetic flux wants to spread. But in this model, the
one-loop corrections prevent the flux from spreading to
infinity. The vortex, stabilized by quantum corrections,
has a core size

—1

core m PGB (5.27)

where BL and Bz are the U(1)z XU(1)z gauge bosons,
and 0 is the mixing angle defined by tan6I=ez/eL. Of
the three Nambu-Goldstone bosons, one is absorbed, and
the other two become a charged pseudo Goldstone boson
with mass

lu I+Iv I

=v
vp

eg(lv, l'+ lv, l')
p 4 e,e„( lu, l'—+ u, l')

e~e~( —lu) I'+ iv~1'}

e„'(lv, l'+ lv, l')

then the tree-level gauge-boson mass matrix is

(5.21)
This model also contains domain walls, because the ex-

act vacuum manifold has two disconnected
components —one with lu& I

=0 and one with Iu2 I
=0.

Ignoring quantum corrections, the domain wall is unsta-
ble; it can lower its gradient energy by spreading out.
But the one-loop corrections prevent it from spreading
beyond a size given by Eq. (5.27).

(5.22)

where er „are the gauge couplings, and the leading (in fi)
term in the effective potential that depends on the align-
ment is [20]

C. Semilocal monopole

Now suppose that the gauge group is

GK,„R,=SO(3), (5.28)

V,s=
2 Trp, ln(p /M ) .

3
(5.23)

under which ~', a =1,2, 3, is a triplet and ~ is a singlet.
Then the exact symmetry is

H,„,=U(l )~, H,„„,=U(1)~CXZ2 ~, (5.24)

with the U(1)v and Z2 v generators defined as in Eqs.
(5.12) and (5.13}. The vector-boson spectrum is

where M is a renormalization scale.
A symptom of the unnaturalness of this model is that

the statement that the G,pp „symmetry is a good sym-
metry at the classical level is really dependent on the
choice of the scale M, for shifting the renormalization
scale moves symmetry-breaking terms in the potential
from the one-loop term to the tree term. We suppose
that the classical potential is G, „„invariant when M is
of order the symmetry-breaking scale v. Then the
minimum of the potential occurs for

I u, I Iu2 I
=0, if the

gauge couplings are weak. By a G,„„,transformation,
we can therefore choose $0 as in Eq. (5.10). Thus the un-
broken symmetries are

G,„„t=0(3) (5.29)

HQ, „R,=SO(2) . (5.30)

(For a caveat concerning this alignment, see the discus-
sion of dynamical symmetry breaking in Sec. VI.) Thus,
vr2(G,„,/H, „,) =Z, and this model contains magnetic
monopoles.

[which includes a parity transformation, the element, I in

SO(4)].
Again, this model is unnatural; we can add any even

function of m to the potential in Eq. (5.1) without break-
ing the G,„„,symmetry. Still, we may proceed as in Sec.
V B, imposing the symmetry at a renormalization scale of
order v, and solving for the alignment by minimizing the
one-loop effective potential. We then find that the
minimum occurs for m =0, so that the unbroken gauge
symmetry is
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=v +1 f—(r)
vr'=vf(rF', a = 1,2, 3

where

(5.3 1 )

f(~)=1, f (0)=0 (5.32)

This configuration can lower its gradient energy by
shrinking, but it is prevented from collapsing completely
by its magnetic Coulomb energy. If m is constrained to
take the form Eq. (5.3 1), then the energy will be mini-
mized when the size is of order ( ev } ' (where e is the
gauge coupling), and the mass of the monopole is of order
4m. U /e.

There are also "'t Hooft -Polyakov" configurations
[21]:

Since ~2( G,pp„„/H, pp„,„)=0, the homomorphism Eq.
(4.3) has a trivial kernel. This means that there are mag-
netically charged configurations such that the Higgs field
takes values in the approximate vacuum manifo 1d every-
where. A spherically symmetric configuration of this
type that carries one unit of magnetic charge is D. Unstable Z 2 vortex

The model in Sec. V A has a spontaneously broken
U(l),„„and the topologically conserved magnetic flux

takes integer values. The model in this section will
demonstrate that it is also possible for unstable vortices
to occur when the topological ly conserved magnetic flux
takes values in Z2 .

The approximate global symmetry is 6 pp„„= [SU(3 )L X SU( 3 )a ]/Z3, and the Higgs field transforms
as the (3,3}representation; it can be written as a 3 X 3 ma-

trix 4 transforming as

~UL 4U~ . (5.35)

%e suppose that the Higgs expectation value can be put
in the form

finds H,„,= [SU(2) XU( 1 ) ]/Z2. Since ~2(Gs,„s,/

tains semilocal monopoles. Another example wil 1 be de-
scribed in Sec. VI.

=0, n'=vg(rP', a = 1,2, 3

where

g( ~ )= 1, g(0)=0

(5.33)

(5.34)

(e) =v I
so that the pattern of symmetry breakdown is

Gappro
= [SU( 3 4, XSU( 34 ]/Z3 Happrox

=SU( 3 )y /Z 3

(5.36)

(5.37)

Such a configuration has Higgs field potential energy in
its core, and the energy is minimized by the usual 't
Hooft -Po1yakov solution .

In the Bogomol'nyi limit A. /e ~0 [1 8,22], the Higgs
potential energy is negligible, and the monopole of
minimal energy has the form Eq. (5.33). Turning on n.
only increases the gradient energy. But in the opposite
limit A. /e ~~, the form Eq. (5.31) has lower energy. To
see this, note that in the limit of large A., the Higgs field
core of the 't Hooft —Polyakov solution shrinks to zero
size [23], so that g ( r ) = 1, for all r This solut. ion is then
of the form Eq. (5.3 1), but with f ( r) constrained to be 1 .
One anticipates that, by relaxing this constraint, a lower
energy configuration of the form Eq. (5.3 1) can be found.
Indeed, a simple stability analysis shows that the 't
Hooft -Polyakov solution becomes unstable for large
/e, and that a ~ condensate is favored inside the core.

Thus, for large A, , the Higgs field inside the monopole
core remains close to the approximate vacuum manifold,
and the approximate SO(4) symmetry is not "restored"
anywhere inside the core. This is a semilocal monopole.

A natura 1 model with a semilocal monopole can be
constructed as follows: Consider the symmetry-breaking
pattern G, „„=SO( 8 )~H, „„=SO( 7 }, driven by a
Higgs field in the vector representation of SO(8). Now
gauge Gs,„s,=SU( 3 ), embedded so that the Higgs field
transforms as the adjoint representation of SU(3). It is
easily verified that the most general quartic Higgs poten-
tial that is SU(3) invariant also respects an "accidental"
SO(8) symmetry [7]. Depending on the alignment, the
unbroken gauge symmetry will be either [SU( 2 )
XU( 1 ) ]/Z2 or [U( 1 ) X U( 1 ) ]/Z2. Solving for the align-
ment by minimizing the one-loop effective potential, one

G,„„,=SU{3 )$' "XSO( 3 )g"s'~H
—SO( 3 )global (5.38}

the gauge symmetry is completely broken.
Since m, [SO(3 )$'"s' ]=Zz, this model has a topological-

ly conserved Z2 magnetic Aux. But we also have

mi ( G,„„,/H, „„,) =0. [The noncontractible loop in

SO( 3 )$'"s' can be deformed in G,„,« to a loop that lies in

H,„«,.] Thus, there are configurations with nontrivial Zz
magnetic flux such that the Higgs field lies in the exact
vacuum manifold everywhere. According to the general
discussion in Sec. III, then, the vortex wil 1 be unstable
when the gauge coupling is sufficiently weak.

VI.NATURAL MODELS: DYNAMICAL
SYMMETRY BREAKING

In some of the models described above, fine-tuning of
bare parameters is required to enforce the condition that
the G

pp „symmetry is a good symmetry to zeroth order
in fi. This kind of fine-tuning can be avoided in a broad
class of models that contain no elementary scalar fields.
In these models, the spontaneous breakdown of the
6

pp symmetry is dynamical, driven by the condensa-

(There are now two independent quartic invariants in the
most general Higgs potential, and one cubic invariant,
but this pattern occurs for a finite range of parameters. )

Now gauge the subgroup SO(3)C SU( 3 )a . This model

is natural, and the alignment problem is trivial. The ex-

act symmetry breaks as
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tion of fermion pairs.
Of course, the dynamical symmetry breakdown is actu-

ally nonperturbative in A, rather than "classical. " So we
need to change our terminology a bit. In these models,
the intrinsic breaking of G

pp „symmetry turns off as the
weak G,„,couplings go to zero. The models are natural
in the sense that there are no operators of dimension four
or less that are invariant under G,„„„other than gauge
couplings. The only potential symmetry-breaking terms
are bare fermion masses, so we need to ensure that the
G,„„,symmetry is sufficiently restrictive to prevent fer-
mion masses from being generated by the G,„g, radiative
corrections.

For example, QCD with two massless quark fiavors has
the chiral symmetry

is expected to occur, in a model that contains four mass-
less fermion flavors that transform as a pseudoreal repre-
sentation of a strongly coupled gauge group. [Because
the representation is pseudoreal, a gauge-invariant bilin-
ear fermion condensate must be antisymmetric in favor
indices, and Sp(4) is the maximal symmetry that
preserves a condensate in which all fermions acquire
masses. ] Now, if we gauge G,„,=SO(4) [embedded so
that the 4 of SU(4) transforms as a 4 of SO(4)], bare fer-
mion masses are forbidden. The condensate transforms
as (3,1)+(1,3) under G,„,-SO(3) XSO(3), and we can
use the methods of Ref. [24] to find that the vacuum
alignment favors the gauge symmetry breakdown pattern

G,„,=SO(4)~H,„,= [SU(2) XU(1)]/Z2 . (6.5)

G, „„„=[SU(2)1 XSU(2)R X U(1)V]/Zq, (6.1)

which is dynamically broken to

H,pp„„=[S U(2) vXU(1)~] /Z2. (6.2)

G,„„,= [SU(2)v X U(1)y XZ4 g ]/Zp, (6.3)

and the axial Z4 „symmetry is sufficient to forbid bare
quark masses. But since the weak gauge symmetry is
now vectorlike, there is an order-e term in the effective
potential. The minimum of this potential occurs when
G,„, is unbroken [24,25), contrary to our previous
findings, and the model contains no magnetic monopoles.

It is not difficult to construct slightly more elaborate
models in which natural semilocal monopoles can occur.
For example, the symmetry-breakdown pattern

G,„„„=SU(4) ~H, „„=Sp(4) (6.4)

If we now gauge G,„,=[U(1}IXU(1)z )/Zz, the sur-
viving exact symmetry (in fact, the gauge symmetry) is
suScient to forbid any bare quark masses,

We may proceed to determine the vacuum alignment
as in Sec. V B, but in one important respect, the previous
analysis needs to be reconsidered. The effective potential
that we computed before was of order e In(1/e ), where
e is the G,„, gauge coupling. But there may also be
terms in the potential that are of order e, and so are the
dominant terms at weak gauge coupling. (We did not
consider such terms before, because they are not generat-
ed until two-loop order in models with elementary sca-
lars. } Fortunately, it is easy to show that no order-e
terms arise in the type of model considered here, where
no weak gauge bosons couple to both left-handed and
right-handed quarks [24]. Thus, our previous analysis of
the vacuum alignment is applicable. The new feature is
that the effective potential is actually finite, because there
are no possible symmetry-breaking counterterms; it has
the form Eq. (5.23), where M is the scale of dynamical
symmetry breakdown. We conclude that the model con-
tains a vortex and domain wall with thickness given by
Eq. (5.27).

The situation is different for our model with a semilo-
cal monopole, in which G,„,=SU(2) „. Here the exact
symmetry is

this model contains a semilocal monopole. Since the
discrete parity symmetry that interchanges the two SO(3)
factors [which is embedded in SU(4)] is also spontaneous-
ly broken, there is a semilocal domain wall in the model,
as well.

In models of dynamical symmetry breakdown, then,
semilocal defects are topological defects that can be ana-
lyzed using an effective Lagrangian that describes physics
well below the scale of the symmetry breakdown, as these
examples illustrate. The defects have a characteristic size
that is larger than the symmetry-breaking scale by a
power of the inverse G,„,coupling.

VII. MIXING AND T%'ISTING

(7.1)

where G, is the gauge group and G2 is a global symmetry
group. In Sec. III, we considered the properties of semi-
local vortices in models such that G2 is a nontrivial con-
tinuous group. We saw that, under suitable conditions,
there can be topological magnetic flux sectors that con-
tain configurations of finite energy in which the flux is
spread out over an arbitrarily large area. Such
configurations exist if the Higgs field on the circle at
r = ~ traces out a noncontractible path in G&/H„and
this path can be contracted in [6 &

X G2 ] /H, in other
words, if the vortex is classified by an element of the ker-
nel of the natural homomorphism

~,(G, /H, )~m, ([G, X 62]/H) . (7.2)

In this section, I will discuss this criterion in a bit more
detail. Specifically, I will emphasize the (rather obvious)
fact that the kernel can be nontrivial only if "mixing"
occurs; that is, there must be a generator of H that is a
nontrivial linear combination of a G& generator and a G2
generator.

The general compact symmetry group with this local struc-

ture is 6,„„,= [6, X G, ]/Gd;„„„„where Gd;„„„,is a discrete in-

variant subgroup of 6, X 62. But there is really no loss of gen-

erality in assuming 6,„,«=6& &Gz, if we allow matter fields

that represent Gd;„„„trivially.

The models that we have been considering have a
G,»«symmetry with the local structure

G,„„,-G, XG2,
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To see this, let us recall that a closed loop in the coset
space G/H may be expressed as

4(8}=D[g(8)]@0, g(8)&6,

g (0)=e, g (2n. ) EH;
(7.3)

here 4 is an "order parameter" with stability group H,
and D is the representation of G according to which N
transforms. Thus, closed paths in 6/H that begin and
end at an arbitrarily selected point 40 are parametrized
by paths in 6 (open, in general), that begin at the identity
and end at a point in H. The homotopy classes in

m, (G/H), then, are equivalent to topological classes of
paths in 6 that begin at the identity and end in H. There
are two types of nontrivial classes —ones that end in the
identity component of H (which occur only if 6 is not
simply connected), and ones that do not (which occur
only if H is not connected).

In the case G =G, X G2, a closed path in [6,X 62]/K
can be expressed as

4 (8}=D[g &g2(8)]@0~ gi(8) E6], gz(8) E 62
(7.4)

g,g2(0)=e, g, g2(2n. ) GH,

where D is the representation of 6, X 62 according to
which 4 transforms. Now, consider a nontrivial element
of the kernel of the homomorphism Eq. (7.2). Represent-
ing it is a path g'i '(8) G G, that cannot be smoothly de-
formed so that it lies in H, for all 8, if we fix g, (0)=e„
and require that g, (2m. ) EH, . By assumption, it is possi-
ble to deform this path so that g, gz(8) lies entirely in H

Let us denote this deformation by g, g2(t, 8}, where
t E [0,1],and

g, (0,8)=gP'(8), g, (0,8)=e, ,
(7.5)

g, gz(1, 8)EH .
Now we distinguish two cases. If g, (t, 2n. ) EH, for all t,
then we know that g, (1,8) cannot lie in H, [for other-
wise g P'(8) defines a trivial closed path in Gi /H„con-
trary to our assumption]. But g, (1,8)g2(1,8) is in H. So,
as 8 varies, D[gi(1,8)) and D[g2(1,8)] both act non-
trivially on the order parameter +o, while their product
acts trivially. This means that there is a generator of H
that is a nontrivial linear combination of broken 6& and
Gz generators —in other words, there is mixing.

On the other hand, suppose that g, (t, 2m. ) does not stay
in Hi for all t. Then, since g&(t, 2m}g2(t, 2m. )EH, we
know that, as t varies, D [g&(t,2')] and D [g2(t, 2m)] act
nontrivially on +o, while their product acts trivially.
Again, we conclude that there is mixing.

It is useful to restate this conclusion in the language of
fiber bundles. We noted in Sec. II that the Nambu-
Goldstone bosons associated with the vacuum manifold
[6,X G2]/H can be divided into two classes —those that
are absorbed by the G, gauge fields and the surviving
Nambu-Goldstone bosons that remain exactly massless.
This division defines, locally, a decomposition of the vac-
uum manifold into a direct product of two spaces —the
G, gauge orbit and the space M„b;, of gauge orbits. In
other words, there is a projection map

rr:[6, X G, ]/H M.„,, (7.6)

that takes each point of the vacuum manifold to the
gauge orbit on which it lies. This map is agbration of the
vacuum manifold, with base space M„b;„ fiber G&/H,
(the gauge orbit), and structure group Gi.

Now, the topologically conserved magnetic flux is
classified by the fundamental group of the fiber, the gauge
orbit. Configurations with nontrivial magnetic flux can
"spread out" if there are noncontractible loops in the
fiber that can be contracted in the total space of the
bundle —that is, if the homomorphism Eq. (7.2) has a
nontrivial kernel.

But suppose that there is no mixing —the unbroken
group is H=H, XH2, where H, CG, and H2CG2.
Then we have

Gi XGq 6) G~
X

H) XHq Hi H2
(7.7)

the vacuum manifold is globally a direct product of the
gauge o~bit 6, /H, and the space M„b,, =6, /H, . Thus,
noncontractible loops in a gauge orbit evidently remain
noncontractible in the total space of the bundle. Vortices
with nontrivial magnetic flux cannot spread.

For a vortex to be able to spread, it is necessary (but
not sufficient) for the vacuum bundle to be a nontrivial
("twisted") bundle with base space M„b;, and fiber

6, /H, . For the bundle to be twisted, it is necessary (but
not sufficient) for mixing to occur.

Magnetic monopoles are classified by noncontractible
two-spheres in the gauge orbit. As noted in Sec. IVB,
such a two-sphere always remains noncontractible in the
total space of the bundle. A magnetic monopole (with
nontrivial topological charge) always has a core.

VIII. (GENERALIZED) ELECTROWEAK VORTICES

As noted above, in a magnetic flux sector classified by a
nontrivial element of the kernel of the homomorphism
Eq. (7.2), there are configurations of finite energy in
which the flux is spread out over an arbitrarily large area.
It then becomes a dynamical question whether the energy
is minimized in this sector by a spread out configuration
or a localized vortex. We argued in Sec. III that the
spread out configurations are favored at suSciently weak
gauge coupling, but that stable localized vortices may ex-
ist if the gauge coupling is not too weak (or the Higgs-
boson mass is not too large).

Following Vachaspati [4], let us consider what would
happen to such a stable vortex if we were to gauge the
global G2 symmetry. When G2 is gauged, the vortex no
longer carries a topological conserved magnetic flux, so it
is bound to become unstable. But we know that the vor-
tex is stable in the limit ez~O, where e2 is the 62 gauge
coupling. It is reasonable to expect that the classical vor-
tex solution remains classically stable for a finite range of
values of e2, though there are presumably quantum
mechanical tunneling processes that allow it to decay. As
Vachaspati observes, if we gauge the SU(2)L global sym-
metry in the model described in Sec. V A, we obtain the
standard electroweak model. This model therefore con-
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tains metastable "electroweak strings, " {although not for
realistic values of the Higgs-boson mass and sin O~ [26]).

In this section, I will discuss a few features of the
theory of such electroweak vortices.

In general, we consider a model with gauge group
G, XGz, spontaneously broken to H. If the Gz gauge
coupling e2 turns off, the gauge group G, breaks to H, ,
the intersection of G

&
and H. A (generalized) elec-

troweak vortex is a vortex that carries no topologically
conserved flux, but becomes topologically stable in the
limit e2~0; thus, it is associated with a nontrivial ele-
ment of the kernel of Eq. (7.2). As is clear from the dis-
cussion in Sec. VII, such an object can exist only if there
is gauge boson mixing —there must be a generator of H
that is a nontrivial linear combination of a G, generator
and a G2 generator.

A. Strings ending on monopoles

Let us denote by Q, z two generators of G, z that mix.

Suppose that the Higgs field 4 ' ' carries charges q, z,
so that

Qz Qi

q2 q&

(8.1)

is an unbroken H generator. If B, 2 are the gauge fields
that couple to Q, z, then

A =B,cosO+B2sinO (8.2)

is the massless gauge field that couples to eQ, where e is
related to the G, 2 gauge couplings by

e e
=e2q2, = —e, q& .

sinO
'

cosO

The orthogonal gauge field state is

Z = —B,sinO+B2cosO,

which couples to

(8.3)

(8.4)

e Qi . , Qz
ez Qz = sin O+ cos O

cosO slnO q i q

e Qz z—Q sin O
cosO sinO qz

(8.5)

The Z need not be a mass eigenstate field; it could be a
linear combination of massive gauge bosons with different
masses. For example, we might have Z =X cosO
+ Y sinO, where X is a mass eigenstate coupling to e&Qx
and Y is a mass eigenstate coupling to e&Q&. Then Eq.
(8.5) is the combination ez QzcosO+e&Q&sinO that cou-
ples to Z. (Note also that G, or Gz could be a product of
several commuting factors, each with an independent
gauge coupling. Then Q, , for example, might be a linear
combination of generators, each belonging to a different
invariant subalgebra of the G, Lie algebra. )

Now consider a vortex that has Z magnetic flux 4'
confined to its core. This means that, at least in a partic-
ular gauge, we have

P exp i fee Q B„dx" =exp(iezQz+~ I) (8.6)

where C is a closed path that encloses the vortex. Here
B„' has been summed over the G, XG2 gauge fields, and

e, , Q' are the corresponding gauge couplings and genera-

tors. Since the Higgs field 4 ' ' must be covariantly
constant and single-valued outside the core, the Z flux is
required to be an integer multiple of the flux quantum

~ z] 2m . 2m. sinO

e e, q&

(8.7)

If a particle is covariantly transported around the
minimal vortex, it acquires the Aharonov-Bohm phase

exp 2m'i —
Q sin O (8.8)

For a typical charged particle, and a generic value of the
mixing angle O, this is a nontrivial (in fact, transcenden-
tal) phase. But it follows from our assumption that the
vortex carries no conserved topological charge that Eq.
(8.8) is an element of the identity component of H. In
two spatial dimensions, this means that it is possible to
smoothly deform the vortex configuration (while the en-

ergy remains finite) to a configuration that has only mass-
less H magnetic flux. This configuration can then lower
its energy to zero by spreading out indefinitely. Thus,
though the vortex may be classically stable, it can decay
by tunneling quantum mechanically to the configuration
with massless magnetic flux.

Similarly, in three spatial dimensions, there are
configurations in which the Z flux tube ends on a finite-
mass "magnetic monopole, " with A magnetic flux spil-
ling out of the end. One may regard the flux tube as a
visible Dirac string; then the magnetic flux through a
sphere enclosing the monopole may be inferred from Eq.
(8.8). Let us define the magnetic charge g, s of the
monopole so that 4mg, is the total A magnetic flux
emanating from the monopole; more precisely, let

I' exp i &e A "dx„=exp 4~ie
g

8 9

where C is a path that encloses the Dirac string of the
monopole. We conclude that

1g, = sinO.
2e

(8.10)

Of course, this flux does not satisfy the Dirac quantiza-
tion condition, because the string is not invisible. [If
exp(2vriQz/qz) is a nontrivial element of the identity
component of H, there will be some additional magnetic
flux, coupling to another H generator, aside from the A

fiux given by Eq. (8.10).] Note that, in the case of the
standard model, Q defined by Eq. (8.1) is actually twice
the conventionally normalized electric charge operator,
so we have gm, =sin O/e, if e is the conventionally nor-
malized electromagnetic gauge coupling. Such Z mag-
netic flux tubes ending on magnetic monopoles were first
discussed by Nambu [27].

A classically stable electroweak string can break in a
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quantum mechanical tunneling process where a pair of
monopoles nucleates spontaneously. The decay of meta-
stable electroweak vortices and flux tubes will be further
discussed in Ref. [12].

B. Aharonov-Bohm interactions

We have seen that, for generic values of the mixing an-
gle, particles with nonvanishing Q have nontrivial
Aharonov-Bohm interactions with electroweak strings.
In principle, the charge Q of a projectile could be mea-
sured by scattering the projectile off of a string.

Such measurement processes have attracted much re-
cent interest, particularly in the case where the unbroken
gauge group H,„, is disconnected [28]. In that case,
there are topologically stable strings associated with the
"local discrete symmetry. " The Aharonov-Bohm in-
teraction can then probe the quantum hair" of an ob-
ject. This quantum hair can be measured at long range,
but becomes invisible in the classical limit. In the case of
an electroweak string, however, the flux of the string is in
the identity component of Hz, „~„and the string is not to-
pologically stable. The charges that can be measured in
Aharonov-Bohm scattering off the string are not varieties
of quantum hair. To be specific, consider the standard
model, in which exp(2n iQ2/qz ) = 1. Then the
Aharonov-Bohm phase (8.8) is completely determined by
the charge Q. Therefore, we cannot learn anything about
a particle in an Aharonov-Bohm scattering experiment
that we could not discern by measuring its classical elec-
tric field.

This observation is easily generalized. The effect of
transport around a vortex is always described by an ele-
ment of the unbroken gauge group H,„„because the
Higgs condensate must be covariantly constant and single
valued outside the vortex. Thus, the Aharonov-Bohm
phase acquired by any projectile is always determined by
its transformation properties under H,„,. The "classi-
cal hair" of the projectile determines its charges in the
Hz,„,Lie algebra. This leaves undetermined only the
transformation properties under the "local discrete sym-
metries" that are not in the identity component of Hg gp.
These additional charges cannot be measured in
Aharonov-Bohm scattering if the flux of the string is in
the identity component. Thus, quantum hair can be mea-
sured only with topologically stable strings.

C. Embedded defects

Vachaspati and Barriola [5] have recently pointed out
a more general procedure for constructing static solu-
tions to the classical field equations that are not topologi-
cally stable. Consider a gauge theory with gauge group
Gg,„g, spontaneously broken to the subgroup Hg, „g,.
Now choose a nontrivial subgroup G,„„such that the
intersection of G,„,and H,„,is H,„,. Suppose that
the natural homomorphism

has a nontrivial kernel. In other words, there are non-
contractible loops (n = 1) or two-spheres (n =2) in
Gg,„g, /H&, „g, that are contractible in 6,„,/H, „,. Va-

chaspati and Barriola then show that, under suitable con-
ditions, there are classical vortex (n =1) or monopole
(n =2) solutions to the field equations associated with the
nontrivial elements of the kernel. That is, if a gauge
theory with gauge group G,„,broken to Hg g

contains
a topologically stable defect, this defect remains a solu-
tion to the field equations when the gauge group is en-
larged to Gg g DGg g

The electroweak vortices de-
scribed above are a special case of such "embedded de-
fects, "where 6,„,=6& X 62 and G,„,=6&.

But there is no particular reason, in general, to expect
an embedded defect to be classically stable. In the case of
embedded monopoles, one can make a stronger state-
ment: they are always classically unstable (if not topologi-
cally stable).

To see this, we recall that, in a model with unbroken
Hg g symmetry, we may associate with any magnetic
monopole a topological Hg g charge. The matching
condition (or Dirac string) of the monopole defines a
closed path in H,„z„and the corresponding element of
m&(Hs, „s,) is the inagnetic charge [13,1]. If the monopole
arises in a model with an underlying 6,„, symmetry,
and is nonsingular, then this loop in H,„,must be con-
tractible in G,„s,. (Otherwise, the Dirac string would
necessarily end on a point singularity. ) This means that a
nonsingular monopole with nontrivial Hg, „z, is always as-
sociated with a nontrivial element of ir2(Gs, „s,/Hs, „s,); it
is topologically stable.

Conversely, a monopole that is not topologically stable
must carry trivial H, „g, charge. It was shown by Brandt
and Neri [29] and Coleman [30] that such monopoles are
always classically unstable. To demonstrate the instabili-
ty, it suffices to study the small vibrations of the long
range H,„,gauge field; it is not necessary to consider
the structure of the monopole core. But since there is no
topological conservation law to prevent it, the core will
presumably "unwind, " and its energy will be carried to
spatial infinity as non-Abelian radiation.

An embedded monopole is just a particular type of
monopole solution that carries no topological charge, and
it is therefore unstable.

IX. CONCLUDING REMARKS

A. Semilocality

I have used the term "semilocal" to characterize de-
fects that occur in models in which the gauge group is
embedded in a larger group of (approximate) global sym-
metries. These defects carry "topologically conserved"
charges, yet can be deformed so that the order parameter
takes values in the approximate vacuum manifold every-
where. This usage encompasses the vortices originally
considered by Vachaspati and Achucarro [3]. It also in-
cludes a broader class of domain walls, vortices, and
monopoles. These share the feature that the spontane-
ously broken approximate global symmetry is not re-
stored inside the core of the defect. Indeed, the structure
of the defect can be well described using an effective field
theory, in which the physics responsible for the spontane-
ous symmetry breakdown has been "integrated out. "
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But the term "semilocal" could be and has been used in
other ways. Hindmarsh [31]defines a semilocal defect as
one that arises in a model such that the vacuum manifold
is a twisted bundle of gauge orbits, as described in Sec.
VII. This classification leads him to consider an interest-
ing "semilocal texture" contained in the model of Ref. [3]
and Sec. V A. I have not discussed textures in this paper,
as the emphasis has been on defects that carry topologi-
cally conserved charges. (Textures, in contrast, even if
classically stable, can "unwind" via quantum tunneling. )

predominantly short open segments and small closed
loops [32]. Crudely speaking, each string has a nonzero
probability per unit length of ending (on a monopole), so
that long strings are exponentially suppressed. The
string-monopole network is therefore expected to disap-
pear quickly. The main cosmological implications of the
strings, then, would concern their influence on the elec-
troweak phase transition itself, perhaps including their
impact on electroweak baryogenesis [33].

B. Semilocal strings

Although I have broadened the notion of a semilocal
defect here, it should be noted that the most interesting
kind of semilocal defect is still the semilocal vortex ana-
lyzed in Ref. [3]. I would like to emphasize what was tru-
ly surprising and noteworthy (to me) about Ref. [3]. It
was not, I think, that a stable vortex could exist even
though the vacuum manifold is simply connected. It had
been stressed by Coleman, and was widely appreciated,
that only the pattern of gauge symmetry breaking is
relevant to the classification of finite-energy vortices.
The surprise was not that a semilocal vortex could be
stable, but that it could be unstable. Part of the motiva-
tion for this work came from the desire to understand
better why the magnetic flux wants to spread out when
the gauge coupling is sufficiently weak. (It is also nicely
explained in Hindmarsh's papers [16,31].)

C. Electroweak strings

Having said that the surprising feature of semilocal
vortices is that they can decay, I should admit that the
implications of the existence of stable semilocal vortices
are quite interesting. As Vachaspati [4] emphasized, a
stable semilocal vortex will remain classically stable even
if the global symmetry is gauged, provided the gauge cou-
pling is not too large. Unfortunately, classically stable
strings do not arise in the minimal standard model, for
realistic values of the sin 9ii, and Higgs-boson mass [26].
But they may well occur in realistic extensions of the
standard model. Thus, we are invited to contemplate the
consequences of long-lived metastable strings at the elec-
troweak scale.

First, there would be new resonances at the TeV scale.
These could be segments of string with monopoles at the
ends (as envisioned long ago by Nambu [27]), or closed
loops of string. Regrettably, since these states are
"squishy" classical objects, production of the new reso-
nances would be highly suppressed in hard pointlike col-
lisions. They are not likely to be seen in future accelera-
tor experiments.

Second, the strings would be produced during the elec-
troweak phase transition in the early Universe. Not
many strings would survive to the present epoch, though.
Because the strings can end on monopoles, the strings
that are initially produced in the phase transition will be

7See Appendix 3 of Ref. [1].

D. Electroweak Aux tubes and the monopole problem

Another potential cosmological implication of elec-
troweak strings deserves comment. Lazarides and Shafi
[34] suggested many years ago that electroweak fiux tubes
might offer a natural solution to the cosmological mono-
pole problem [35]. The idea is that the grand unified
theory (GUT) monopoles that are copiously produced in
the very early Universe might become confined by flux
tubes after the electroweak phase transition. The flux
tubes would greatly enhance the rate of monopole annihi-
lation, and rapidly reduce the monopole abundance to an
acceptable level.

There are some problems with this idea. First, as La-
zarides and Shafi noted [34], the magnetic monopoles in
the simplest grand unified models carry U(1)„„„,, „„;,
magnetic charge and SU(3)„i,„magnetic charge. They
do not have any Z magnetic flux, and they are little
affected by the electroweak phase transition. Still, there
are alternative models in which the stable magnetic
monopoles carry U(1)h„~„,„„s,magnetic charge (as well

as color magnetic charge). These monopoles have both
Z and 3 magnetic flux, so that the Lazarides-Shafi
mechanism might work.

A second problem is that the Z flux tubes are unstable
in the simplest models, so that monopole confinement
does not really occur, even if the monopoles do have Z"
magnetic fields. But we have noted that the Z flux tubes
could be stable in extended models, so it still seems that
there is a class of models in which the Lazarides-Shafi
mechanics could work.

There is a third problem however, that probably makes
the idea untenable, even under optimistic assumptions.
The problem is that an electroweak flux tube can end on
either a heavy GUT monopole or on a light electroweak
(Nambu) monopole. There is no guarantee, then, that the
flux tube emanating from a GUT monopole mill bind it to
another GUT monopole, rather than to a light elec-
troweak monopole.

The GUT monopole with minimal U(1)h„~„,h„s, mag-
netic charge carries electromagnetic charge cos 0/e, in
addition to its confined Z flux. If the flux tube ends on
an electroweak monopole with charge sin 0/e, then the
monopole-string composite has magnetic charge 1/e,
twice the Dirac charge. After the flux tube shrinks away,
this object becomes an unconfined stable magnetic mono-
pole, with electromagnetic (and color) magnetic charge.

For the Lazarides-Shafi mechanism to successfully
reduce the monopole abundance to an acceptable level,
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electroweak monopoles must be heavily suppressed, so
that the flux tubes almost always end on GUT mono-

poles. It seems difficult to devise a plausible scenario of
this kind.

As this paper was being completed, I became aware of
Ref. [31], which has some overlap with the research re-
ported here.
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