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We seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on
the minimal constraints imposed by Einstein’s theory of relativity, Le Chatelier’s principle, causality,
and a low-density equation of state, uncertainties in which can be evaluated as to their effect on the re-
sult. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron
star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation
below which mass shedding would occur, is 0.33 ms for a M =1.442M neutron star (the mass of
PSR1913+16). A still lower curve, based only on the structure of Einstein’s equations, limits any star
whatsoever to lie in the plane above it. Hypothetical stars such as strange stars, if the matter of which
they are made is self-bound in bulk at a sufficiently large equilibrium energy density, can lie in the region
above the general-relativistic forbidden region, and in the region forbidden to neutron stars.

PACS number(s): 97.60.Jd, 95.30.5f, 97.10.Kc

1. INTRODUCTION

Limits are frequently of interest as a means of distin-
guishing between alternative interpretations of an ob-
served phenomenon. For example, Rhoades and Ruffini
[1] derived an upper bound on the mass of a neutron star.
It is ~3.2M. Several compact objects whose inferred
mass is larger than this have been identified as candidates
for moderate mass black holes on this basis [2,3]. In this
paper we derive a lower limit on the rotational period of
a gravitationally bound star as a function of its mass.
Our purpose here is to provide a decisive means, based on
rotational period and mass, of distinguishing between
pulsars that can be neutron stars, or more generally,
gravitationally bound stars, and pulsars that cannot.

It is timely that such a limit be established. Since the
discovery of the first millisecond pulsar in 1982 [4], the
discovery rate of fast pulsars has quickened, culminating
in the recent observation of ten in a survey of the globu-
lar cluster 47Tucanae [5]. More than half of them are in
binary systems, auguring well for mass determinations.
These discoveries are interesting for a number of reasons,
including the evolutionary history of globular clusters [6].
The particular significance for the subject of this paper of
these and other globular cluster pulsars is that the inter-
stellar dispersion to a cluster can be very accurately cali-
brated once one discovery is made. This facilitates the
search for other fast pulsars within the same cluster,
perhaps having still shorter periods, because the interstel-
lar dispersion is a well-known factor that limits the sensi-
tivity of searches for short period pulsars [7].

For a given mass pulsar, how short can the rotational
period be if the pulsar is a neutron star, and what would
be the significance for its nature if a shorter period were
observed?

So far as is known all stars are bound by the gravita-
tional interaction including neutron stars and hybrid
stars, the form that neutron stars would take if the pres-
sure in the core is sufficiently high to convert nucleons to
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quark matter. Other types of stars have been conceived
but not identified. They are made of hypothetical matter
that is stable and self-bound at high density. As such,
they would not be subject to the limit on rotation of a
gravitationally bound star, and could if self-bound at
sufficiently high density, rotate at periods below that lim-
it. We will return to this alternative later.

Several authors have previously investigated how fast
neutron stars can rotate, based on particular theories of
dense matter [8—10]. The minimum Kepler period for
those theories, below which mass shedding would occur,
is ~0.5 ms for 1.44M, stars. However, given the uncer-
tainty in the equation of state in the high-density domain
of matter, no decisive conclusion could be reached if a
pulsar with a shorter period were found, save that none
of those theories is correct. A decisive rotational limit for
gravitationally bound (i.e., neutron) stars can be derived
only from a set of constraints that do not exceed our cer-
tain knowledge and principles, or if some do, that the un-
certainty in the outcome can be accurately gauged.

In this paper we establish with reasonable accuracy,
and without recourse to any but a minimal set of physical
assumptions as enumerated in the next section, a region
of the mass-period plane that is inaccessible to neutron
stars. To do this we adopt a flexible ansatz for the equa-
tion of state and then by means of a modified Levenberg-
Marquardt method [11] solve the nonlinear least-squares
problem posed, namely, that of finding the minimum ro-
tational period of neutron stars of given mass by varying
the parameters of the ansatz. Included in the ansatz is
the possibility that Le Chatelier’s principle is stretched to
its limit, which we discuss later. Then we adopt an even
more flexible ansatz (but still satisfying the minimal con-
straints) and determine by how much the period can be
lowered. The reduction is 1%. So we believe that within
the numerical accuracies discussed later, we have estab-
lished a region that is forbidden to neutron stars.

A neutron star is bound by the gravitational interac-
tion. Above the density of approximately that of metallic
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Fe (~7.86 g/cm’), the pressure of cold catalyzed
matter is positive, and in the interior of the star it is very
large; the density is so high that the nucleons reside in
the range of the repulsive interaction of their neighbors.
This repulsion, and the high Fermi energy, would blow
the star apart into its constituents if gravity were turned
off. As is well known, there is a maximum mass compact
star, the limiting star, for which all compact stars of
greater mass are hydrostatically unstable. For any equa-
tion of state such a limit exists [12]. Compact stars rotat-
ing at the frequency at which centrifuge and gravity bal-
ance, the Kepler frequency, form a sequence that also ter-
minates with a star of maximum mass for the sequence.
From the radius-mass relation of gravitationally bound
stars, we know that the limiting star has the highest
Kepler frequency. This frequency is an upper bound on
rotation frequency. Other instabilities may occur at
lower frequency and set the effective bound, but the phys-
ics is less certain.

In the next sections we enumerate the minimal con-
straints on the equation of state, describe the variational
ansatz, present the results that define the region in the
mass-period plane that is inaccessible to neutron stars,
test the sensitivity of the results to such things as the
variational ansatz, choice of low-density equation of state
and even the assumption of the subluminal constraint.
We also derive a limit on rotation period for any star,
that follows from the structure of Einstein’s equations
alone. Of course it lies below the limit for neutron stars.
We provide a discussion of the implication if a pulsar is
found in the region forbidden to neutron stars but al-
lowed by general relativity.

II. MINIMAL CONSTRAINTS ON THE EQUATION
OF STATE

We adopt the following as the minimal principles and
constraints.

(1) Einstein’s general relativistic equations for stellar
structure hold.

(2) The matter of the star satisfies dp /dp = 0 which is a
necessary condition that a body is stable both as a whole,
and also with respect to the spontaneous expansion or
contraction of elementary regions away from equilibrium
(Le Chatelier’s principle).

(3) The high-density equation of state, whatever it is,
matches continuously in energy and pressure to the low-
density one of Baym, Pethick, and Sutherland [13].

(4) Causal constraint for a perfect fluid; a sound signal
cannot propagate faster than the speed of light,
v(e)=Vdp/de<1, which is the appropriate expression
for sound signals also in general relativity [14].

(We denote pressure by p, energy density by €, and
baryon number density by p and use units G =c =#=1.)
The first two constraints are most secure. The third is
easily tested as to its effect on the result. The causal con-
straint as expressed, is frequently invoked, and most
theories of dense matter obey it at least to densities ex-
pected in neutron stars, and some theories, such as the
o —o nuclear field theory explicitly obey it at all densi-
ties. Strictly speaking, the above expression, even for a
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perfect fluid, is the signal speed only in a homogeneous
body if v is dependent on €, and in an inhomogeneous
body only if v is independent of €. Nevertheless for a per-
fect fluid it is a general causal constraint (see Appendix).
It is not known how to impose a causal constraint on an
imperfect fluid. However the effect on our results of lift-
ing the constraint V'dp /de <1 is easy to test. The results
of these tests and others are given in Sec. V.

While it is widely assumed that PSR1913+16 with a
mass M =1.44210.003 is a neutron star [15], for our pur-
pose we cannot make this assumption. However we shall
pay special attention to this mass, since it is close to the
iron core mass (the Chandrasekhar mass) of presuperno-
va stars, and to the compact objects that supernova ap-
pear to produce.

III. VARIATIONAL ANSATZ

In the “low-density” region, up to some fiducial densi-
ty po near nuclear density we use the equation of state of
Baym, Pethick, and Sutherland [13] (BPS) for charge neu-
tral nuclear matter, which has input also from the work
of Baym, Bethe, and Pethick [16] and of Siemens [17].
We take this to be reasonably constrained by bulk prop-
erties of nuclear matter at the saturation density of nu-
clei. A tabulated entry in the BPS tables that is suitable
for the fiducial density occurs at p,=0.1625 fm .
Beyond the fiducial density we represent the unknown
equation of state by a parametrized form. As an option
we allow for the possibility of a first-order phase transi-
tion of the type where the pressure is a constant and the
energy density increases linearly with baryon density over
a certain range. This is the most extreme allowable form
since it satisfies the equality in Le Chatelier’s principle.
Above the fiducial density or the phase transition region
as the case may be, we adopt a “gamma law” form. At
the density at which it becomes noncausal, if it does, we
replace it by its causal limit. In summary the equation of
state is continuous and defined by the following equa-
tions.

(a) Low density:

€(p)=epps(p), p(p)=ppps(p) (for p<p,) . (1)

(b) Phase transition region:

e(p)=p£(60+p0)—po, p(p)=pg
0

(for pg<p=p,=pot4), @)

where €y,=¢€gps(py), Po=prps(po). This satisfies the
condition that the baryon chemical potential
ulp)=de/dp=const in the interval A. This segment
satisfies Le Chatelier’s principle at its limit, namely, the
equality in constraint number 2.

(c) Parametrized region:

e(p)= (u"—u)tue, +(1—u)(A4 —py),

y—1
plp)=A(u¥Y—1)+p, (for p,<p<p,),

(3)

where u=p/p, and €,=(p,/po)€ytpo)—po if AFO
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while u =p/p, and €, =¢; if A=0. Constraint 2 requires
Ay 20. If the equation of state, Eq. (3), becomes non-
causal at p; defined by (dp /d e)ps =1, at which density we

denote the energy density and pressure by e€,,p,, we re-
place it thereafter by the following.
(d) Causal limit:

elp)=¢,—p,+p(p),
4)

2
£ (for p=p;) .

s

P(P):% [ps_6s+(ps+6:)

(We note in passing that Le Chatelier’s principle at its ex-
treme dp /dp=0 or, equivalently, p =const, corresponds
also to the mixed phase of a system undergoing a first-
order phase transition when it is a one-component system.
This is a special and extreme example of a first-order
phase transition. In multicomponent systems with a
first-order phase transition, the pressure, in general, is
not a constant in the mixed phase but rather an increas-
ing function of density [18]. Nevertheless we shall refer
to this special region, p =const, as a condensate or phase
transition region. Since compact baryon stars in equilibri-
um have particles carrying both baryon or electric charge
or both, a first-order phase transition region, if it exists in
the star, will almost certainly be of the multicomponent
type for which dp /dp>0.)

IV. LIMITING VALUE OF ROTATIONAL
PERIOD AS A FUNCTION OF
MASS FOR NEUTRON STARS

The maximum mass star M, in the sequence of grav-
itationally bound compact stars belonging to a given
equation of state, has the minimum Kepler period since
the mass is the largest and the radius is the smallest be-
cause of the gravitational attraction. Therefore we can
incorporate the minimal constraints into a variational
search over A4, y, and A (when the option for a phase
transition is exercised) for the lower limit on the rotation-
al period of a neutron star as a function of maxi-
mum mass M,_, by minimizing the function
fM,P)=w,(M —M_, ) +w,P? where w,,w, are
weights. We use a modified Levenberg-Marquardt
method [11] for finding the minimum of a nonlinear func-
tion of its arguments. The function has its minimum
when M =M ., and P is the least possible Kepler period
for that mass and, of course, M, and P depend non-
linearly on the parameters mentioned above, through the
solution of Einstein’s equations. From numerical solu-
tions for relativistic rotating stars it is found that the
Kepler period of the maximum mass star of a given equa-
tion of state can be found to better than 10% from the
mass and radius of the nonrotating maximum mass star,
which is a solution of the Oppenheimer-Volkoff equa-
tions. The empirical relation is given by a numerical fac-
tor times the classical relation that balances gravity and
centrifuge [8,19,20], Qx =~0.625(M /R *)'/?, or
172
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FIG. 1. The minimum rotational period of neutron stars is
denoted by the solid curve. Calculated points are shown by
dots. Periods of a sequence of stars whose maximum mass is
1.8M@ are shown by the dashed line. The region forbidden by
structure of general relativity [modulo the approximate formula
Eq. (5)] is represented by the diagonal shaded region.

The results are summarized in Fig. 1. We show the
minimum Kepler periods for star sequences that are sub-
ject to the above constraints as a function of the corre-
sponding maximum (limiting) mass star. Neutron stars
cannot lie below the solid curve of this figure within the
very small limits discussed in detail below. We also show
Kepler periods for the sequence whose maximum mass is
1.8M . In Sec. VI we derive a region that is forbidden
by the structure of general relativity, and it is also shown
in the figure.

Although the pulsar 1913+16 with mass 1.442M, is
thought to be a neutron star we do not know this as a
fact. Much less do we know that this star, if a neutron
star, is at the mass limit. If it is a neutron star at the
mass limit, then the periods of gravitationally bound stars
for which our certain knowledge is limited to that
enumerated above cannot be less than 0.33 m when the
equation of state does not have a first-order phase transi-
tion. If it does, the period can be further reduced by 0.01
ms, which falls within the uncertainty of Eq. (5). In any
case, for a neutron star with canonical mass of
~1.44M,, apparently preferred by the creation process,
the lowest possible stable period of rotation cannot be less
than ~0.33 ms.

The bottom two curves shown in Fig. 2 are the equa-
tions of state with and without a phase transition region
which yield a 1.442M, star with the lowest possible rota-
tional period for a neutron star of that mass. The radii of
the corresponding static stars are 6.19 and 6.32 km, re-
spectively, and the central energy densities are 26.1 and
26.0 times normal nuclear saturation density
(e,~2.5X10" g/cm®*=0.71 fm~*=140 MeV/fm>. The
high density required of neutron star models (see Fig. 3) if
they are to withstand short rotational periods has been
cited as reason enough to suspect that short period pul-
sars, if they exist, are not neutron stars [21,22].
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FIG. 2. Bottom two equations of state produce minimum ro-
tational period for a 1.442M¢ neutron star, one with conden-
sate (p =const region) and the other without. Others illustrate
the flexibility of the simplest parametrization, Egs. (2)—(4). The
three segments of each are (a) BPS, (b) parametrized region, (c)
causal limit dp /de=1. Ultrabaric region has p > €. Its bound-

ary is p=e. This region is inaccessible from below when
dp/de=1.

The energy density profiles of the edges of the two op-
timally configured spherical neutron stars as regards the
stability of their rotating counterparts to mass shedding
at fast rotation (P ~0.33 ms) are shown in Fig. 4. The
notable features of these star profiles is the nearly uni-
form density interior, and the rapid drop in density very
close to the edge, characteristic of an equation of state
that is stiff at high density and very soft at intermediate
as has been found necessary for stability to fast rotation
[10,23]. The fiducial density is at €e~0.7 fm~* and the

50

40

30+

sc/as

20

FIG. 3. Central energy density in units of normal nuclear sat-
uration density for the nonrotating neutron stars whose rotating
counterparts have the shortest possible Kepler period, namely,
those corresponding to Fig. 1.
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FIG. 4. Density profiles of edge (R ~6.2 km) of the two lim-
iting mass spherical stars corresponding to the bottom two
equations of state of Fig. 2 each with mass 1.442M@, and
Kepler periods for rotating stars of 0.32 and 0.33 ms for the
solid and dashed cases, respectively. Phase transition region
(p =const) corresponds to the discontinuity in density (dotted).
Other profile (R ~8 km) for same limiting mass but Kepler
period 0.5 ms.

bulge in both profiles below this density correspond to
neutron star matter below the density of nuclear matter,
which is represented by the BPS equation of state. It
should be noted that the subnuclear crust, which is
magnified in this figure by the suppressed origin, is actu-
ally very thin, ~0.2 km. (The radii of these stars as
quoted above is determined more than five decades below
the lowest density shown in Fig. 4.) Also for comparison
we show the profile of a limiting star of the same mass
whose Kepler period is 0.5 ms. This is a more conven-
tional neutron star model and it is evident that to attain
the limiting period of 0.33 ms, even though only slightly
smaller, the structure of the star, and the underlying
equation of state must be radically different. The central
energy density of the spherical star with the 0.5-ms
Kepler period for the rotating counterpart, is 18.6¢;.

It may be of some interest to comment that the
Oppenheimer-Snyder limiting mass star, corresponding
to an ideal neutron gas, has M =0.72Mg, R =9.6 km,
and for the rotating counterpart a Kepler period of
P =0.98 ms and lies far above the scale of Fig. 1. The
Rhoades-Pietronero-Ruffini maximum mass star has
M=3.2Mq, R=13.7 km, and the rotating counterpart
has Kepler period P=0.79 ms and lies about 0.1 ms
above the projection of our limiting curve.

V. TEST OF SENSITIVITY OF RESULTS TO DETAILS

Here we give the evidence concerning the accuracy
with which the limiting curve is determined which
separates the period-mass plane into a region that is ac-
cessible to neutron stars and one that is not. Our tests
are performed for a canonical mass of 1.442M, since this
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is likely to be near the mass of most neutron stars that are
actually produced in supernova, it being rather common-
ly accepted and understood why the favored mass lies in
a rather narrow range (around the Chandrasekhar limit
which establishes the mass of the iron core of the progen-
itor star).

The sensitivity of our results to the choice of “low-
density” equation of state was tested by setting the pres-
sure to zero at and below the fiducial density. The corre-
sponding period is reduced thereby by a small amount,
0.014 ms. This extreme softening permits the greatest
compaction at the surface and therefore the greatest sta-
bility to mass shedding, so no other low-density equation
of state having the same pressure and energy at satura-
tion could give a lower value for the limiting period. We
remark here that some early calculations [24] of purely
neutron matter which neglect the penalty of the high iso-
spin asymmetry imposed by the nuclear force actually
predict bound neutron matter at a density near normal
nuclear density. However, the Fermi energy contributes
only about half the value of the symmetry coefficient in
the empirical mass formula, the remainder arising from
the isosopin part of the nuclear force, which is neglected
in the work that finds neutron matter to be bound. If
neutron matter were bound, then p =0 at its equilibrium
density, and defines the edge of the star which would
occur near nuclear density (~2.5 10'* g/cm?), as in the
above test, instead of at the density of iron (~7.86
g/cm’) as for the lowest energy state of cold catalyzed
matter [12]. So our test embraces the extreme case of
bound neutron matter. However, there is no reason to
expect neutron matter to be bound. Nuclei of Z very
different from A become increasingly less bound with in-
creasing (A4 —Z)%, which gives rise to the well-known
“valley of stability.”

We have already stated the result that the shortest
period of a 1.442M, star can be reduced by 0.01 ms
below 0.33 ms if the equation state is allowed to have a
region of constant pressure as a function of density; such
an equation of state satisfies Le Chatelier’s principle at its
limit (the equality in the second constraint). This is true
whether we take the density of the onset of the constant
pressure region to lie near nuclear density or above. By
the test of the preceding paragraph, the maximum reduc-
tion in period that can be gained by having the onset of
the region of constant pressure occur at a lower density
than the fiducial one is <0.014 ms.

The effect of a specific choice of fiducial density p, in
the range 0.1484-0.1814 fm > near nuclear saturation
amounts to an uncertainty in minimum period of only
£0.001 ms for our canonical neutron star.

The parametrization of the equation of state used
above, and the flexibility to reach the limit allowed by Le
Chatelier’s principle through the inclusion of a phase
transition with constant pressure, as exemplified by the
extremes illustrated in Figs. 2 and 4 evidently represents
a very flexible family within which we search for a
minimum period. To test this we also expanded the vari-
ational ansatz with two additional powers of density, to
find whether our limit can be significantly lowered. The
expanded ansatz is
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plp)=Aw’—1)+Bu" '—1)+C(u?"2-1)
+P0 ’

where B >0, C>0 are additional parameters that are
varied to minimize the period at given mass. (The re-
striction to positive values assures that condition 2 is al-
ways satisfied when y >2.) The period could be reduced
by only 0.003 ms for a 1.442M, star, which is a very
small reduction (1%) for an ansatz with two additional
parameters.

It is believed that a signal in any medium cannot prop-
agate faster than the speed of light. Nevertheless the
principle of causality, which is the usual phrase employed
to state this belief, does not follow from Lorentz invari-
ance [25]. Although searches for tachyons have so far
proved fruitless, the principle is not proven thereby.
Moreover, it is not known what condition the equation of
a state of an imperfect fluid should satisfy so that super-
luminal signals cannot propagate in any region of a body
made of it. Therefore we test the effect on the minimum
rotational period if the causal constraint is lifted. The
period can be reduced thereby by 0.037 ms. This is the
largest of the uncertainties.

All of the above quoted uncertainties are small and lie
within the accuracy of the means of estimating the
Kepler period, Eq. (5), save the relaxation of the ‘“causal”
constraint, which is slightly larger. We conclude that the
solid line of Fig. 1 marks the lower boundary for neutron
stars rather accurately. Moreover, as pointed out in Sec.
VII, there are gravitational wave instabilities that are ex-
pected to occur at periods larger than the Kepler period,
so the latter is an absolute bound.

We have not questioned the validity of general relativi-
ty as concerns the structure of compact stars. The value
of M /R for the limiting mass stars in various models of
the equation of state is generally found to lie in the range
0.2-0.3 and for our minimally constrained models that
are designed to minimize the rotational period
M /R =0.34. Solar system phenomena (such as the ad-
vance of the perihelion of planets) test general relativity
only in the weak-field limit M /R <2X10~% However
recent experimental results derived from a decade of ac-
curate timing observations on a binary neutron star sys-
tem [26,15], test the theory to M /R =~0.2 with the con-
clusion that correct theories of gravity are very tightly
constrained and that Einstein’s theory lies at the center of
the constrained region. It appears that there is little
ground for questioning the appropriateness of the usual
equations for relativistic stellar structure, and in any
case, we do not know how to assess an error to constraint
1, if the correct theory is even a small variant of the usual
one.
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VI. GENERAL RELATIVISTIC LIMIT ON ROTATION

It may also be of interest to note a limit that can be de-
rived from the least number of constraints. Assuming
only that Einstein’s equations of stellar structure hold,
then M /R < £ for any static star [27]. Using the approx-
imate relation Eq. (5) we obtain
3/2

273

>—M
8

P=10.1M M
R

=0.167—A-/—I%ms (any star) , (7)

which for PSR1913+16 is P >0.24 ms. Since the limit
on M /R follows from the structure of Einstein’s equa-
tions the above limit on period applies both to neutron
stars as well as to hypothetical stars made of self-bound
matter. The forbidden region is marked in Fig. 1.

VII. DISCUSSION AND ALTERNATIVES

The purpose of this paper, as stated earlier, is to pro-
vide a decisive means of distinguishing pulsars that can
be (but are not necessarily) gravitationally bound com-
pact stars such as neutron or hybrid stars (quark-core
neutron stars), from those that cannot. The limit that we
have obtained for the rotational period as a function of
star mass is necessarily more severe than would be
obeyed by real stars because there is no physical principle
that requires the equation of state, whatever it is, to mini-
mize the rotation period. Moreover, there are unstable
pulsation modes of a rotating star associated with gravi-
tational radiation reaction [28-30] which occur at larger
periods than the Kepler period [31-35]. If a pulsar has a
rotation period smaller than any of the periods for these
critical modes, it will spin down by gravitational radia-
tion until its period approaches that of the largest of the
unstable modes. However, the physics that enters the es-
timate of these instabilities is far less certain than that
which determines the Kepler period, so we use this abso-
lute lower bound of a uniformly rotating star. Therefore
if a pulsar with rotation period and mass falling below
our limiting curve is found, it actually lies even further
below the limit established by nature for neutron stars.

There is a region in the period-mass plane below that
allowed to neutron stars and above that forbidden by gen-
eral relativity (Fig. 1). What could be the general nature
of a star that might fall in this intermediate region? First
we need to be more precise about what is meant by a
“neutron” star. Of course qualitatively we mean a star
whose constituents by mass are mostly baryons, if not
mostly neutrons (with possibly a quark matter core).
However the essential feature of an equation of state that
purports to describe neutron star matter is its behavior
near the saturation density of nuclear matter, p,, a densi-
ty prescribed by the range of the nuclear force. There the
energy density should be approximately p,m, (where
m, =neutron mass). It could be, though it is unlikely,
that neutron matter is self-bound. If so, the binding per
nucleon must be less than that of nuclear matter because
we know that the energy of a many-nucleon system is
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lower for isospin symmetric systems, shifted somewhat by
the Coulomb energy. The valley of stability tells us this.
So if neutron star matter is self-bound the density at
which this occurs is near nuclear density and the energy
density there is ~p,(m,—b,) where b, is the neutron
matter binding energy per nucleon, bounded as just
remarked by b, <<b,,, ~16 MeV. The correction to the
energy density is therefore negligible. However, if bound,
the pressure vanishes at that density. (On the nuclear
scale the temperature is low so that we may take 7 =0.)
For a star, zero pressure marks its edge because vanish-
ing pressure can support no overlaying matter against the
gravitational attraction exerted on it. The energy profile
of the star would be similar to the dashed curve of Fig. 4,
except that the subnuclear crust, the bulge below €=0.7
fm™* and outside r =6.13 km, would be absent. In Sec.
V we found that such a truncation would lead to a slight-
ly lower minimum period, about 0.014 ms less at
M =1.442M . If neutron matter is bound, the mass and
rotational limit are only slightly modified. The binding
per nucleon is less than 16 MeV, and therefore is small
compared to the gravitational binding of a neutron star.
This can be explicitly computed for any equation of state,
or estimated by E, z%MZ/R, and is of the order of 100
MeV per nucleon. So we may say of a neutron star that it
is gravitationally bound.

The only general category of stars that could have
smaller rotation periods than neutron stars is the
category of stars that are made of hypothetical matter
that is stable and self-bound in bulk at sufficiently high-
equilibrium energy density [22,23]. The connection of
the limiting rotational period of a star composed of
matter that is self-bound (p =0) at the equilibrium ener-
gy density €, is trivial to establish. Since the density (and
pressure) decrease monotonically from the center to the
edge of a star, and the edge occurs when p =0, at which
point the energy density is €,, it follows that the energy
density in the interior, and the average in particular,
satisfies €~ €,. The equality holds only when gravity is
negligible, meaning that the mass is small. The average
density also satisfies the identity M =(47w/3)R 3
Using this relation in Eq. (5) we have
Py =1.6(37/€)"?<1.6(3m/€,)'/*. Observing also the
limit imposed on M /R by general relativity, Eq. (7), we
can write
172

€o

P
1.21 > 25 50167 M (self-bound star)
ms M,

©

€,

(8)

where €,~ 140 MeV/fm® is the equilibrium energy densi-
ty of normal nuclear matter. Obviously if €, is large
enough, a few times nuclear density, the period of a self-
bound star can lie in the region prohibited to neutron
stars. Its energy profile is unlike those of Fig. 4; instead
the star has a sharp edge at which the energy density falls
from the high equilibrium value of the bound matter to
zero in a strong interaction length. Such a star has a
small radius for its mass as compared to a gravitationally
bound star. This is what permits it to rotate rapidly
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without shedding matter at its equator. We note in pass-
ing the limit placed by the general relativistic inequality,
M/R <%, on the equilibrium density of self-bound
matter by a star of mass M made of it:

€, <e< € . (9)

In the event that self-bound matter exists in bulk then ob-
jects from microscopic nuggets to stars could exit, limited
in mass only by gravitational collapse [36,37]. Gravity
plays the minor role of preventing self-bound stars from
fissioning into smaller bound fragments except by the ad-
dition of sufficient energy to compensate the creation of
additional surface area.

The most likely candidate for stars made of matter that
is self-bound at high density are strange stars, hypotheti-
cal stars composed of almost equal numbers of up, down,
and strange quarks. Strange quark matter was hy-
pothesized to be the absolute ground state of the strong in-
teraction independently by Bodmer [38] and Witten
[39,40]. As it turns out, the hypothesis is quite plausible
on the basis of scale arguments, and very difficult to ei-
ther prove or disprove. Several recent accounts of the
subject can be found in Refs. [22,41]. Another candidate
in the category of self-bound stars are the so-called Q
stars [42,43]. These have been discussed as exotic solu-
tions of effective nuclear field theories. While exotic solu-
tions of fundamental theories, such as the sphaleron [44]
of the classical Weinberg-Salam theory of the elec-
troweak interaction, must be taken seriously, the status of
an exotic solution of an effective theory is much more
tenuous. Moreover, the properties of hypothetical Q
stars, whether dilute, very large and of many solar
masses, or dense, small and of solar mass, are not delimit-
ed by any known physics. In contrast, the argument for
the possible existence of strange stars depends on simple
physics and the QCD energy scale which place the energy
per nucleon of strange matter close to the nucleon mass,
the only uncertainty being whether a fraction of a nu-
cleon mass above or below [39, 22].

VIII. SUMMARY

A neutron star cannot have a period for uniform rota-
tion that lies by more than a few percent below the solid
curve of Fig. 1. For a 1.442M, neutron star this means
that the period must exceed 0.3373-33 ms where the upper
error is that of Eq. (5) and the lower is the largest of the
test errors and corresponds to lifting the causal con-
straint appropriate for a perfect fluid (where 0.037 is
rounded to 0.04). This curve refers to the mass-shedding
limit (Kepler period) and gravitational-wave instabilities
will actually set a more stringent lower bound that lies
above our curve. Therefore the most conservative bound
for the region excluded to neutron stars is the one adopt-
ed here. If a pulsar is found with mass and period that
place it below our critical curve, it must be a different
kind of object and it appears that the only alternative for
breaking the limit on gravitationally bound stars is a state
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of matter that is self-bound in bulk at an energy density
larger by a factor of 5 to 10 than normal nuclear matter.
The most plausible candidate to date, in our opinion, is
strange quark matter.
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APPENDIX

From the derivation for sound propagation in relativis-
tic fluid dynamics for a perfect fluid [45], one finds that
v(e)=Vdp/de must be a constant in space-time to
represent the velocity of sound propagation. Otherwise it
does not factor out of a derivative and yield the wave
equation. At first sight, even for a perfect fluid, it might
appear that v (€) =<1 is a causal constraint only for homo-
geneous bodies, or for any body provided that v is a con-
stant independent of € for the density range found in the
body. However for perfect fluids, v(€) =1 is a causal con-
straint in any case, as the following reasoning indicates:
Imagine that in some range of €, the opposite condition
holds, namely, that v(e)>1. Make a uniform body at
such a density and one has a medium which carries su-
perluminal signals. Then in some Lorentz frame in
which a signal is seen to leave point A and arrive later at
B, there are other frames in which it arrives at B before it
has left A. Alternately consider, as an example of an in-
homogeneous body, a neutron star whose density range
includes the range in which v(€)>1. Between any two
points in that region, 4 and B, that are sufficiently close
that dp /d e is essentially constant, a signal propagates ac-
cording to the usual wave equation with speed v. Over
the large central region of a 1.4 solar mass neutron star
the relative variation in energy density is very small over
meter distances in the radial direction
[(A€/€cenrral) /AR <10~ %/meter]. If the relative energy
change is so small over macroscopic distances, then a
suitably small relative change in dp /de is assured. Take
a perpendicular direction to the radial one and the varia-
tion is even less. No matter the distance, causality is
violated in the sense of superluminal signals if v > 1. One
could arrange a number of devices to propagate a super-
luminal signal over larger distances once one can do so
over a small one (say by attaching optic fibers, or con-
structing relay stations, or drilling holes to 4 and B from
opposite directions, etc.). So Vdp/de=<1 is in fact re-
quired to ensure nonsuperluminal transmission of signals
in any body made of a perfect fluid, whether or not the
above derivative is a constant. Whether or not a practi-
cal device can be constructed so as to take preemptive ac-
tion based on a superluminal signal is a separate question.

The above discussion does not pertain to imperfect
fluids, and for this reason we have tested the effect of the
constraint on the limiting period of rotation of a neutron
star.
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