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Testing local Lorentz invariance of gravity with binary-pulsar data
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As gravity is a long-range force, one might a priori expect the Universe's global matter distribution
to select a preferred rest frame for local gravitational physics. Two parameters ap and n2 suffice
to describe the phenomenology of preferred-frame effects in post-Newtonian gravity. One of them
has already been very tightly constrained (~n2~ ( 2.4 x 10 ). We show here that binary-pulsar data
provide a bound on the other one (~n&

~
( 5.0 x 10, 90'%%uo C.L.) which is quantitatively comparable

to previous solar-system limits, but qualitatively more powerful because it is derived for systems
comprising strong-gravitational-field regions. Our results correct a previous claim that aq could be
very tightly constrained via a purported semisecular effect in the orbital period of binary pulsars.

PACS number(s): 04.80.+z, 03.30.+p, 97.60.Gb

Local Lorentz invariance, i.e. , the absence of preferred
frames in local experiments, is an essential ingredient of
our present understanding of the constitution and inter-
actions of matter and is verified every day in high-energy
experiments. If gravity is mediated only by a second-
rank symmetric tensor field (as assumed in general rela-

tivity), or, more generally, by one symmetric tensor field

and an arbitrary number of scalar fields, the gravitational
physics of localized systems will also be boost-invariant

(at least within a good approximation). On the other
hand, it has been pointed out some time ago by Will
and Nordtvedt [1) that if gravity is mediated in part by
a long-range vector field (or by a second tensor field)

one expects the Universe's global matter distribution to
I

select a preferred rest frame for the gravitational inter-
action. In the post-Newtonian limit all the gravitational
effects associated with the possible existence of such a
preferred cosmic frame are phenomenologically describ-
able by two parameters crq and era [1]. These parame-
ters contribute additional, non-boost-invariant, velocity-
dependent terms in the gravitational many-body post-
Newtonian Lagrangian, beyond the usual boost-invariant
terms obtained in general relativity and its minimal ex-
tensions described by the Eddington parameters p and P
(which correspond to adding one or several scalar fields

[2]). More precisely, the N-body post-Newtonian La-
grangian reads
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while combined orbital data on the planetary system [6]
yield a much weaker bound on ai.

ai = (2.1 6 1.9) x 10 (6)

The limit (6) is only a factor five better than the
present limits on the (more conservative) Eddington
post-Newtonian parameters P and p [8, 9].

In view of this situation, it seems important to in-
vestigate whether or not binary-pulsar data, which have
proven to be marvelous gravitational probes [10-14],can-
not be used to set more stringent bounds on ai. In
fact, it has been claimed [15] that a very stringent bound
(lail & 10 r) could be deduced from the agreement be-
tween the observed orbital period change of the binary
pulsar PSR 1913+16and the general relativistic predic-
tion. Actually, we found that this claim was incorrect
(see below), and this motivated us to look in detail at
other ways of using binary-pulsar data to constrain the
Lorentz-invariance-violation parameter ai

The ai-dependent terms, Eq. (3), have several different
types of observable consequences in the dynamics of a bi-
nary pulsar. First, let us consider a pair of mass elements
(mA, mB) within the pulsar, and let us decompose (with,
sufficient, Newtonian accuracy) each "absolute" velocity
vA according to vA ——w+ v1+ uA. Here, w denotes the
velocity of the center of mass of the binary system with
respect to the preferred rest frame, v1 denotes the veloc-
ity of the pulsar with respect to the center of mass of the
binary system, and uA denotes the velocity of the con-
sidered mass element with respect to the center of mass

in which vA denotes the velocity of the mass mA with
respect to the Universe's preferred rest frame.

Bounds on the magnitudes of ai and a2 have been
obtained by several authors [3—7], based upon various
effects associated with Eqs. (3) and (4) in the weak-
gravitational-field context of the solar system. When
deriving such bounds, it is necessary to make a definite
assumption about the preferred rest frame entering the
Lagrangians (3) and (4). The standard assumption [4—7]
that we shall take up in the present paper is to take the
frame defined by the cosmic microwave background. (If
local Lorentz violation is due to an extra vector or ten-
sor interaction, this assumption means essentially that
its range is infinite or, at least, of cosmological magni-
tude. ) The final results are that the close alignment of
the Sun's spin axis with the solar system's planetary an-
gular momentum yields an extremely tight bound on a2
[7]

la2I & 2.4 x 10-',

I

of the pulsar. From Eqs. (2) and (3) one sees that the
matter within the pulsar experiences an effective gravi-
tational constant [16,3],

G'" = G 1 — ai(w+ vi)
2c (7)

I, , = —— — [W +W (Vi+ V2)
orbital 1 ~1~2

2 C T12

+Vi ~ V2] . (8)

We have added a caret to ai in Eq. (8) to denote a
possible modification of the weak-field value of ai by
strong-field-gravity effects in the pulsar and its compan-
ion. Similarly G = G12 denotes the effective gravitational
coupling constant between the pulsar and its companion,
including self-gravity effects (see, e.g. , [2]).

One can verify that Eq. (8) predicts no overall secular
acceleration of a binary system. One then defines w as
the absolute velocity of the frames with respect to which
the binary system is, on the average, at rest. In such
a frame the (usually defined) instantaneous relativistic
center of mass of the binary oscillates around its fixed
average position by an amount b,x, m (t), obtained by
integrating

which is modulated, because of vi, at the orbital fre-

quency. This modulation causes a corresponding mod-
ulation in the spin angular velocity of the pulsar,
6~1/~1 = zhG'~/G'~, which, after a time integration,
contributes additional terms in the timing formula, giv-

ing the arrival times of the pulses. However, the integral
of the term —aiw vi/c can be completely reabsorbed in
the main ("Romer") term of the timing model [17],while
the integral of the term —aiv21/2c2 can be reabsorbed in
the "Einstein" time delay. In terms of observables, these
reabsorptions lead to fractional modifications of the tim-
ing parameters xt' '"g = aisini/c and pt' '"g of order
g+timing/+timing a &&/c ~d g~timing/~timing
In view of the current and foreseeable precision of the
tests obtainable by combining the measurements of sev-
eral timing parameters [13],these "internal" effects of ai
cannot compete with the existing solar-system limit (6)
and we shall not consider them any further.

Let us now consider the effects of ai on the orbital
motion of the pulsar. Decomposing the "absolute" ve-
locities according to vi ——w+ vi, v2 ——w+ v2, where
w and vi have the same meaning as above, and where
v2 denotes the velocity of the pulsar's companion with
respect to the center of mass of the binary system, one
gets

d 1 ( 1 1 i Xi —X2 6 12 vv12—hx, = —ai GMX1X2 w !
dg c2 ET12 tig 2 (T12 T12 ) (9)
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e
1 + (1 ez)1/2

x (1 —e ) / (k a)a+ (k b)b

e2

( 2)~/z (k c)c . (12)

In Eqs. (10)—(12) l —= (1 —ez)'/2c, e —= ea,

In Eq. (9) M = mq + mq, Xq ——mq/M, X~ = mz/M,
a is the semimajor axis of the relative orbit, vq2 = vq-
v2 the relative velocity, and the angular brackets denote
the time average (e.g. (rzz ) = a ). Given the solar-
system limit (6), and vq2/c & tu/c 10 s, the wobbling
6x, ~ (t) is easily seen to give a negligible contribution
to the timing of a pulsar such as PSR 1913+16: At
Ax, /c&10 ss.

It remains to study the effects of a~ on the relative
motion of the pulsar around its companion. It is easy
to see in advance that, given the solar-system limit (6),
all the periodic effects (that do not build up beyond one
orbital period) give negligible contributions to the timing
of the pulsar (similar to that associated with 4~. ).
Finally, our only hope of getting new, tight constraints
on Bq is to study the secular effects in the relative motion.

Adding the contributions from P and p [Eq. (2)] to
the nq contributions from Eq. (8), and averaging over
one orbital period the time derivatives of the energy, the
angular momentum, and the Lagrange-Laplace (-Runge-
Lenz) vector, one finds the following equations for the
secular evolution of the Keplerian elements of the relative
orbit:

secular advance of the periastron. ] In the case of the bi-
nary pulsar PSR 1913+16the secular variation of e is ob-
servationally constrained at the level ~e~ & 1.9x10 ~4 s
[10],while Eq. (12) yields e = 1.39o.& (w a)/c x 10 s s
Even if a is favorably oriented (so that ~w a~/c 10 ),
this limits a~ only at the 10 level, which pales in
comparison with Eq. (6). [The observational constraints
on the variation of the timing parameter z = aXz sin i/c
[10] puts a limit on the change of the orbital inclination
which, after using Eq. (11), yields an even weaker bound
on Ay.

Fortunately the class of low-companion-mass, small-
eccentricity, long-orbital-period binary pulsars turns out
to provide a better testing ground for a possible violation
of the local Lorentz invariance of the gravitational inter-
action. Taking into account the very small eccentricity
of these systems, we can simplify very much the secular
evolution system (11), (12). Equation (11) shows that
the orbital plane is fixed, (dc/dt) = O(e~k~) 0, while
Eq. (12) becomes

(
de 1Rcxe+ —k~,
dt 2

(15)

e(t) = eR + eR(t),
1

eF —— cxk~
24)R

(16)

where kg = (k a)a+ (k b)b is the projection of k onto
the orbital plane. Equation (15) shows that the main
new effect of an o,q-type Lorentz-invariance violation is
to add a constant forcing term in the time evolution of
the eccentricity vector which tries to "polarize" the orbit
in the direction of the projection of w onto the orbital
plane, w~. The familiar relativistic periastron precession
term uR in Eq. (15) cuts off the build up of the constantly
polarizing term &~k~ and defiects its action by 90' (in a
gyroscopelike way). More precisely the general solution
of the linear evolution equation (15) can be written as
the vectorial superposition

1 GM
k = ny (Xg —Xz)w,

2C Q2
(13)

Bg(Xg —Xz)

4(2P —P + 2+ XgXzng)

cxw

GM
uR = (2p —p+ 2+ X&XzcLq) n, (14)c2a 1 —ez

where e is the eccentricity, and n =—2n/Pb = (GM/. as) ~/z

is the orbital frequency, (a, b, c) being an orthonormal
triad with a in the direction of the periastron of the
pulsar orbit, and c = a x b along the orbital angular
momentum. Moreover, p and P in Eq. (14) denote the
effective values of the Eddington parameters for the rel-
ative orbital dynamics of two compact objects, including
possible strong-field efFects. (See [2] for the exact defini-
tion of these quantities. )

The result (10) shows that o.q has no secular effect on
the orbital period, contrarily to the claim of Ref. [15].
On the other hand, Eqs. (11) and (12) show that both
the eccentricity and the spatial orientation of the Keple-
rian binary ellipse undergo secular changes when Rz g 0.
[Eqs. (12) and (14) exhibit also the infiuence of aq on the

In Eq. (16) eR(t) is a vector of constant magnitude which
rotates in the orbital plane with angular velocity ~R
(usual relativistic periastron advance). By contrast, eR
is a fixed vector which represents a constant, nq-induced,
polarization of the orbit (or "forced eccentricity"). Note
that, because of the small denominator uR in Eq. (17),
the velocity of light has dropped from the final expres-
sion of e~ whose magnitude depends essentially on 6&
and the ratio ur~/na, where m~ is the projection on the
orbital plane of the absolute velocity of the center of mass
of the binary system, and na is the relative orbital ve-

locity. Note also that, although the instantaneous form
of the o.q-type perturbing forces [derived from Eq. (8)] is

very different from that corresponding to a possible dif-
ferential free-fall acceleration in the gravitational field of
the Galaxy (equivalence principle violation), their secu-
lar effects in small-eccentricity binary systems have ex-
actly the same structure [compare Eqs. (15)—(17) above
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to Eqs. (3) and (4) of Ref. [12]]. We can therefore take
up the method of Ref. [12] for deriving an upper bound
on [ai[ from the observations of binary pulsars having a
very small eccentricity and a long orbital period. Let us
first remark that a recent work [14] has derived experi-
mental constraints on the magnitude of the parameters
(P' and P") that drive (in a class of theories) the possi-

ble strong-field effects in G, P, and p. These constraints
are sufficiently tight to ensure that, in a system such as
PSR 1855+09 that we shall consider in the following, one
will have G = G(1 +0.06) and 2p —P+ 2 = 3(160.04) at
the 90% confidence level. Because of these results (which
will be probably tightened in the future), we shall sim-

»i«q (») « I«I = »IXi —Xzl~~/»(GMn)' '.
Applying to this expression the probabilistic reasoning
of Ref. [12], we can conclude that the observation of an
(old) binary-pulsar system having a (small) observed ec-
centricity e allows one to set an upper bound on ~Bi[
given by

[ni [
& (10/z. ) I; p e/e (90% C.L.),

where
2'

I, g = (2z ) dA [1 —( cos i cos A
0

(18a)

+ sinisinAsinA) ]

(18b)

e = i'z[Xi —Xz[m/(GMn)' (18c)

in which the full magnitude of the absolute velocity ap-
pears, ur = [w]. The complete elliptic integral (18b) arises
from making a probabilistic argument about the a pri-
ori unknown values of two angles in the problem: the
time-dependent angle e between e~ and eR(t), and the
longitude of the node A of the binary orbit with respect
to the line of sight (see [12]). The factor (10/n')I, p rep-
resents a quantitatively precise way of allowing for unfa-
vorable configurations of the angles e and A when trying
to estimate Gi from the observed e. All the quantities
appearing in the final results (18) are (in favorable cir-
cumstances) measurable from Earth: i is as above the
inclination of the orbital plane, while A is the angle be-
tween w and the line of sight.

From Eqs. (18), one sees that P& /e defines a figure of
merit for selecting the binary-pulsar systems giving the
best limits on ai. A survey of existing small-eccentricity
long-orbital-period binary pulsars show that the two sys-
tems PSR 0655+64 and PSR 1855+09 have, by far, the
highest figures of merit. We shall consider solely the lat-
ter system which is the only one for which all the needed
quantities have been measured (and which is known to
be old enough for our probabilistic argument to be ap-
plicable) .

The experimental results of Ryba and Taylor [18] on
PSR 1855+09 yield e = 2.167 x 10, P~ = 1.0650676 x
10s s, i = 88.28', Xi —Xz ——0.690, M = 1.50MO.
On the other hand, the experimental results of the Cos-
mic Background Explorer (COBE) on the velocity of
the solar system with respect to the cosmic microwave
background [19] give ur = 365 kms, in the direction
(o,, 6) = (11.2 h, —7'), i.e. , making an angle A = 117'
with the line of sight towards PSR 1855+09. (We are us-

ing the fact that PSR 1855+09 is a nearby system with
small observed apparent transverse motion as seen from
the solar system to estimate that wpsR wo. ) Insert-
ing all numbers in Eqs. (18) we get I; g = 1.43, and the
result

[Ri[ & 5.0 x 10 (90% C.L., PSR 1855+09 data) .

(19)

Our final (90% C.L.) upper bound (19) on a possible
gravitational violation of local Lorentz invariance is in-

teresting in two respects. First, it is quite comparable
with the best existing solar-system limit (6) which al-

lows, at the 90% confidence level (1.64o'), an ai as big
as +5.2 x 10 . Second, it is the first limit obtained for
a gravitationally bound system which comprises strong-
field regions (namely the 1.27Mo neutron star seen as a
pulsar in PSR 1855+09). Recently, it has been shown

[2] that there existed classes of boost-invariant theories
which had the same Eddington parameters as general rel-
ativity in the weak-field limit but for which the effective

values of P and p for a system containing compact objects
would generically be given by power series in the com-
pactness parameters c~ = —281nmg/BlnG of the type

P = 1 —zP'(Xicz+ Xzci)+, p = 1 —P'(ci+ cz) +
If a similar result holds for non-boost-invariant theories,
we see that our limit (19), taken in conjunction with the
solar-system limit (6), provides already tight limits on
the coefficients of any conceivable strong-field modifica-
tion of ni. a.i = o.i + cubi(ci + cz) + (ci = 0.27 for a
1.27MO neutron star).

Let us also note that if one could extract from the
PSR 1855+09 data a bound on the secular variation of
the eccentricity vector at a level [de/dt[ & 2 x 10 is s i

(i.e. , about a factor 10 below the present limit on de/dt)
one could both render more secure (by freeing it from
the need to use probabilistic considerations) and tighten
the limit (19). Indeed, we have from Eq. (16) de/dt =
uR c x eR so that [de/dt] gives access to the magnitude
of eR. The level 2 x 10 is s i quoted above corresponds
to eR/e & (10/7r)I, g = 4.55, i.e., a level for eR where the
probability argument behind the derivation of the safety
factor (10/n) I, ~ in Eq. (18a) is becoming too pessimistic.

It is a pleasure to thank Ken Nordtvedt for stimulating
dlscusslons.
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