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Smallness of gluon coupling to constituent quarks in baryons and validity
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A study of the parametrization of baryon masses and other quantities leads to a ratio = —,
' for two-

gluon-exchange versus one-gluon-exchange terms between two constituent quarks in a baryon. This fact
(plus the factor 3 reduction from each additional order in flavor breaking) explains the success, to a part
per thousand, of a new baryon mass formula [Phys. Rev. Lett. 6$, 139 (1992)]. It also explains why the
results of SU(3) that neglect second-order flavor breaking (such as the Gell-Mann —Okubo baryon mass
formula) work much better than expected. Finally the general parametrization, plus the above reduction
factors, clarify why the "naive" nonrelativistic quark model (NRQM) is quantitatively fairly good. The
reasons are twofold: (a) The structure of the general parametrization {an exact consequence of any
QCD-like relativistic field theory) is similar to that of the NRQM; (b) the smallness of the gluon coupling
and the reduction factor due to flavor imply that the additive (one-body) terms in the parametrization
prevail on the two-body terms and the latter on the three-body ones, the typical feature of the "naive"
NRQM.

PACS number(s): 12.40.Aa, 12.38.Aw, 12.70.+q, 14.20.—c

I. INTRODUCTION

Recently we have shown [1] how to parametrize
rigorously in the spin-Qavor space many physical quanti-
ties, starting from the underlying field theory. If the
basic theory is QCD-like, the general parametrization is
rather simple (that is, it consists of a small number of

terms) because the Casimir fiavor operators are absent.
The parametrization has a noncovariant aspect, typical of
the nonrelativistic quark model (NRQM) [2], but, being
an exact consequence of the basic relativistic field theory,
is an exact relativistic result. For instance, the complete
parametrization of the octet- and decuplet-baryon masses
has the form [le]

H=M, +& gP,'+C g (o, .o„)+D g (o, o, )(P,'+P. „').+F y (o, .o„)p,'.
i i)k i)k iWk~j

(i )k]

+a g P; Pk+b g (o, ol, )P; Pk+c g (o, crk)(P,"+Pk)P +dPiP2P3
i &k i &k iWkWj

(i )k)

In Eq. (1) MO, B,C,D, E,a, b, c,d are real coefficients.
The term of Eq. (1) writ ten in Ref. [1e]
as —,'cg;«~ (o, o k )(P; +Pk )P is rewritten

here, equivalently, for uniformly of notation, as
~g, ~k~q(, )k)(o, ok )(P(~+PI, )P~ . The o,. 's a«spin
Pauli matrices; P =

—,'(1—
A, &) is the projection operator

on the strange quark that arises from the Aavor-breaking
mass term in the field Lagrangian. The quark fields in
the Lagrangian, defined with their masses renormalized
at small q (q =R where R is the typical hadron ra-
dius), are called the constituent quark fields [la]. In Eq.
(1) the sum indices extend from 1 to 3.

Note that in (1) we adopted the rule of writing each
term as a sum of all addends obtained permuting 1,2,3;
with each different addend appearing once and only
once. For instance, the F. term is explicitly

E[(o, o, )P", +(cr, o, )P, +(cr,.o, )P", ].
To obtain the mass of a baryon one takes the expecta-

tion value of (1) in its NRQM spin-flavor state [la]. Be-
cause only the combination (a +b) enters in the masses,
(a +b) and the other seven coefficients are determined
uniquely from the masses. At present the experimental
error on the masses of the 6's is much larger than the er-
ror on the other masses; thus we may neglect the d term
in Eq. (1) and determine all the remaining coefficients
without the use of the 6 mass, obtaining (in MeV)

Mo = 1085, B = 187, C =48.7,
D= —16,

a+b= —11.6, E =3.4, c =1.17 .
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(The above values differ by decimals from those in Ref.
[la] where the terms a, b, c had not been included. ) Alter-
natively we may neglect both c and d, observing that both
c and 1 multiply three quark terms (terms with three
different indices) and that the data indicate a strong de-
crease of the coeScients of the terms when the number of
indices increases. This remark was the basis of the ap-
proximation introduced in Ref. [le]; there, neglecting the
c and d terms in (1), we deduced a new relationship be-
tween masses of 8 and 10 which is satisfied (after duly
taking into account the electromagnetic masses) at the
precision of one part per thousand. The same assumption
of neglecting three quark terms in the parametrization
was also applied in Ref. [lf], obtaining several relation-
ships between electromagnetic masses; they are well
satisfied. Also we could understand [1f] why the
Coleman-Glashow relationship is satisfied so well.

Here we will clarify, using the underlying field theory,
why three-quark terms (terms with three different indices)
in the general mass parametrization are so small. First
we shall show that in (1) the terms with three indices are
due necessarily to Feynman diagrams where at least two
gluons are exchanged between the quarks. Second,
through an analysis of the various terms in (1) we will
show (a) that each additional gluon exchanged reduces
the order of magnitude of the term by a factor about 5
and (b) that each additional flavor breaking factor P; im-
plies a reduction of the order —,'.

These conclusions from baryon masses will be
confirmed analyzing the magnetic moments. In the next
section we will examine in general the correspondence be-
tween Feynman diagrams and number of indices in a
term.

II. THE CORRESPONDENCE BETWEEN
THE TERMS IN THE GENERAL PARAMETRIZATION

AND FEYNMAN DIAGRAMS

n,„=& y I
T [Q(0)U(+

I

— )]ly & (4)

where C means "connected. " Clearly, because
~ P ) is a

three-quark state, all diagrams in the calculation of 0„,
Eq. (4), have three quark lines entering and three outgo-
ing. Because P is taken with L =0 and is factorizable in
a space factor times a spin-flavor factor, O,„(after in-
tegration on the space coordinates) results in a combina-
tion of spin-Aavor structures. To construct the spin-
Qavor structures, we assume that the underlying field
theory is, as already stated, a QCD-like theory: The only
fields in the Lagrangian are quarks and gluons, the latter
neutral and Aavor blind. The result of calculating a given
Feynman diagram (after contraction of all creation and
destruction operators) depends on the Pauli matrices o,.
and the flavor operators (either Pk or Qk ) as follows.

The e's enter in four ways in the calculation of a Fey-
man diagram: (1) from quark propagators; (2) from Dirac
matrices in the operator 0; (3) from the Foldy-
Wouthuysen-type operator (that enters in V) transform-
ing the Pauli 2-spinors of the model state into Dirac 4-
spinors of the relativistic field Lagrangian; it contains
o"p for a quark of Fourier momentum p; (4) from gluon
exchange between two quark lines; one-gluon exchange
between i and k produces a spin-independent and a spin-
dependent part; the latter gives just (o;crk) in'the final
result, after taking the expectation value on the space
I. =0 model wave function.

As to flavor, a P; =——,'(1 —
A,s;) projection operator in

Aavor space appears in the general parametrization for
each strange (A, ) quark [recall that (P; )"=P; ]; a

Q; =
—,'(A, 3;+A,s;/3) =—', P; —

—,'P; —
—,'P; appears for each

electromagnetic coupling of quark i (in Ref. [la] Q; was
called P~). Having seen how spin and/or flavor operators
arise in each Feynman diagram, we relate the spin-Qavor
structure of the general parametrization to that of Feyn-
man diagrams.

In the general parametrization method the calculation
of the expectation value Q,„of some field operator 0 in
the exact state ~%) amounts to that of the expectation
value of an effective operator 0 (acting, for baryons, only
in the three-quark sector) on the model state ~P). Be-
cause ~%) = V~/) we have

n,„=&mini—e & =(yi V'ovid& . (3)

Because the model state is a three-quark state, only the
projection

f1= &13q'&&3q'IV &VI3q &(3ql

enters in the calculation of (P~ V Q V~/); finally we can
write

n.„—= (efn/e &
= (y/@y & .

The calculation of Q,„can be expressed in terms of
Feynman diagrams; indeed (see Ref. [la], Appendix, for
the construction of the V transformation in terms of the
underlying field theory), V can be related to the U opera-
tor of Dyson defined in Ref. [la]; 0,„is then expressed in
terms of Feynman diagrams

III. THE ANALYSIS OF THE TERMS IN
THE GENERAL PARAMETRIZATION OF THE MASSES

While the above arguments are general, we will refer
here for definiteness to the baryon masses; then 0 in Eq.
(3) is the exact field Hamiltonian H.

The connected Feynman diagrams that correspond to
V HV belong to one of the three classes shown in Figs.
1(a), 1(P), and 1(y); the diagrams of Fig. 1(a) corre-
spond to no interaction among the quarks except for the
average interaction expressed by the model Hamiltonian
&. Thus the diagrams of Fig. 1(a) describe the contribu-
tion to the baryon mass with no gluon being exchanged
between quarks. From such diagrams one can only get
(after taking the expectation value on the space vari-
ables), terms that either are spin-flavor independent or
are additive (one index) in the spin-flavor space. The dia-
grams of Fig. 1(P) imply the exchange of gluons (at least
one) between a pair of quarks; from them one gets terms
that have either 0 or 1 or 2 indices in the spin-flavor
space; finally the diagrams of Fig. 1(y ), that imply the ex-
change of at least two gluons among the three different
quarks, can give rise to terms with 0,1,2,3 indices in the
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Mp=Mp +Mpp+Mp, C=Cp+C [noP )

B=B +Bp+B

a =a&+a

D =Dp+D, E =E [1P"]

b =b&+br, c =cr [2P ]

[3P ].
(5)

2

3

FIG. 1. (a) The class of connected Feynrnan diagrams giving
rise to zero or one-index terms in the spin-flavor space. The di-
agrams in this class include all diagrams without gluon ex-
changes but may contain diagrams in which gluon exchange is
present without producing factors (o; cri, } or P; PI, (P} Th. e
class of connected Feynman diagrams corresponding to two-
index terms in the spin-flavor space. The diagrams in this class
imply the exchange of at least one gluon, but may include dia-
grams with more than one-gluon exchange not producing spin-
flavor factors with three indices. (y) The class of connected
Feynman diagrams corresponding to terms with three indices in
the spin-flavor space; these diagrams imply the exchange of at
least two gluons.

spin-flavor space.
It follows that terms with three different indices in

spin-flavor space necessarily imply the exchange of at
least two gluons. Terms with two different indices in
spin-flavor space necessarily imply the exchange of at
least one gluon. Of course the introduction of any collec-
tive variable in the spin-ffavor space (such as total angu-
lar momentum 2J=g;rr; or s—trangeness S=—g;P; )

conceals the number of different indices in a term. . It is
understood that to count the number of different indices,
no collective variable in the spin-flavor space has to be in-
troduced in the course of the calculation; so the spin-
flavor indices in a term are those that directly result from
the original Feynman diagram.

Qn the basis of the above analysis one can write each
coefficient in the mass parametrization (1) as the sum of
contributions that correspond (suffix a) to no gluon ex-
change [Fig. 1(a)], or to the exchange (suffix P) of at
least one gluon [Fig. 1(P)] or to the exchange (suffix } ) of
at least two gluons [Fig. 1( y)]. Below we shall also indi-
cate for each coefficient its order in P . We display in the
first line of Eq. (5) coefficients of ffavor-invariant terms
and in the subsequent ones those with, respectively, 1,2,3
factors P 's. Because g, (P, }"=g,P, , terms of type a
with two or more P 's cannot be present in (5); nor can
terms of type P with 3P 's exist:

D ( ~ 1 gluon exch
~
1P )

( ~ 1 gluon exch ~OP )
(6)

Here the following question might be raised. We
might have written equally well the
term Dg; &k(cr; o'k)(P, +Pk) in Eq. (1) as
2DQ; & „(cr, crk )P; .because only its expectation value on
a symmetric wave function is relevant. Why then in giv-
ing the order of magnitude for the ratio 1P to OP, we
used (D/C) rather than (2D/C)? The symmetrization
rule, adopted in writing (1},implies that the D term must
be "normalized" as in Eq. (1); of course, a uniform cri-
terion must be used for all terms and, once adopted, it
cannot be changed. Still, because for D/C the factor in
play due to this question would be 2, to be compared with
an order of magnitude = —,

' of the ratio (6), we prefer to
give a direct check of the correctness of (6). (A check for
the term with a coefficient c, that has a structure analo-
gous to that of the D term, will be also given later. )

This check for D is obtained comparing our general pa-
rarnetrization with the explicit results of De Rujula,
Georgi, and Glashow (DGG) [3] in a QCD one-gluon ex-

Note for illustration that d, t.", and E appear only with
the suffix y; that is, they imply at least two-gluon ex-
change; C, D, a, b are due to one- (or more) gluon ex-
change. As to Mp and B they are dominantly due to no
gluon exchange (but may contain, of course, contribu-
tions from one or more gluon exchanges that are spin in-
dependent). Using the numerical values given in (2), we
now first determine the order of magnitude of the ratio of
terms with 1P to flavor-independent ones; or of terms
with 2P 's to those with 1P, at equal number of gluons
exchanged. Next we shall determine the order of magni-
tude of the ratio between two- and one-gluon-exchange
terms, at equal order in P . We anticipate the result.
Each increase by one of the number of P 's implies a
reduction by a factor about 3; each gluon exchanged
costs about 5. These numbers are only order of magni-
tude; yet they seem to emerge consistently from the
analysis below.

We start with the terms C and D in (1). They are both
proportional to (rr, o k) and, as one sees from (5), they
both correspond to the exchange of one gluon or more;
the C term is flavor independent and the D term is of the
1P type; thus the ratio D/C should give the typical
reduction due to 1P flavor breaking for terms that ex-
change one gluon or more. We write this, in obvious no-
tation [in the evaluation the values (2) of D and C are
used], as
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change Fermi-Breit treatment. We require that in that
limit our general formula coincides with the DGG one.
It will result that in Eq. (6) D/C (as written), and not
2D /C, is the correct quantity to evaluate.

The explicit QCD calculation by DGG [3] of the one-
gluon exchange interaction between two quarks in
Fermi-Breit approximation leads to an expression of the
same form as the following six terms of Eq. (1)

Mo+8 gP; +C g (cr, .ol, )+D g (cr, .crz)(P, +PI., )+a g P; PI, +b g (cr; crl,. )P; Pz . (7)
i &k i &k i&k i&k

But in the DGG formula D and C, as well as b and D, are
related by [4]

D hm b

C m
' D

(8)

In (8) m =m r =m ~, and m z are the quark masses and
bm =(m~ —m). Recall that (bm/m) (that we call x) is
the coefficient of P in the Hamiltonian of the underlying
field theory [5]

x=(hm/m) . (9)

The first equation (8) determines this coefficient of P as

x = D/C -=(—16/48. 7)=—,
' . (10)

Thus we confirm that, as anticipated in Eq. (6), iD/Ci is
the correct estimate of the ratio between "1P flavor
breaking" to "no flavor breaking" at an equal number of
gluons exchanged. The above value =—,

' for the
coefficient x of P will be reobtained from the baryon
magnetic moments and the meson masses [compare Eqs.
(22) and (26)].

So far we used only the first equation (8}. By the
second equation (8) we obtain ib/Di =—,', leading to an es-

timate of

5 =+5.3

E ( )2 gluon exch i 1P )

( ) 1 gluon exch i
1P"}

(12)

that we shall use in a moment. [Recall that the 8 and 10
masses determine only (a +b) in Eq. (1); it is the require-
ment that our general formula coincides with DGG in
their limit that leads to the estimate (11)of b.]

We now evaluate the ratio between the coefficient of a
term due to at least two-gluon exchange and that of a
term due to at least one-gluon exchange, both at the same
level of flavor breaking. For terms exchanging two or
more gluons we cannot compare our general result with
the DGG limit, because Ref. [3] deals only with one-
gluon exchanges [the terms E,c,d of Eq. (1) are not
present in the DGG calculation and rightly so; but the
"normalization" of the E term does not raise any ques-
tion]. Consider first in Eq. (1) the terms E and D, both
linear in P . The term E implies the exchange of at least
two gluons and the term D the exchange of at least one
gluon. We get, in the same obvious notation as above,
the order of magnitude

As anticipated, the exchange of two gluons carries a
reduction of about one-fifth with respect to the exchange
of one gluon. We confirm the estimate (12) considering
another ratio between the coefficients in Eq. (1). From
the terms c and b both proportional to (cr

& cri, ) and both
of order 2 in P we have

c ( )2 gluon exch' 2P")
( ) 1 gluon exch i2P )

(13)

Here we assigned to b the value obtained above
(b —= +5.3). As to the term c in (1), a check of its "nor-
malization" is obtained from the ratio between c and E; it
1S

c ( )2 gluon exch' 2P"}

()2gluonexchilP")
(14)

and once more we get —=—,
' for the reduction factor due to

one additional P if c is normalized as in Eq. (1).
Thus all determinations point to the reduction factors

—,
' for one-gluon exchange and —,

' for 1P flavor breaking.
In this respect note once more that 1P takes into ac-
count flavor breaking to all orders on each quark line
[(P; )"=P; ]. We stress that terms of the type P; Pl", arise
from at least two different quark lines and, therefore, im-

ply at least one-gluon exchange; thus their contribution is
expected to be depressed about 15 times (not just 3 times)
with respect to that of 1P additive (non-gluon-exchange)
terms; that is, neglecting them, we neglect terms of order
—,', with respect to the gross scale of the mass spectrum.
This is the reason why the "classical" formulas (e g , Gell. .
Mann Okubo fo—rmula), derived taking into account
flavor breaking to jirst order (6J, work much better than
expected.

A short comment is appropriate on the fact that no one
of the ratios considered above refer to the terms Mo and
8 in Eq. (1). The point is that Mo has the meaning of the
sum of the quark masses plus their average kinetic energy
and average potential energy, and 8 describes the
difference of the above quantities for the A, quark as com-
pared to those of the P and JV quarks.

Another comment is in order on the question from
which we started, namely, why the three quark terms (c
and, even more, d) are so small that the mass formula ob-
tained by ignoring them [le) is correct to a part per
thousand. The reason is simple. The magnitude of c is
reduced (with respect to the scale of the mass spectrum)
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by = —,', X —,
' = [(2 gluon reduction) X (2P reduction) ]

=—4X10 . This reduction leads into the region of 1

MeV.
Before confirming the results of this section via the

magnetic moments, we digress briefly on the masses of
the constituent quark fields.

IV. THE CONSTITUENT QUARK FIELDS
AND THEIR MASSES

After the above conclusions on the coupling of the con-
stituent quark fields to gluons, it seems necessary to dis-
cuss further how the constituent quark fields are defined.
As stated repeatedly we defined such fields as those that
enter in the basic Lagrangian of our field theory (say
QCD) when the mass renorntalization is performed at a
small value of q (for instance, q =R where R is a typ-
ical hadron radius); the field of a bare "current" quark (a
parton) is instead, of course, defined, in the limit q ~ oo.

One may ask if the value of q at which the mass re-
normalization is done to define the constituent quark field
is unique, or if the renormalized masses can be chosen
freely in some range. In the general parametrizatioo
method the choice of the values of the renormalized
masses of the quarks is subjected only to one restriction.
That a V transformation exists between the model states
and the exact states of the system. Here, when we speak
of states, we mean the set of states, the properties of
which we intend to calculate [7]. It is likely that a V
transformation exists for different choices of the masses
of the constituent quarks, in a certain interval, more or
less wide. If so, the precise values of these masses would
be unimportant except that, as repeatedly stated (see Ref.
[la]), we must require that the flavor-breaking parameter
x =(Am/m) that multiplies P is decently small. We al-

ready stated in Ref. [la], and reasserted here, that x —=—,'.
There is however a condition that the masses of the

constituent quarks must satisfy to agree in a natural way
with Eq. (1); we do not call this a consistency condition,
because the use of such a name would imply that it is a
necessary condition and we are unable to say if this is so.

In Eq. (1) Mo is just a parameter that the data fix at
1085 MeV. Because Mo is the spin-Aavor-independent

part of the mass, it can be interpreted as the sum of the
masses m =—rn&=m~ of three constituent (nonstrange)

quarks, plus their average kinetic energy T,„, plus their
average potential interaction energy V„due to diagrams
that exchange gluons in a spin and Pavor independent

way:

Of course for each m the k quark is taken to have a cor-
respondingly higher mass so that ( m ~

—m ) /m = —,'. We
insist that (16) is only a naturalness condition but it is, we
feel, all that can be stated at present on the choice of the
renormalization point where to define the constituent
quark mass.

Why is it so difficult to say more than this? Probably
the basic reason is that quarks are not observable; con-
stituent quark fields can be defined with different masses
and be used to describe the same physical results. Indeed
provided that a V exists, the general parametrization for
a physical quantity has always the same form, indepen-
dently of the choice of the mass values. One is led, of
course, to the same experimental values of the parameters
that appear in the general parametrization, no matter
what the choice has been. It is possible [7] (but we do not
know) that if one could parametrize more data and relate
these different parametrizations one would get more limi-
tations on the choice of the constituent quark masses [8].
What looks remarkable is that, in spite of these possible
differences in mass, all acceptable constituent quark fields
apparently have the same, comparatively small, coupling
to the gluon field.

V. THE ANALYSIS OF THE GENERAL
PARAMETRIZATION OF MAGNETIC MOMENTS

7
M= g g,G„ (17)

where

G, = QQ;cr;, G2= QQ;P; o;,

We now analyze the general pararnetrization of baryon
magnetic moments. The results can be summarized as
follows. All coefficients turn out to be in agreement with
their expected values except one (g7) that is apparently
larger by a factor 4. However we shall see that g7 cannot
be determined reliably at present. Altogether the orders
of magnitude obtained from the masses are confirmed by
the magnetic moments.

We start noting that because the magnetic moments of
decuplet baryons are largely unknown, the general pa-
rametrization of baryon magnetic moments can be
developed usefully only up to terms with one P, as done
in Ref. [la]; otherwise the number of coefficients exceeds
that of the experimental data. As shown in Ref. [la] the
parametrization of the magnetic moments M including
all terms with 1P gives

Mo =3m + T,„+V,„=1085 MeV . (15)

290 & m (430 MeV . (16)

If we introduce what seems a natural assumption, that
the spin-independent part V,„ofthe gluon interaction en-

ergy in (15) has an order of magnitude not far from that
of the spin-dependent part, which is known from the
coefficient C of Eq. (1), we obtain

~ V„~=200 MeV. One

then gets a natural description if we assign to the non-

strange constituent quarks fields a mass m in a range such
as [( 1085/3)+70] MeV, that is

G3= & Q;~k G4= & Q;P ~k
I&k iWk

Gs= X QPk'~k
iWk

G6= & Q;~;Pk G7= X Q;Pktr, .
iWk iWkWj

(18)

With the above definition of the G,'s (note that each G
is a sum in which each addend appears once and only
once) the values of g„'s in Eq. (17) derived from the data
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(using p=2.79, n = —1.91, X+ =2.48, X = —l. 16,
A = —0.61, :- = —1.25, :- =0.65 proton magnetons)
are

+LQ X+K.S Xq+GQ S (2J), (20)

where p, A, F,H, L,K, G are seven parameters (@=2.869;
A = + 1.005; F = —0.076; K = +0.289; 0= +0.086;
G = —0. 155; L = —0. 175) that replace g, ,gz, g3 g7
[the numerical values just listed for them correspond to
the choice (19a) for the g s]; the quantities in Eq. (20) are
the charge Q ( Q =g; Q; ), strangeness S (S= —X;P; ), to-
tal spin 2J=—X;cr; and Xq=g;Q;cr, and X:——,'g;P; cr;.
Here we use the form (17) because its terms are written
uniformly according to the general symmetrization
prescription. No ambiguity exists in the normalization of
the structures G& to G7 as written above in (18). Thus we
can extract from the coefficients, g, to g7 [given in Eqs.
(19a) or (19b)], the gluon exchange and the flavor factors
ofinterest.

Before examining the values of the coefficients note,
however, the following. As stated above, as well as in
Ref. [la], the structures G& to G7 are the only ones con-
taining 1P (that is, loosely speaking, including flavor
breaking to first order). But the result of this paper on
the depression factors due to gluon exchange and to P
now show that the coefficient of the three-index 1P
structure G7 might be of the same order of magnitude as
that of the two-index 2P structure G7& [9]:

G7b = X Q P'cJ Pt .
iWk

(21)

Indeed G7 implies the exchange of two gluons (reduction
factor -=—,', ) and 1P (reduction factor —=—,'); on the other
hand G7c, implies the exchange of one gluon (factor —,

' )

and 2P 's (factor -=—,' ); the orders of magnitude are com-
parable (if anything G7& is slightly more important).

If we include in (17) also G7&, we have another
coefficient (call it g7c, ); the total number of coefficients be-
comes 8. Clearly they cannot be determined only from
the 7 magnetic moments. It may be possible to determine
the 8 coefficients g &, . . . , g7& when the matrix element for
X ~Ay will be known with an error smaller than the

g& =2.79 g~= 0.94 g3 = 0 076 g4=0 41
(19a)

gs =0-097~ g6 0. 134 g7 =0.155

Using instead X+ =2.38, X = —1.10, and all the other
magnetic moments as above, the values (19a) are replaced
by

g) =2.79, g~ = —0.89, g~ = —0.076, g4=0. 33,
(19b)

g5=0. 14, g6= —0. 143, g7=0. 13 .

In the real situation the g s will be somewhere between
the two.

Note that in Ref. [la] we also wrote M in the (identi-
cal) form

7
M= $ g„G =

pX~+ —AX +FQ (2J)+HS.(2J)

present one (the absolute value of this matrix element is
presently 1.61+0.09); indeed the term G7& determines
the main deviations from Okubo's relationship [10] be-
tween the magnetic moments and from such deviations
one can, in principle, determine g7&.

At present a reanalysis of the magnetic moments to in-
clude the term G7& is not useful. This is due to the com-
paratively large error in X —+Ay and also to the
discrepancies between different measurements for X+
(2.48+0.02 and 2.38+0.02) and, to a smaller extent for
X, noted above in connection with Eqs. (21a) and (21b).
We only state that it is possible to reproduce X ~Ay in-
side its error choosing values of g7 and g7& both around
0.10; the values of all remaining g s stay essentially
unmodified with respect to (19a) or (19b).

Consider first the one index (additive) terms in Eq. (17)
G, =Q, Q, o; and Gz=+, Q;P; cr, , that are due (dom-
inantly) to diagrams with no gluon exchange. The ratio
of the coefficient gz of the 1P terms to that g, of the OP
term gives the reduction factor due to 1P Aavor break-
ing. We have, from (19a),

ig4/g t i
=(0.37/2. 79)=—0.13,

ig, /g, I
=(0.12/2. 79) -=0.043,

~g6/g, ~
=(0.14/2. 79)=-0.05 .

(23)

The orders of magnitude are as predicted.
A point that must be noted and for which we have no

explanation at the moment (though it does not contradict
our conclusions) is that g~ is much smaller than expected,
G& should be, at erst sight, a one-gluon exchange term;
thus g& should be smaller than g, by a factor =5 while it
is =35 times smaller. Although the smallness of any par-
ticular parameter may be due to many reasons, it would
be of interest to understand why g& is so small, just 3% of
g, ; is it just chance (some factors n. ) or there is more to
it? It is amusing to note that the extreme smallness of g3
is, after a11, responsible for the famous ratio

gz ( ~ 0 gluon exch
~

1P") 0.94

g~ ( Ogluonexch ~OP )

whereas the use of (19b) would give 0.32. Equation (22)
confirms the previous determination [Eq. (10)] from the
baryon masses.

Now we consider the terms in the parametrization (17)
where at least one gluon is necessarily exchanged between
two quark lines. We already discussed the coefficient g7
of G7. Being due to the exchange of two gluons g7
should be smaller than g, by =(—,') —,

'—=0.013, about 4
times smaller than it is in reality (taking the average of
the two determinations [(19a) and (19b)] we have
~g7/g, ~

=(0.14/2. 79)=0.05). Of course a factor 4 can
arise from many reasons, but the arguments on g7& given
above show that to be conclusive on this point we must
wait for a better determination of X ~Ay. As to g4, g5,
and g6 they should be smaller than g, by a factor 3, due
to 1P, and a factor 5 due to one gluon; thus they should
be = —,', -=0.066 of g&. Taking again the average of (21a)
and (21b) we get
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[M(p)/M(n)]—= —
—,', from which a significant part of

this whole story came out [11]. Note that the value given
for g3 is exact; being determined only by the nonstrange
baryons n and p, g3 is unaffected by the P terms.

VI. A FEW REMARKS ON THE
SEMILEPTONIC BARYON DECAYS

AND THE MESON MASSES

A case quite similar to the exceptional smallness of g3
just discussed (again not in contradiction with our
analysis, but to be understood) is the smallness of the
coefficient b as compared to a in the semileptonic decays
of baryons (Ref. [lb], Eqs. (14) and (15)). The ratio b/a
measures the deviation of D/F from the "classical" value

Also in that case the ratio b/a is much smaller than

expected simply from a one-gluon exchange.
Another comment is in order on the semileptonic de-

cays of baryons. One often finds in the literature the
statement that there is no indication for flavor breaking
in the data. Because of errors this may be so, at present;
but since from time to time some authors insist on this
absence of flavor breaking, almost as if it were a basic
property, we remark that there is no reason for such ex-
ceptional behavior. In Ref. [lb] we noted that the ways
of analyzing the data are, a priori, too many and the ex-
perimental errors too large to arrive at a definite con-
clusion. However, after the analysis of this paper, it
emerges that there is only one flavor-breaking term that
does not imply necessarily the exchange of one gluon
(and thus a reduction by at least a factor 15). It is the
term listed as (1} in Eq. (23) of Ref. [lb]. This fact that
just one parameter is expected to be appreciably larger
than the others suggests a full reanalysis of the data, on
the basis of Eq. (24) of Ref. [lb].

We finally mention, for completeness, the parametriza-
tion of the meson masses. As shown in Ref. [lc] the most
general expression of the mass of a IWO meson
(n, K;p, K'), correct to all orders in &favor breaking, is

where A, B,C, D are four real coefficients. Here and in
what follows the index 1 refers to the quark and 2 to the
antiquark. The (vr, K;p, K *

) masses determine univocally
the values of the coelncients in Eq. (24). We get (in

MeV)

A =612, B =158, C =182, D = —58 . (25)

The ratio D/B determines the ratio between 1P and OP
terms with exchange of at least one gluon; it is, therefore

D (~ 1 gluonexch ~1P )

( ~ 1 gluon exch ~OP }
(26)

Comparing our general result Eq. (24) with Eq. (17) of
DGG [3], one finds again that the terms in Eq. (24) coin-
cide with those of DGG if (hm /m) = —(D /B); in fact
the result Am/m -=0.37 was already obtained from the
meson masses by DGG. The new point here is that

Mr~o A+Bo, .o—2+C(P, +P2 }+Drr, cr2(P, +Pi ),
(24)

whereas Eq. (17) of DGG was derived under many ap-
proximations, our Eq. (24) is an exact consequence (to all
orders in flavor breaking) of any relativistic QCD-like
field theory. Once more we find in (26) a value not too far
from —,

' for the x flavor-breaking parameter.

VII. CONCLUSION. WHY THE
NONRELATIVISTIC QUARK MODEL WORKS

QUANTITATIVELY FAIRLY WELL
FOR LIGHT HADRONS

The issue in the title of this section has been with us
since the origin of the NRQM. We feel that the answer,
based on the V transformation between quark model
states and exact states [1], is now clear at least for the
L =0 baryon and meson states. It consists of two points.

(a) The structure of the general parametrization (which
is an exact consequence of relativistic field theory and
thus relativistically correct although noncovariant) has
the familiar form typical of the NRQM. If the basic field
Lagrangian is QCD-like (the charge is carried only by
quarks and only A.3, 1,8 appear in the Lagrangian of the
strong plus electromagnetic interactions), Casimir opera-
tors in flavor space are absent in the general parametriza-
tion. For this reason and also due to the factorizable
choice of the model states with L =0, the structure of the
general parametrization turns out to be unexpectedly
simple. It consists of a rather small number of terms.

(b) The structure of the terms arising in a NRQM cal-
culation is the same as that appearing in the general pa-
rametrization. The NRQM often keeps, at least in the
simpler calculations, only the simpler terms; we mean by
this the additive terms plus two quark terms and so on.
Because in most cases the minimum number of ex-
changed gluons increases with increasing number of
different indices in a term, and because each exchanged
gluon or each flavor factor P depresses the magnitude of
that term, it follows from the results of this paper that
the simpler terms are usually the dominant ones.

These two points explain, we believe, why the "naive"
NRQM works fairly well.

Before concluding I emphasize the following. As stat-
ed repeatedly the fact that only the flavor matrices A, 8 and
A, i appear in the strong plus electromagnetic QCD Ham-
iltonian implies, since A, 8, k3 form a closed algebra, that in

the exact expression of the energy levels derived from the
QCD Hamiltonian (that is, the masses of baryons and
mesons) the Casimir flavor operators are absent. This
remains true no matter how complicated are the steps
that are needed to calculate the levels. In particular it
remains true also if the ground state of the system does
not have the symmetry of the Hamiltonian, that is, if
spontaneous symmetry breaking occurs. This shows that
any effective Lagrangian that depends explicitly on the
pion fields and thus on the k, +iA, 2 flavor matrices cannot
be in general equivalent to the original Lagrangian; it
cannot reproduce correctly the spectrum of the original
Hamiltonian, unless in the end result all flavor operators
different from A, 8, A.3 (and in particular all Casimir opera-
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tors) disappear; but obviously in that case the introduc-
tion of such an effective Lagrangian complicates the
description. This argument applies in particular to the
Skyrmion model [12], to the various cloudy-bag models
with pions as independent degrees of freedom, and, more

importantly, to the effective Lagrangian used by
Manohar and Georgi [13] to explain the NRQM with
chiral quarks, treating the pseudoscalar lowest nonet as
quasi Goldstone bosons and the other rnesons as qq ag-
gregates.

[1]G. Morpurgo, (a) Phys. Rev. D 40, 2997 (1989); (b) 40,
3111 (1989); (c) 41, 2865 (1990); (d) 42, 1497 (1990); (e)
Phys. Rev. Lett. 68, 139 (1992); (Q Phys. Rev. D 45, 1686
(1992). In (a) the method is formulated and applied to
magnetic moments, em transition matrix elements, and
masses of baryons, in (b) it is applied to the semileptonic
baryon decays, in (c) to the meson masses, in (d) to the
V~Py meson decays; in (e) it is used to derive a new
octet-decuplet baryon mass formula and in (f) it is applied
to the baryon electromagnetic masses. A list of misprints
is given in (e) and (f).

[2] G. Morpurgo, (a) Physics 2, 95 (1965) [also reproduced in
J. J. Kokkedee, The Quark Model (Benjamin, New York,
1969), p. 132]; (b) Theory and Phenomenology in Particle
Physics, Proceedings of the International School of Phys-
ics "Ettore Majorana, "Erice, Italy, 1968, edited by A. Zi-
chichi (Academic, New York, 1969), pp. 83-217; (c) in
Proceedings of the 14th International Conference on High
Energy Physics, Vienna, Austria, 1968, edited by J. Prentki
and J. Steinberger (CERN, Geneva, 1968), p. 225.

[3] A. De Rujula, H. Georgi, and S. Glashow, Phys. Rev. D
12, 147 (1975) (indicated as DGG).

[4] The spin part in Eq. (3) of DGG (the only one of interest
here) is g,. ,„[(o;o„)/m;m„] where m; and mk are the
quark masses. To obtain Eq. (8) write m;=m+(b, m)P;
and expand this term to second order in hm. In fact the
first of equations (8) should be ( —D /C) = (4m /
m) —(b,m/m) +higher orders in Am; the second also
should contain higher-order corrections in hm; in writing
Eqs. (8) we omitted such corrections; we recall that the
only purpose of this comparison with DGG has been the
normalizaton question. Note added in proof. In fact both
Eqs. (8) hold exactly to all orders in Am; they are not
affected by corrections of orders (hm) or higher. Indeed
from (m;mz) '=rn [(1+xP; )(1+xPk)) ' one gets,
with no approximation, after multiplication and division
by (1 xP; )(1—xPk~): —(m;mk) '=m ~(1 —x') '[(1

xP; )(1 —xP„)] = m— (1 —x ) '[1 —x(P, + P„)

+x P; Pq ]; thus in the DGG limit Eqs. (8) [(D/C) = —x
and (b /D) = —x] are exact.

[5] Writing m [Vt(x)y4%(x)+(bm/m)% (x)y4P"%(x)] for
the mass part of the quark field Hamiltonian, the
coefficient of P is hm/m =(mq —m~)/mq rather than
(mq —m~)/ mq that we often used; the difference between
the two is second order in hm /mq. But this is irrelevant;
the only point that matters is that the coefficient of P" is,
experimentally, = —,'.

[6] Compare, e.g., D. B. Lichtenberg, Unitary Symmetry and
Elementary Particles (Academic, New York, 1970), p. 175.

[7] Recall that so far we have applied the general parametriz-
ation method only to a narrow subset of states, the lowest
states of baryons and mesons; the question arises if more
restrictions on the renormalized masses of the constituent
quarks, additional to those to be mentioned here, emerge
enlarging the set of states to which the parametrization is
applied.

[8] Incidentally defining the constituent quark masses of P
and JV so that the P quark (for instance) has no anomalous
magnetic moment is a possible choice but with no particu-
lar justification or privilege over any other choice, at least
in the "natural" interval (16) introduced above.

[9] This 2P~ structure was inadvertently omitted in Ref. [la]
from the list in Eq. (39); there such omission was ir-
relevant, because in Ref. [la] we used only the structures
with 1P .

[10]S. Okubo, Phys. Lett. 4, 14 (1963). The relationship be-
tween magnetic moments given by Okubo and rederived in
Ref. [la] is correct to first-order fiavor breaking and does
not therefore include the term G7b.

[11]M. Beg, B. Lee, and A. Pais, Phys. Rev. Lett. 13, 514
(1964); Morpurgo (Ref. [2a]).

[12] The Skyrmion model was listed by D. Gross [Phys. Today
40, No. 12, 112 (1987)] as one of the steps that contributed
to clarify the success of the NRQM.

[13]A. Manohar and H. Georgi, Nucl. Phys. B234, 189 (1984).


