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We construct an improved version of nonrelativistic QCD for use in lattice simulations of heavy-
quark physics, with the goal of reducing systematic errors from all sources to below 10%. We
develop power-counting rules to assess the importance of the various operators in the action and
compute all leading-order corrections required by relativity and finite lattice spacing. We discuss
radiative corrections to tree-level coupling constants, presenting a procedure that efFectively resums
the largest such corrections to all orders in perturbation theory. Finally, we comment on the size of
nonperturbative contributions to the coupling constants.
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I. INTRODUCTION

Several papers in recent years have explored the possi-
bility of substituting a nonrelativistic action for the usual
Dirac action in lattice QCD simulations of heavy quarks
[1—3]. In particular, this technique has been applied to
simulations of the Q and T families of mesons. Results
from these simulations have been very encouraging. They
not only capture the gross features of quarkonium physics
but also are surprisingly accurate given the many ap-
proximations inherent in the simulations. Such success
follows from a variety of properties unique to quarkonium
states and from the algorithmic advantages of a nonrela-
tivistic formulation of quark dynamics. This suggests the
possibility of a truly reliable numerical study of quarko-
nium states using computing resources that are currently
available, a study in which all systematic errors are iden-
tified, computed, and removed to some reasonable level of
precision. In this paper we develop the outline for such
a program and provide some of the ingredients needed
to move from existing quarkonium studies to precision
studies. Most of the techniques we describe are readily
generalized for use in simulations of other bound states
containing heavy quarks, such as D and B mesons.

The major tools for simulating gluon dynamics in QCD
all involve Monte Carlo methods of one sort or another.
Consequently, in simulating quarkonium states, we must
worry about statistical as well as systematic errors. How-

ever, simulation data can be generated far more eK-
ciently for quarkonium states than for ordinary hadrons,
and thus the dominant errors for many of the most im-

portant quarkonium measurements are systematic. Here
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we focus only on these.
The nonrelativistic formulation of heavy-quark dynam-

ics is referred to as nonrelativistic quantum chromody-
namics (NRQCD). There are five potentially significant
sources of systematic error when NRQCD is used to study
quarkonium states.

(1) Relativity. The basic action for the heavy quarks
incorporates the physics of the Schrodinger equation.
Left out are relativistic corrections of O(v ), where v
is the quark velocity. Since vz is approximately 0.3 for
the Q's and 0.1 for the T's, we expect errors of 10—30%
due to relativistic corrections. Such errors can be sys-
tematically removed by adding new interactions to the
heavy-quark action.

(2) Finite lattice spacing. As in all lattice simulations,
there are errors resulting from the discretization of space
and time. For our systems, such errors are O(azp ) and
O(aK), where a is the lattice spacing and p and K are the
typical three-momentum and kinetic energy of a quark
in the hadron. Since typically a ~ 1/M, where M is the
quark mass, these errors are roughly the same order as
those due to relativity. These may also be systematically
removed by correcting the heavy-quark action.

(3) Radiative corrections. As in the Dirac action, the
basic action in NRQCD contains only two parameters:
the QCD coupling constant g, and the quark mass M. ~

However, each of the new interactions added to NRQCD

Actually there is a third parameter Eo, which adjusts the
origin of the nonrelativistic energy scale to coincide with that
of the relativistic energy sca}e. However, this parameter af-
fects only the absolute masses of hadrons and has no efFect

upon nonrelativistic quark dynamics, mass splittings, wave

functions, etc. In principle Eo may be computed, at least
approximately, using perturbation theory.
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to correct for relativity or finite lattice spacing introduces
a new coupling constant. These new couplings can be
treated as free parameters, to be adjusted by fitting to
experimental data, but this significantly reduces the pre-
dictive power of a simulation. Alternatively one can try
to compute these couplings in terms of g and M using
perturbation theory, thereby reducing the number of pa-
rameters back to two. The radiative corrections to these
coupling constants are determined by physics at distances
of order the lattice spacing a, and therefore perturbation
theory should be applicable provided a is small enough.
However, a must not be too small. NRQCD is nonrenor-
malizable, and as a result the radiative corrections con-
tain power-law ultraviolet divergences, such as gz/aM,
which make perturbation theory useless unless a ~ 1/M
or larger. Lattice spacings currently in use, where g2 1,
are probably suitable for both c and b quarks, and also
seem small enough for perturbation theory to work. Ra-
diative corrections of order 20—40% could easily result,
making these among the largest contributions at the or-
der we are considering. We will see that they are well
estimated using mean-field-theory techniques. Uncalcu-
lable corrections due to nonperturbative physics at short
distances could be of order a few percent.

(4) Finite lattice volvme Quar. konium hadrons are
much smaller than ordinary hadrons. Typical lattices
in use today can easily be 10 T-radii across, making it
unlikely that the finite volume of the lattice has much of
an effect upon simulation results.

(5) Light-quark vacuum polarization. Hadrons built of
heavy quarks are affected by light quarks through vac-
uum polarization. Such effects are usually very expen-
sive to simulate numerically due to the inefficiency of the
algorithms when quark masses are small. However, ef-
fects from light-quark vacuum polarization are likely to
be small for quarkonium states. Some evidence comes
from the decay widths of excited Q and T mesons into D
and 8 mesons, respectively. These decays result from
light-quark vacuum polarization, and their widths are
closely related to the energy shifts due to light quarks.
The small size of these widths compared to typical mass
splittings, together with model studies of this coupled-
channel problem [4], suggests that light-quark vacuum
polarization might affect quarkonium states at only the
10% level. Furthermore, the extrapolation from large
to small light-quark masses should be quite smooth for
low-lying quarkonium states since, unlike the p meson,
for example, these are all effectively stable even for real-
istic light-quark masses. ~ Note finally that heavy-quark
vacuum polarization has only a small efFect upon quarko-
nium states since there is too little energy in such states
to easily produce a heavy virtual quark and antiquark.

For most purposes such effects can be ignored, though
they are easily incorporated through perturbatively com-
puted corrections to the gluon action.

This list suggests that we might be able to reduce sys-
tematic errors below 10% in quarkonium simulations us-
ing NRQCD. To achieve this goal we must compute all of
the leading-order interactions that correct the action for
relativity and finite lattice spacing as well as the leading
radiative corrections for the most important of these in-
teractions. Other sources of error are probably unimpor-
tant at this level, although including some light-quark
vacuum polarization effects (by extrapolation) is both
feasible and desirable. In this paper, we present all tree-
level corrections to the NRQCD action that are relevant
to work at this level of precision. Although we have only
just started the analysis of radiative corrections, we also
present here some general comments concerning the na-
ture and treatment of these corrections.

Our analysis begins in Sec. II with the development
of power-counting rules that allow us to determine the
relative importance of various operators in the NRQCD
action for analyses of quarkonium states. Such rules are
trivial when one is considering light-heavy systems such
as D or B mesons. They are more complicated for heavy-
heavy systems since the heavy quark is not a spectator in
such a hadron; in particular, the quark mass strongly af-
fects the hadron's size and internal dynamics. In Sec. III,
we compute the O(vz) corrections to the NRQCD action
in the continuum for both Minkowskian and Euclidean
space. In Sec. IV, we discretize the corrected NRQCD
action, further modifying it to remove the leading errors
due to the finite lattice spacing. In See. V, we discuss
some general properties of the radiative corrections, we
give estimates for the largest of these, and we discuss the
extent to which nonperturbative physics can affect the
NRQCD couplings. Finally, in Sec. VI, we summarize
our results and discuss future prospects.

II. POWER-COUNTING RULES FOR NRQCD

NRQCD is an effective field theory which approximates
ordinary relativistic QCD at low energies. In principle,
the NRQCD action may be corrected to reproduce the
exact results of QCD by including an infinite number
of nonrenormalizable interactions. In practice, however,
exact agreement is unnecessary: only a finite number of
interactions are required to attain any desired accuracy.
Some criterion is necessary to assess the importance of
various interactions when designing the corrected action.
In this section we categorize interactions by their effect
on the energy spectrum of quarkonium states.

A. Building blocks for NRQCD

A low-lying quarkonium state does decay, via the annihi-
lation of the heavy quarks into gluons. The decay rate is
relatively small and the decay mechanism has a negligible ef-
fect upon other properties of the hadron. Consequently, this
decay mechanism is usually omitted in simulations.

Correction terms bZ(x) in the Lagrangian density of
NRQCD contribute

6E = —(n~ f d x6L(z) n)( (1)

to the energy of a quarkonium state ~n). Since opera-
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tors are not normal-ordered in lattice simulations, there
are cases where large contributions to bE involve con-
tractions of two or more fields in a single term of bZ(x).
Such contributions have no bearing upon the relative im-
portance of corrections since their efFect is cancelled by
shifts in the coupling constants of lower-dimension inter-
actions. Thus we may ignore these contributions when
estimating the importance of various terms. For the re-
maining contributions, each field and operator in 68(z)
has a characteristic magnitude determined by the dynam-
ics of the hadron.

The important dynamical scales for the nonrelativistic
analysis of the Q and T states are the typical momenta p
and kinetic energies K of their quarks; these are of order
1—2 GeV and 500 MeV, respectively. If v is the quark
velocity, the two scales are related to the quark mass M
by

D~O(x) =—[&i + i'd'(x)] 0(x)
Dg(x) = [V —igA(x)] g(z),

DgE; (x)—:BiE,(x) + i[g(P(x), E,(x)],
DE, (z) = VE,(x) —i[gA(x), E;(x)],

(4)

[Dg, D] Q
—= igEQ,

where P and A are the scalar and vector gauge poten-
tials, and g is the coupling constant. The last definitions
insure that the chain rule works properly for covariant
derivatives. For example,

D(EQ) = (DE)g + E(DQ).

The non-Abelian electric and magnetic fields can be de-
fined in terms of these covariant derivatives:

p Mv, K Mv . (2)
[D&l Dj] Q: igt&~&B

These determine the characteristic magnitudes of the
fundamental fields and operators in NRQCD and allow
us to estimate the (normal-ordered) contribution of any
interaction to a quarkonium energy.

The continuum action for NRQCD is built from the
fields and operators shown in Table I. We also list the
estimated magnitude for each of these in terms of v and
M. It is important to remember that it is the order in
v rather than the dimension of an operator that deter-
mines its numerical importance. In this table, the quark
field g and antiquark field g have two spin components
and three color components that transform in the funda-
mental representation. Combinations such as @tQ or pter
are invariant under rotations and color transformations,
while QtcrQ, for example, is a color singlet but rotates
as a vector. The gauge fields have two color indices and
transform in the adjoint representation. For example, the
chromoelectric field is

E(x) =—E (z)T .

The generators T~ are normalized such that Tr(T T~) =
6'~/2. The combination Qt E@is then a color-singlet vec-
tor field. Covariant derivatives act on the quark and
gauge fields according to

The estimated sizes given in Table I follow from the
properties of quarkonium states. For example, the num-
ber operator for (heavy) quarks,

d'z yt(x) y(z),

has an expectation value very near 1 for a quarkonium
meson. Since the quark in the meson is localized within
a region b,x 1/p, we estimate

and, therefore,

that is, Q p ~ . Similarly, the operator for kinetic
energy,

Ddsz gt(x) Q(x), (10)

has an expectation value of K by definition, and so the
spatial covariant derivative acting on a quark field is of
order

TABLE I. The component 6elds and operators for the
NRQCD action for heavy quarks. The estimated magnitude
of each in a quarkonium state and in Coulomb gauge is given
in terms of the quark mass M and typical velocity v.

as expected.
Field equations can also be used to relate estimates for

di6'erent operators. For example, the lowest-order field
equation for the quark 6eld,

Operator

x
Dg
D

gA
gE
gB

Estimate
(Mv)3i'
(Mv)'~'

Mv
Mv
Mv
Mv
M v
M v

Description
Quark (annihilation) field

Antiquark (creation) field
Gauge covariant time derivative
Gauge covariant spatial derivative
Scalar potential (Coulomb gauge)
Vector potential (Coulomb gauge)
Chromoelectric field
Chromomagnetic field

D2 )
~
iDg+ ~@=0,2M)

implies that

D2
Dg K,

2M
(13)

again as expected. If we specialize to Coulomb gauge,
the gauge most natural for nonrelativistic systems, this
equation becomes
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V
I i@ —g4(*) +

2M' (14) so = f d re (z) 1
iD, +

~
e(z).

D'&
2M) (22)

where we are neglecting the vector potential, which is
small in this gauge, as discussed below. The potential
energy that balances the kinetic energy and produces a
bound system enters through the operator gP and we
expect that

gP(z) K

in the Coulomb gauge.
This result can be checked against the field equation

for P (again neglecting the vector potential),

V'g4(*) = g'4'(-*)4(*) (16)

which implies that

g0(*) - gp—-g p
1 23 2.

p2

This is consistent with the previous estimate if the effec-
tive low-energy coupling strength is

as g 'U
2

2

(4 V') gA=——~'V&+g&Vg&+" . (19)

Using the estimates given above, we see that

gA(2) —
~

—p +pK
~

vK,
1 &g

p' (, M
(20)

which is smaller than the scalar potential by a factor of
the quark velocity. Estimates for the non-Abelian electric
and magnetic fields follow immediately from

gE = —Vgg+ pK,
(21)

gB=V xgA+ K .

In quarkonium, as expected for a nonrelativistic system,
magnetic fields are smaller than electric fields by a factor
of n.

These estimates are valid perturbatively, as in the anal-
ysis of positronium with NRQED, but are also consis-
tent nonperturbatively. The essential ingredient in their
derivations is the nonrelativistic nature of quark dynam-
j.cs.

That the Coulomb-gauge vector potential in a quarko-
nium state is typically smaller than the scalar potential
may be inferred from the field equation for the vector
potentia1:

Correction terms due to relativity and finite lattice spac-
ing must respect the symmetries of the theory: gauge
invariance, parity, rotational symmetry, unitarity, and so
on. For example, the interaction gfE erg, correspond-
ing to an intrinsic electric dipole moment, is not allowed
because it is odd under parity, while @~B erg is even
under parity and so is allowed. Charge-conjugation in-
variance requires that the total action be invariant under
the interchange @ ~ X. Thus the antiquark action can
be obtained directly from the quark action.

Correction terms must also be local. This, combined
with the fact that our theory needs only to be accurate to
10%, severely restricts the number of interactions Fo. r
example, the interaction QfB~Q/Ms is consistent with
required symmetries and so must appear in the NRQCD
action. But it is unnecessary for our calculations because
it is suppressed by vs (- 10 s for T's) relative to the
leading terms in the action.

Ignoring spin splittings for the moment, only correc-
tions that are suppressed by v~ relative to the leading
terms are needed to achieve accuracy to 10%%uo, at least for
T's. The only such terms bilinear in the quark field are
the order-v2 corrections

~~bilineer = Ci
4

+cq 2Q (D E —E D)@

+ca pter . (D x E —E x D)Q

+c4 —@ter Bg.g
M (23)

D2
iDtg(x) = g(x) . (24)

These transformations do not affect masses, on-shell scat-
tering amplitudes, or other physical quantities.

In addition to the bilinear terms, there are four-fermion
contact interactions involving a quark and antiquark:

In this and subsequent equations, D acts on all fields
to its right. The dimensionless coefficients ci, . . . , c4 are
functions of the running coupling constant a, (m/a) and
aM.

Note that terms involving time derivatives of the quark
field, such as QtDt2$, are not included Such . terms
greatly complicate the numerical evaluation of quark
propagators. We may avoid them here by suitably re-
defining the quark field so that factors of iDt are in effect
replaced by factors of —D2/2M, in accordance with the
field equation for g,

B. NRQCD interactions in the continuum

Equipped with the power-counting rules of the pre-
ceding section, we can enumerate terms for the quark
action in NRQCD that are potentially important for
quarkonium physics. The leading terms are those of the
Schrodinger theory:

b&contect —= di 2 O' X X 0t t

+dg M2$ crX X erg.
1 t t (25)

These appear to be down by only a single power of v.
However, similar interactions do not occur in relativis-
tic continuum QCD, and therefore such terms can occur
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, ) .O'T xx'T 0

+d4 M, ):O'T ~x x'T ~O, (26)

here only to one-loop order and beyond. Thus the coeK-
cients di and d2 are both of order o;, (vr/a), making these
contact interactions significantly less important than the
bilinear interactions considered above. Contact interac-
tions also occur between pairs of quarks, but these can
only acct heavy-quark baryons. Four-fermion operators
can also couple to colored states:

III. RELATIVISTIC CORRECTIONS

The corrections to the continuum NRQCD action re-
quired by relativity were enumerated in Sec. II. Our task
now is to find values for the coupling constants multiply-

ing these operators such that the predictions of NRQCD
agree with those of ordinary QCD through order vz.

Since the coupling constants have perturbative expan-
sions, we will determine them by matching perturbative
results in the two theories. Here we work only to lowest

order, or tree level, in perturbation theory. Higher-order
corrections will be discussed in Sec. V.

where ds and d4 are of order o., (ir/a). Color-singlet
mesons are affected by these interactions, since the meson
can become colored by emitting a virtual gluon. Gluon
emission, however, is suppressed by v, so these interac-
tions are again not as important as the bilinear terms in
Eq. (23).

Nontrivial spin dependence first appears in the bilinear
correction terms of Eq. (23), so that spin splittings in
quarkonium meson families are suppressed by v2. A 10%
determination of these splittings therefore requires the
retention of spin-dependent interactions suppressed by
v4. The additional quark-bilinear terms required to this
order are of three sorts: permutations of the operators
/to'Q, B, and two D's; permutations of the operators
pter/, DxE, and two D's; and the operator pter ExEQ,
which is nonzero in non-Abelian theories. Of these, only
three interactions occur in our treatment:

6d,p,„=fi s gt(D, cr B)Q

+f~ M, 0"(D', ~ (D x E- E x D)}q

A. Kinetic terms

The simplest correction follows immediately from the
formula for the relativistic energy of a noninteracting
quark:

2 4

gp'+ M' = M+ (28)

This implies a correction term, appropriately gauged, of
the form

which fixes ci ——s in Eq. (23).

B. Electric couplings

Most of the corrections from Sec. II involving the chro-

moelectric field are linear in gE. We compute these terms

by examining the order-g amplitude T@ for scattering a
quark off a static electric field in QCD:

TE(p, q) = u(q)V' g4(q —p) u(p) (30)

+fs s pter E x Eg. (27)

The power-counting rules indicate that spin splittings
in quarkonium systems should be smaller than splittings
between radial and orbital excitations. This is a familiar
feature of the experimental data. The Q' —Q and T'—T
mass splittings are both around 600 MeV. Our analysis
indicates that spin splittings should be smaller than this
by a factor of v2; that is, approximately 180 MeV for g's
and 60 MeV for T's. In fact experiments show that the
p-state hyperfine splitting, X(2++)—X(0++), is 141 MeV
for the Q family, and 34 MeV for T's. The sizes of these
splittings are consistent with our expectations, and show
clear evidence of appropriate scaling with v~. The 8-

state hyperfine splitting between the g and rl, of about
117 MeV is also consistent. These data reinforce our
con6dence in the power-counting rules, and in the utility
of a nonrelativistic framework for studying these mesons.

One final source of corrections comes from vacuum po-
larization of heavy quarks. These modify the gluon ac-
tion at order o.,(M) v~ and so can probably be ignored at
the 10% level. Such corrections are essentially relativistic
in character and should not be analyzed using NRQCD.
They are easily computed using continuum perturbation
theory.

Ei'™
2E, cT'p )

E„+M

with E„—:gp2+ Mz and g a two-component spinor.
Substituting this expression in Eq. (30) we obtain

(E„+M)(Eq+ M)
T@ p, q

p. q+icr q x p
(E, + M)(E„+M)

—:S@(p,q) + Vg (p, q), (32)

where S@ denotes the scalar part of the amplitude, inde-

pendent of cr, and V~ is the spin-dependent term. Ex-

panding both S~ and V@ to second order in p/M and

q/M,

with P the scalar potential. We are interested in match-

ing this result at small v to that obtained in NRQCD, and

so must expand it in powers of q/M and p/M. The Dirac
spinor, normalized nonrelativistically with utu = 1, is
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S~(p q) =11—
8M, l 0 gW(q-p) 0,

( (p —q)'l

x 4 ' ~ q x p g4(q - p) @.

(33)

It also enforces the conservation of the quark energy.
The amplitude is

TB(p, q) = —u(q)p gA(q —p)u(p), (»)
where p2 = q2. Expanding in p/M and employing en-
ergy conservation,

By computing the same process in NRQCD and com-
paring with the QCD result at low momentum, it is pos-
sible to determine which operators must appear in the
NRQCD Lagrangian and to fix their coefBcients. The
first term in the lowest-order NRQCD action, Eq. (22),
predicts a scattering amplitude Qt gP(q —p) Q . This cor-
responds to the first term in S@. The remaining terms
in SE and V@ can only be included by adding the new
interactions

6E@ = gt(D E —E D)g

+ 2gt (o D x E —o E x D) @

+ Qt(D, o DxE —o EXD)g (34)
64M4

to the NRQCD action. The coefBcients c2 and cs in
Eq. (23) are therefore s, while f2 in Eq. (27) is s4.

xgt [(p+q) A+io A x (p —q)]Q

= Sll (p, q) + Vll (p, q) . (36)

The spin-independent term Sll(p, q) arises in NRQCD
from the terms linear in gA which appear in the kinetic
energy part of the action, Eqs. (22) and (29). The spin-
dependent term V~ must be generated by the new inter-
actions

bE~ = /to Bg

gt(D2, o B)Q,

so that c4 =
2 and fi = s in Eq. (23) and Eq. (27).

D. Bilinears in E„„

C. Magnetic couplings

Similarly, we determine the operators linear in B by
calculating the amplitude for the scattering of a quark off
a static vector potential A(x). The time independence
of A(x) guarantees that there is no electric component.

I

The interaction Qt O' E x EQ, which contributes to
spin splittings, is the only bilinear in F» that contributes
to the accuracy desired. To fix the coefficient of this
operator [fs in Eq. (27)], we calculate the amplitude for
double scattering of a quark off an external static electric
field. In QCD, it is

TEE(pl P2) = —i » (2~) ~ (qi + q2 + Pi P2)
d Qi d g2

27r s 27r s

xu(P2)w'gk(q2)
(P y M, , gd(ql) Y u(Pi) (38)

for the fermion propagator, to break T@@into two terms
before expanding. NRQCD, with the terms computed
thus far, reproduces the first term containing u u/(ko —E)
to the required order in v, using vertices derived from the
interactions of Eq. (34). These were designed to match
the matrix element of Eq. (30), upogpu, and the first
term of Eq. (39) contributes the same matrix elements
to each of the vertices of the QCD diagram. The energy
denominator

1

I 0-Z
1

ko k2/2M

k2/2M (8M'P ko

This same process must be computed in NRQCD, and
compared to an expansion of Eq. (38) at small p/M.
This comparison is simplified by using the identity

1 & . u, (k) u, (k) v, (—k) V, (—k)
g —M + ko —E

with the kinetic energy A,
o = ko —M, is reproduced in

NRQCD by its nonrelativistic propagator and the kinetic
term correction of Sec. III A.

The second part of TaE, when expanded, introduces a
term of an entirely different character. To lowest order
in v, for low-momentum external gluons, the antiquark
propagator is just (2M) l, so this part behaves as a local
seagull interaction. This contributes to Eq. (38)

dqq dq2
( )3 ( )s (2~) ~ (qi + q2 + Pl P2)

x @ gg(q2) [ql q2 —irr ' ql x q2]gg(ql) @.
1 t

In order to obtain the same result with NRQCD, we must
include the new interaction
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g
2

b&z@ = — sQt [E E+icr E x E]g. (42)
IV. LATTICE NRQCD

To the order to which we are working only the second
term, which contributes to spin splittings at order u,
must be retained. So fs = —

s in Eq. (27), and we
have determined all relevant tree-level coeKcients of the
NRQCD Lagrangian.

E. The NRQCD continuum Lagrangian

A. Leading order

NRQCD is readily reformulated on a discrete space-
time lattice. As usual, quark fields @(x) are defined
at the nodes of the lattice, while gauge fields are rep-
resented by unitary matrices U~ „defined on the links
joining neighboring nodes. Covariant derivatives are re-
placed by forward, backward, or centered diff'erences,

The Lagrangian for continuum NRQCD in Minkowski
space is

D2
l'-NRqcD =—&0 Dig+ 0

2

a~p&+&4(x) =—U, „4(x+ay) —@(x),

ab.„Q(x)—:g(x) —U, „- „@(x—ap, ),
pi+i —i (g(+l + g(-i)

(47)

0
Z(M) ——

LX(@) ) (44)

while the zero component of covariant vectors rotates as
the time derivative:

+6l:~ + bl:@ + bl:B + 6l:g@,

where the relativistic corrections are defined in Eqs. (29),
(34), (37), and (42), respectively. We have not included
in the Lagrangian a mass term M@ig because in a non-
relativistic framework it only fixes the zero-point energy
and has no effect on mass splittings, wave functions,
and so on. As an independent check, we performed the
systematic but lengthy calculation of the Lagrangian in
Eq. (43) using the Foldy-Wouthuysen-Tani transforma-
tion [5]. This transformation is not directly applicable
beyond the tree level. However, perturbative corrections
to the various coefficients may be computed by compar-
ing amplitudes, as in Secs. III B—III D, but including loop
corrections.

Finally, we note that for lattice simulations we will
need the Euclidean action. This is obtained from the
Minkowski theory defined by Eq. (43) by keeping track of
how the three-dimensional vectors and scalars are defined
in terms of Lorentz-covariant quantities. Under Wick ro-
tation the zero component of contravariant vectors ro-
tates as the time coordinate,

depending upon the details of the interaction, while the
Laplacian becomes

~i&i —y gI+) gI-) y - gI-igI+i (48)

gF~'„l(x) = — ) 2'[Up&, „„)],
P(x,pv)

(49)

where the sum is over all plaquettes P in the (p, v) plane
containing the site x. Up is the product of link matrices
on P, counterclockwise about P, x i, as depicted in Fig. 1.
The operator 2' is defined as

M —Mt 1
X[M] = . ——Im(Tr M) .

2j 3 (50)

Covariant derivatives of F» are represented by the dif-
ferences

a~~-lFi;l(x) -=F~„l(x)

U F & (x ap)U~ —~p p

(51)

All terms in the NRQCD action are built with these ele-
ments.

The field F&„(x) is efficiently represented by cloverleaf
operators defined at the nodes of the lattice [6]:

gi M) + g(E). (45)

Spatial components of all four-vectors are unchanged.
Wick rotation changes the sign of the (0, 0) component
of the metric tensor, so that the usual Minkowski met-
ric rl„= diag(l, —1, —1, —1) rotates to the negative of
the identity matrix. One then has to extract this mi-
nus sign from scalar products in order to work with the
usual positive-definite Euclidean metric. Our definitions
for the basic operators appearing in Eq. (43) are

vi

D( ) + D( )
0 ~ 0

4iM) = —&biz),

{M) ~E(E)

while other fields are unaffected.

(46)

FIG. 1. Wilson lines appearing in the cloverleaf definition
of the fieM I'„,
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—a ) @t(z+at)
~

1—( aHp)t"
2n )

i&'( )2n y
(52)

where n is a positive integer and Hp is the kinetic energy
operator

~(2)
Ho —=—

2
(53)

The quark Green's function for such a theory satisfies a
simple evolution equation

Focusing on the leading-order terms, we may define a
series of lattice actions for NRQCD,

S(") = a ) gi(z)Q(z)

on the lattice to those in the continuum. For the quarks,
we simply identify the lattice field at a site with the con-
tinuum field at the same space-time point. For the glu-
ons, gauge invariance requires that the link operator be
related to the continuum gauge field through the path-
ordered exponential of a line integral,

++ad
U~,„=P exp i,g — A dy

where the scalar product is taken with the positive Eu-
clidean metric. The simplest choice of path for the inte-
gral is a straight line joining z to z+ ap, ; other choices
lead to the same final results but give more complicated
O(a) corrections. With this mapping from lattice vari-
ables to continuum variables, we can now correct each of
the lattice operators.

X. Sjmtiel derivativea

x G(x, t) + b,p6~+, p (54)

where G(x, t) vanishes for t ( 0. This evolution equation
difFers from others that have been suggested. It is sym-
metric with respect to time reversal, unlike that of [2].
Also, as we will see, it leads to a wave-function renormal-
ization much smaller than that of [3].

The parameter n was introduced to prevent instabil-
ities at large momenta due to the kinetic energy op-
erator [2]. The Green's function defined by Eq. (54)
blows up if max(aHp/2n) & 2, and so n must be large
enough to avoid this. Neglecting gluons, this implies that
n & 3/(2Ma) is required for stability; gluonic eÃects re-
duce the s2 to something closer to 1.15 for P - 6 [3].
Thus, at P = 6, n = 1 suffices for 5 quarks, while n = 2
is needed for c quarks. Larger n's may be required as P
is increased and a decreases.

Given relation (55), the action of the lattice difFerence
operators on continuum fields is specified by

6
aA, =—exp(aD, ) —1 = aD; + —D, +(+)

aA. =1 —exp( —aD ) = aD ——D +(—)
2

(56)

2
g(+) g(+) a g(+)g(+) g(—)

6 (57)

Similarly we may define an improved lattice Laplacian
that is also accurate to order a:

These are just gauge-covariant extensions of the obvious
g = 0 relations. By combining these expansions we ob-
tain an improved difFerence operator that reproduces the
efFects of D, through order a4:

B. Lattice spacing errors 6 2~(2) ~(2) & g(+)g(-)
]2 I' (5S)

The finite spacing of the lattice introduces new sys-
tematic errors into NRQCD. Errors associated with the
temporal spacing a& are typically of order ai{K), while
those due to the spatial lattice are of order a2~(pz).
The two tend to be roughly comparable since usually
a~ = aq = 1/M. Both must be removed if we are to
achieve high precision.

Errors due to the finite lattice spacing are removed
by adding new interactions to the Lagrangian, just as
O(v2) errors were removed. As in that case, we could
compute the necessary corrections by matching perturba-
tive scattering amplitudes in lattice NRQCD with those
in continuum /CD. However, at tree level, it is simpler
to correct the individual components from which the lat-
tice action is built (dh. (z), E, B,. . . ) so that they more
accurately reproduce the effects of their continuum ana-
logues. This is the approach we will follow here.

To compare the efFects of lattice operators with those
of continuum operators we need some way to relate fields

8. Temyornl derivative

Temporal and spatial derivatives enter NRQCD dif-
ferently because the theory is nonrelativistic. One con-
sequence is that quark propagation is governed by a
Schrodinger equation with a single time derivative. The
calculation of quark Green's functions is therefore an ini-
tial value problem, which is much less costly to solve
numerically than the boundary value problem dictated
by the Dirae equation. If we improve the time derivative
operator as we did for spatial derivatives, this sirnplifica-
tion is lost, as we would need to introduce higher-order
time derivatives.

To find an alternative, we examine the evolution equa-
tion for the quark Green's function, Eq. (54). Neglecting
the gauge Geld for the moment, this equation may be
written (for t & 0)
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G(~, t+ a) =
[

1 —
i

G(~, t)
aIIpl "
2n J

= e "G(~,t),
where the effective Hamiltonian

2n f asap'}
a 4 2nr

G=Ho+ —H +
4n

(60)

a
Hp =—Hp ——Ho.

4n
(61)

Making this replacement in the full evolution equation
[Eq. (54)] removes the leading error due to our lattice
approximation of the temporal derivative. The result-

The order-a term in the effective Hamiltonian cancels if
we replace Ho by

ing theory is equivalent to what would have been ob-
tained by improving the temporal derivative along the
lines presented in the previous section; the two theories
are related by a redefinition of the quark field, and so
give the same results for energy levels, on-shell scatter-
ing amplitudes, and other physical quantities.

8. Electric and magnetic fields

The lattice cloverleaf field F„'„(z) [Eq. (49)] is equal to
the continuum field F„„(z)up to corrections of order a2.
Our power-counting analysis (Sec. II) implies that only
corrections linear in F„„areimportant. Such corrections
are the same in an Abelian theory as they are in @CD,
so we simplify the analysis by focusing on the Abelian
case.

In the Abelian theory, where the operator 2 just takes
the imaginary part, the cloverleaf field is

a gF„"'„}(x)= —Im 1 ——,A dy+2 c Ig

r(2x 2}

g
4 (B„A —B,A„) dy" h dy'+ O(a )

x2)
4

=a gF„(x)+ (0„+8—)gF„,(x)+ O(a ), (62)

where the surface integral is over the {2 x 2) plaquette in the (p, , v) plane centered at x. The a term comes from
the second-order term in the Taylor expansion of F„„around point x. The non-Abelian generalization of this result
is obtained by replacing derivatives with covariant derivatives.

By subtracting the lattice version of the O(a2) error,

6gF(c}(x) gF(c}(z) Q(P}Q(—} + g(/}g( —} gF(c}{x)

we have a definition accurate to O(a ). Expanding the lattice derivatives as in Eq. (51), we obtain finally

gF('}(x) =
2 gF('„}(x)—s U~, „gF('„}(z+aj)Ui „+U, „. „gF(;}(x—aj)U, ,„-,„—(li ~ v) (64)

We have verified that F„„reproduces the continuum I"„(C)

to O{a4) directly in the non-Abelian theory using tech-
niques described in the Appendix.

The gauge field action

The gluon action has lattice spacing errors as large as
those of the nonrelativistic quark action. A great deal

of sophisticated work has been done on improving the
gauge Beld action, dealing mainly with one-loop contri-
butions [7]. For us, however, a straightforward improve-
ment of the classical action is all that is required. In
particular, corrections involving nonplanar loops are not
needed. This greatly simplifies our analysis.

Power counting indicates that the non-Abelian and
Abelian corrections have the same form. By Stokes' the-
orem, a single Abelian plaquette centered at point x is
related to the continuum field tensor by

Up(x) = exp iga F„(x)—

Only the kinetic part of the Halniltonian needs fixing here.
The gauge-potential part is automatically exponentiated since
the gauge fields enter through the link variables U

4

ig (0„+0 )F„(x)+ O—(a )—
24

and the usual lattice Lagrangian is

(65)
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Re [Up(x) —1] = -—F„„(x)
2g 6

6——F~ (x)(&,'+ &')F~.(x)

+O(~') . (66)

l:~(x) =
2 4 ) Tr R(Up(1x1))

P(1x 1)

where

M+ Mt
(M) = —1.

(67)

(68)

From the discussion above,

+cont + u2 pQ + O(u4) (69)

where l:vg"~ is the continuum Lagrangian. An accept-
able Lagrangian may also be constructed from (2 x 2)

The non-Abelian generalization is straightforward; the
key result is that the corrections are of order a2.

A simple scaling argument allows us to correct the non-
Abelian action. The usual Lagrangian involves a sum
over all four (1 x 1) plaquettes at a site x,

plaquettes, and its a dependence follows from Eqs. (67)
and (69), with the replacement a ~ 2a:

l:G(" (x) =
2 4 ) Tr R(UP(2x2))

P(2x 2)

= l:~"'+4a 6l:~ + O(a ) . (70)

By combining these two Lagrangians, we obtain a gluon
Lagrangian that is accurate to order a:

Za = i (4Ca —Zg" )
= —-'Tr F„„+O(a ). (71)

C. A corrected evolution equation

The leading-order evolution equation, Eq. (54), for the
quark Green's function is readily generalized to include
relativistic and finite a corrections. We choose the full
evolution equation to be

Again, this result may be confirmed directly in the non-
Abelian theory by means of the techniques described in
the Appendix.

t aHO ( abH) t t' abHi ( aHDGxt+a = 1 — i1— 1 — G x, t
2n ) E 2 ) ' ( 2 i I 2n i

(72)

for t ) 0. Here we have corrected the leading kinetic
energy operator for finite lattice spacing errors as in
Eqs. (58) and (61) so that

E'(x) =F,' (x),
B'(x) = 2e;,gF(„')(x) .

(78)

(79)

~(2) a (~(2))2
2M 4n, 4M2 (73)

Further, a straightforward transcription of the relativis-
tic corrections into lattice variables gives, for the spin-
independent corrections,

(~(2))
2

~HJcv~ —=—
8M

H„=— (+(+) E —E
8M2

and, for the spin-dependent terms,

(74)

(75)

8M2

2M

H»|n, v~ —= (2)

(A( ), rr (dL(+) x E —E x dE(+)))
64M4

cr Ex E.$g
(77)

Here E and B are defined in terms of the cloverleaf field,
Eqs. (49) and (64),

The difference operators in these terms act on all the
fields, E, B, and G(x, t), to their right. However, the
D E —E D operator may be simplified since the net
effect is to difFerentiate only the E field. Using Eq. (51),
it can be written as

a(') E = —) [U.,;E'(x+ai)U.',
a

U 'E (x Gl)U~ nj j ] (80)

Finite lattice spacing corrections are included in 6H,p;„
by using E and B of Eq. (64) and A(+) of Eq. (57) in
place of E, B, and A~+). These are unnecessary in the
other operators, which are already suKiciently accurate.

Certain correction terms may be unimportant in some
calculations. The O(v2) corrections for spin-independent
quantities are all included in 6'H~ „~, bH„~, and 6H,p;„;
the term 6'H»inv~ enters only at order v4. Spin split-
tings, however, are themselves O(v ), and so a compa-
rably accurate measurement of such a splitting would
require all of the corrections. For simulations of light-
heavy mesons, such as B's or D's, probably only the
magnetic part of 6H,~;„ is important. All other terms
are suppressed by at least an additional power of the
heavy quark velocity.

For reasons of eKciency we have separated the rela-
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tivistic corrections bH from the leading-order kinetic en-
ergy Ho in Eq. (72). This is possible because terms pro-
portional to E or B do not cause instabilities at high mo-
menta; it is only the kinetic terms that cause problems.
The relativistic correction to the kinetic energy bII~ „2
is a special case. It probably should not be included in
the evolution equation at all, but rather its contribution
computed in first-order perturbation theory. The prob-
lem with this term is that it is negative and large for
large momenta, eventually overwhelming the leading ki-
netic term Ho and destabilizing the theory. This problem
is not particular to the lattice version of NRQCD: it is a
complication due to the nonrenormalizability of the the-
ory. In fact, the continuum Hamiltonian

(p+ gA)~
2M

(p+ gA)4
SM3

f aHOI" a
~

1 —
~

~ exp —— gpz+ Mz —M
2

(82)

in the evolution equation. Here p is the quark mo-
mentum, which is easily introduced into the simulation
through the use of fast Fourier transforms. In this way
the exact relativistic energy is incorporated into the sim-
ulation in a way that avoids instabilities. Unfortunately
this approach greatly complicates the perturbative anal-
ysis of the theory, not least because it breaks gauge in-
variance. Nevertheless such problems are probably not
insurmountable, and the approach may someday be use-
ful.

Finally, note that four-fermion interactions as in
Eq. (25) may be incorporated naturally into the evolu-
tion equation by replacing them with new ones which
are quadratic in fermion fields. This is accomplished by
introducing an auxiliary field g, a complex matrix Geld
which is 2 x 2 in spin and 3 x 3 in color indices. For
example, if g appears in the Lagrangian as

is not bounded below and will lead to problems if p is
allowed to become too large. This problem does not arise
in first-order perturbation theory, so that a perturbative
analysis of this correction is possible. Note also that in
Coulomb gauge the correction can be approximated by
—p4/8Ms. Since this is independent of the gauge field,
its perturbative contribution to mass splittings can be
reliably determined given only the quark wave functions,
and these are easily computed in a simulation. Alterna-
tively, one could spread A&2& for this term over, say, five
lattice spacings in each direction instead of three. This
would reduce the largest effective momentum by a fac-
tor of 2, thereby reducing the high-momentum value of
6H~ „~ by a factor of 16 while leaving the low-momentum
behavior largely unchanged.

Many of the same problems could arise from the finite
lattice spacing corrections in Ho. However, it seems that
these do not cause problems for relevant values of Ma.
Indeed these terms seem likely to reduce the maximum
value of Hp.

A more radical way of dealing with instabilities at high
momenta might be to choose Coulomb gauge, where the
vector potential is small, and then replace

~contact = @ XX 0
C

(84)

for the fermions. This may be seen by performing ex-
plicitly the Gaussian path integral over g, or f'rom the
equations of motion

b a.= —xx', ~'=
C C

(85)

In a simulation this amounts to generating and summing
over a random Gaussian distribution for ri at each x and
t, normalized such that

(86)

and propagating the quark in this field according to the
interactions in L„.

V. RADIATIVE CORRECTIONS

In previous sections we derived tree-level values for the
couplings of NRQCD. The couplings are modified by ra-
diative corrections that are dominated by momenta of
order m/a or larger. Since 7r/a is typically several GeV
in simulations, we should be able to compute these ra-
diative corrections using weak-coupling perturbation the-
ory. However, lattice perturbation theory is notorious for
its poor convergence, which is much worse than contin-
uum QCD at comparable momenta. The large correc-
tions, which come from tadpole and related diagrams and
spoil lattice perturbation theory, apparently result from
the nonlinear connection between lattice link variables
and the continuum gauge potential. In the worst cases
such tadpole corrections are almost as large as tree-level
contributions, and some sort of nonperturbative treat-
ment becomes necessary. Fortunately, tadpole contribu-
tions are well described by a mean-field approximation
[8]. Such an approach allows us to compute most of a
radiative correction nonperturbatively in terms of quan-
tities that are easily measured in simulations. In this sec-
tion we first outline a mean-field analysis for lowest-order
NRQCD, giving estimates for all renormalization effects
in that theory. We also compare the mean-field theory
results with exact results to first order in perturbation
theory. Next we discuss a simple modification of lattice
NRQCD that efFectively removes all tadpole contribu-
tions. Finally we comment briefly on the significance of
nonperturbative contributions to the couplings.

A. Mean-field theory and lowest-order NRQCD

A simple way of tracing the effects of tadpoles is to
replace the link operators U & in the NRQCD propaga-
tor by a number up representing the vacuum expectation
value of U „.One gauge-invariant definition of up is in
terms of the plaquette operator

0'nM+ bX'n'X+ Try'n

without a kinetic term, this is equivalent to the interac-
tion
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up = (ol-,'T Uwi. q Io)'",
which becomes perturbatively

uo ——1 —0 083g2

(87)

(ss)

Hp =—,) upe '+upe ' —2,a8; —a8, (89)

so that

Hp - hp+up P
2M

for a quark with a low momentum p, where

hp = 3(1 —up)/Ma .

(90)

(91)

Substituing this into Eq. (54) for the Green's function
and replacing the link variables by up's, we obtain finally
a mean-field approximation to the quark propagator

Other definitions are possible, but these give similar re-
sults and will not be considered here. %'ith this defini-
tion, up is easily measured in a simulation: for example,
up = 1 —0.122 at P = 6. The measured up includes tad-
poles to all orders of perturbation theory, and perhaps
also some nonperturbative effects

Having a mean value for U~ &, we may proceed with a
mean-field analysis of the NRQCD propagator. In this
approximation, the kinetic-energy operator is

pie, ahp oc 1/a. These divergences cause problems as
the lattice spacing a is reduced, but there will be little
need to reduce a once our finite-a corrections have been
incorporated.

Renormalization parameters such as Eo, ZM, and Z@
are needed to interpret simulation results. For example,
the total mass of a meson with NRQCD energy E„ is

M„= 2 (ZMM —Ep) + E„. (9s)

Knowing ZM and Ep from mean-field theory, pertur-
bation theory, or both, and E„ from simulations, we
can use this expression to tune the NRQCD bare quark
mass. The wave-function renormalization is important
when designing quark operators to describe such things
as radiative transitions or decays through quark annihila-
tion. For example, the continuum operator pic, describ-
ing quark-antiquark annihilation, is well modeled by the
lattice operator gi Q/Z~.

We can calibrate the reliability of mean-field theory by
comparing mean-field results with exact calculations to
first order in perturbation theory. Such calculations have
been performed by Davies and Thacker [3], who have an-
alyzed the NRQCD propagator through one-loop order.
They defined the propagator by means of the evolution
equation

G(x, t+ a) = U, , ~

1 —
~

G(x, t) + U, 6 p bt p,
( aHpl"

n )

G ( t)-up i1-
2n

aup p
2nt/u

2n 2M' (92) G(x, t)=O (t&O),
(99)

In the low-momentum limit, we expect the continuum
propagator to have the form

G""t(p, t) = Z~ exp t
~
E + —

~

. (93)

Matching these, we obtain

Ep ———a ln up(1 —ahp/2n)
"

W

for the zero-point energy induced by tadpoles,

ZM' = u,-' (1 —a~./2n)

for the mass renormalization, and

Z@ —1

(94)

(95)

(96)

for the quark field renormalization. At P = 6 with
Ma = 2 (roughly the 5 quark mass) and n = 1, these
renormalization parameters are

E -0.9 GeV
ZMF =1.04,

Zg ——1.MF

None of the renormalizations is particularly large for
leading-order NRQCD, at least for P near 6. This
is despite the theory's nonrenormalizability and conse-
quent power-law divergent renormalizations: for exam-

g2
aEp ———ln up (1 —ahp/2) + 0.07 —4.

tCO
(100)

The correction 0.07g2 is the difference between the per-
turbative and mean-field result in Table II. The fac-
tor 1/up4in the correction accounts for tadpole-induced
renormalization of the bare coupling g = 6/p, also sug-
gested by mean-field theory [8]. With this expression, all

which differs slightly from our equation. The energy shift
and mass renormalization for this equation are identical
to ours if n is replaced by n/2 in our equations. The wave-
function renormalization, however, is significantly differ-
ent: in mean-field theory, one finds Z&MF = (1—ahp jn)
for the Davies-Thacker equation. In Table II we list the
0(gz) coefficients for Ep, ZM, and Zy. We give both
the exact result, as computed by Davies and Thacker
using perturbation theory, and the mean-field estimate,
obtained by replacing up with its perturbative expansion,
Eq. (88), in mean-field expressions for the renormaliza-
tion parameters. Since we expect nontadpole contribu-
tions of one or two times n, /n, or 0.03gz to 0.05gz, the
agreement is excellent. A nontadpole contribution of this
size is only 5—10 Fo of the tree-level contribution at P = 6.
Mean-field theory does seem to account well for radiative
corrections when they are large.

When perturbative results are known, they can be used
to correct the mean-field prediction. For example, the
zero-point energy Eo for our propagator at cM = 1.5
can be written as
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TABLE II. The coeKcient of g in expansions of the
NRQCD renormalization parameters. Results coming from
exact perturbation theory (PT) are compared with estimates
based on mean-field theory (MFT) for a variety of masses M.
The parameters are appropriate to the evolution equation
used by Davies and Thacker. For ZM, n = 1 for Ma = oo
and 5; n = 2 for Ma = 2.5 and 1.5. Eo and Zy are indepen-
dent of n. An infrared divergence, which is shared with the
continuum theory, has been omitted from Z@.

5
2.5
1.5

5
2.5
1.5

5
2.5
1.5

PT
aEp/g'

0.17
0.21
0.25
0.30

(&M —1)/g'
0.07
0.04
0.07
0.06

(Z~ —1)/g'
0.04
0.07
0.10
0.15

0.08
0.14
0.18
0.23

0.08
0.03
0.03
0.0

0
0.05
0.10
0.17

B. Removing tadpole contributions

Our mean-field analysis of lowest-order NRQCD is
readily extended to include the various corrections due
to relativity and finite lattice spacing. There is, how-

ever, a simpler way of dealing with the tadpoles. By
dividing every link matrix by uo before computing quark
propagators, all tadpole contributions are automatically
removed from the simulation. When we replace U, „
with U „/uo in our formulas, we are in effect redefin-
ing the coupling constants [at O(o.,)]. Perturbation the-
ory should be quite convergent for these new couplings,
and, in particular, the tree-level results we have com-
puted should be accurate to within corrections of order
n, /ir; that is, to 5—10 Fo at P = 6.0.

The mean-Field corrections introduced by our simple
procedure are not always small, particularly for opera-
tors that involve the cloverleaf definitions of electric or
magnetic fields. These operators are modified by a factor
uo . for example, B ~ B/uo. At P = 6.0, uo is 1.7,
almost doubling the E and B fields. Leaving out such
factors leads to dramatic underestimates of quantities,
such as spin splittings, that involve one or more powers
ofEor B.

C. Nonperturbative eKects

As is true of all perturbative calculations, our analy-
sis of NRQCD couplings omits nonperturbative contri-

that is needed to complete the calculation is a measure-
ment of the expectation value of the trace of the plaquette
to determine uo.

butions. A priori, we know little about the nature of
such contributions. The one thing we may assert with
some confidence is that nonperturbative contributions
are smaller than perturbative contributions for momenta
x/a larger than a couple of GeV; that is, for P ) 5.7.
This is the fundamental assumption underlying all appli-
cations of perturbative @CD, whether in the continuum
or on the lattice. As we have argued, perturbative cor-
rections to our couplings are probably less than 10—15%
for reasonable P's, and so it seems likely that nonper-
turbative efFects are no larger than a few percent. Since
most physical results are not extremely sensitive to the
values of the couplings, the nonperturbative efFects are
probably safely neglected.

Our mean-field analysis supports this view by provid-
ing a toy model for nonperturbative effects. The pla-
quette operator plays a key role in this analysis since
it determines the mean field uo. The plaquette is one
of the few operators whose nonperturbative behavior is
somewhat understood. The expectation value of a large
Wilson loop with area A contains a factor exp( —o'A)
due to nonperturbative confinement. Here a is about
0.18 GeV, based upon phenomenologically motivated
quark-antiquark potentials. There is empirical evidence
that this behavior persists for small loops, and even for
the plaquette, whose expectation value seems well de-
scribed by perturbation theory times a factor of (1—oaz),
at least for P near 6.0 [8]. At P = 6.0, aaz is about 0.04,
making the nonperturbative part of the plaquette about
10'Fo of the size of the 0(g2) part. This is perhaps some
indication of the relative sizes of perturbative and non-
perturbative effects.

To continue with our toy model, we assume that the
mean-field parameter uo inherits a nonperturbative con-
tribution —craz/4 from the plaquette:

Ep (1 —uo) (1/a+ 3/Ma )

~ Eo~'" + o a/4 + 3(r/4M . (102)

Here there is a contribution that does not vanish with a;
factors of 1/a generated by perturbative power-law diver-
gent loops cancel the factors of a in the nonperturbative
term. However, this contribution amounts to only about
30 MeV for b quarks, much less than the perturbative
contribution of about 900 MeV at P = 6.

Nonperturbative terms such as those in Eq. (102) for
Eo mean that the perturbative relation, Eq. (98), be-
tween quark mass and meson mass cannot be exact for
any lattice spacing. But for P = 6.0, the uncertainty
that results is only a few percent of the b quark mass.
Of course, ours is only a toy model for nonperturbative
effects. We do not really know that the nonperturba-
tive part of uo is suppressed by a rather than, say, a or

(101)

This amounts to less than 270 of u&
" at P = 6.0, and less

at higher P's, so it has a negligible effect on renormal-
ization constants like ZM and Z@. One place where one
might worry about nonperturbative corrections is in the
very divergent zero-point energy,
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a ~ . But we do know that it is suppressed relative to the
O(g ) contributions. Thus we can use perturbative re-
sults to bound nonperturbative contributions; as long as
perturbative corrections are not individually large, non-
perturbative corrections cannot be very important. In
some cases, the use of the measured value of uo, rather
than the calculated one, may account for some of the
nonperturbative physics. This is most likely the case, for
example, when renormalizing cloverleaf E's and 8's with
the plaquette average.

Finally it is worth noting that the nonperturbative con-
tribution to the plaquette expectation value is almost
comparable in magnitude to the O(g4) perturbative con-
tribution at P = 6.0. Thus there seems little point in
computing much beyond first or second order in g2. Pre-
cision beyond a few percent will probably require non-
perturbative tuning of couplings.

VI. CONCLUSIONS

Nonrelativistic QCD provides one of the most efficient
frameworks for simulating heavy quarks. While an ap-
proximation to QCD, it may be systematically improved;
this paper provides initial steps toward that goal. We
developed general power-counting rules which allowed us
to assess the relative importance of various corrections,
and which we ean use to fine-tune the theory for specific
applications. We computed all of the leading-order cor-
rections required by relativity, both for spin-independent
and spin-dependent interactions. The theory was then
adapted to the lattice, including all leading-order correc-
tions from finite lattice spacing. Finally, we presented
a simple mean-field procedure that automatically incor-
porates the largest radiative corrections to the NRQCD
coupling constants. Our mean-field analysis also allowed
us to estimate the importance of nonperturbative contri-
butions to the couplings.

In NRQCD, heavy-quark propagators are determined
by a simple evolution equation, avoiding the need for
costly matrix inversion. Our fully corrected evolution
equation was presented in Sec. IV C. Using this equation,
together with the mean-field improvement procedure de-
scribed in Sec. V, should give results for @ and T mesons
that are accurate to perhaps 10% or better, depending
upon the measurement. The largest remaining errors are
probably due to uncalculated O(o.,) corrections to the
NRQCD couplings beyond the mean-field contributions,
and to light-quark vacuum polarization. These errors can
be removed in the near future. The coupling constant
corrections are computed using ordinary one-loop weak-
coupling perturbation theory; work has already begun on
these. The dominant contribution from light-quark vac-
uum polarization is probably insensitive to light-quark
masses less than 100—200 MeV, and the extrapolation
to realistic quark masses should be quite smooth. It is
therefore feasible to include the light quarks with current
lattice technology. Once these systematic eKects have
been removed, simulations should be accurate to a few
percent, where nonperturbative contributions to the cou-
plings may become important.

Simulations using the techniques presented in this pa-

per should, in the near future, produce accurate spectra,
decay rates, wave functions, and other matrix elements
for all of the lowest-lying mesons in the Q and T fam-
ilies. These techniques should also be useful in studies
of D and B, as NRQCD propagators are more efficiently
generated than relativistic propagators, and much less
afHicted by noise than static propagators [8]. With these
methods we are entering a new era of high-precisian lat-
tice simulations of quantum chromodynamics.
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APPENDIX

This appendix discusses the construction in NRQCD
of lattice operators which reproduce the corresponding
continuum operators to any desired order in a, at tree
level. We first desc'ribe a natural technique which works
for all bilinears in fermion fields, but turns out to be
inconvenient in actual simulations. Then we show how
to circumvent this problem by starting with a convenient
lattice operator and computing corrections to it. Finally,
we discuss in some detail the corrections to the gluon
action in the non-Abelian case.

Consider a general local, gauge-covariant, continuum
operator, bilinear in the fermion fields and with canonical
dimension d = n + 3:

O(z) = gt(2:)K„(E,B,D) Dg)g(x) . (AI)

Since the field strength components are proporf;ional to
commutators of covariant derivatives, such an operator
is a linear combination of the tensors

(A2)

] P

D„=—in(1+ aA+ ) —in(l —ab, f &)
2G P P

In practice of course one always works with the first few
terms in the power series expansion of Eq. (A3). One

It is straightforward to construct lattice expressions for
these tensors, accurate to a specific order in a, provided
one defines the link variables correctly in terms of the
continuum gauge potentials, as in Eq. (55). The re-
lationship between the continuum covariant derivatives
and the corresponding finite difFerences on the lattice is
then given by Eq. (56), and one can rewrite the tensors
in Eq. (A2) using, for example, the symmetric expression
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can then use the fact that 6„=b,„+O(a) to con-
struct an expression for D& that is maximally local on
the lattice, as for example Eq. (57). To see what kind of
lattice expressions are generated through this procedure,

consider, for example,

O„„( ) =—— @t( )F„„()y( ). (A4)

Using Eq. (57), this becomes, up to corrections O(a4),

OC„„j(*)= @'( ) ~

6(+)6(+) ——3,(+)6(+)6(+)g(-) ——g(+)g(+)g(-&/&+) —{„m ) g( ). (A5)

In terms of link variables the result is simpler and more
transparent, and it is shown in Fig. 2. There one can see
the main characteristic common to all lattice operators
constructed this way: the quark field and its hermitian
conjugate are evaluated at different points on the lattice.
In actual simulations, this turns out to be a serious dis-
advantage: it is much more economical to define both
fermions at the same site.

Fortunately, it is as easy to go from a lattice operator
written in terms of link variables to the corresponding
continuum expression. We can therefore start with any
operator having the appropriate continuum limit, such

as our cloverleaf F&('„)(z), and then correct it to the de-
sired order in a. Consider for example the first term in
the cloverleaf definition of the field strength tensor, sand-
wiched between spinors:

@t(~)U. „U.+.„-.U.',.„. „Ut „y(*). (A6)

It is easy to find an expression written in terms of lattice
derivatives that will reproduce this term. One starts by

replacing each matrix U„with a forward derivative b,~(+),

and each matrix Ut with the corresponding backward
derivative. This gives

yt (z)g(+)g(+)g(—) g(-) q(~) (A7)

which contains Eq. (A6), plus correction terms with at
most three U's, that are easily calculated. The procedure
is then iterated until all terms with a lower number of
U's are canceled. Once the desired lattice operator is

I

written in terms of lattice derivatives, the corresponding
continuum operator can be calculated using, once again,
Eq. (56), to the desired order in a.

This procedure identifies the terms which need to be
subtracted from the original definition. Once known in
the continuum, it is easy to guess a lattice expression that
will cancel them, yielding the corrected lattice operator.
The result for the cloverleaf field strength is, as expected,
given by Eq. (63) and Eq. (64).

The correction to the gluon action in the non-Abelian
theory is somewhat more complicated to check directly.
We start by noting that, to all orders in a, the link vari-
able can be written as

(",T)
n=1

(A8)

u', „= igAb, —
b b

tL2 = V4 = 0))P )0
2

(A9)

where fb,g are the structure constants of SU(3). By the
same token, we can write the plaquette matrix as

This is a consequence of the Baker-Campbell-Hausdorff
theorem, that allows us to rewrite the path-ordered ex-
ponential as exponential of a series of commutators. Our
definition of the link variable, with the gauge potentials
evaluated at midlink, implies, for example,

1+ -a + +
P U~(. „„)=exp ) (a"C'„'„„Tb)

n=1
(A10)

where, with the fields at the center, one easily finds that

+ + bC1„„——0, b
C2 „„———igI'„„. (All)

Q 2

+
I

The series expansion in powers of a of the trace of
Eq. (A10) can be considerably simplified by using the
trace identities

Tr(T ) = 0, Tr(T Tb) = ~6 b,

(A12)
FIG. 2. The operator iggt (z)F„Q(x), corrected to or-

der a . The sign that each term bears in the sum appears at
the corner of the corresponding Wilson line. The field @t is
at the beginning of each line, the field @ at the end.

Tr(TaTbTc) =
4 {dabc + &fabc) ~

where d b, is the completely symmetric invariant tensor
of SU(3). This yields
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~4 a'
W(UP( ~„) —1) = —C3,„C3,„+—Cz~„Cs,p,„

a~ g6
+—C2,pv C4 pv + —C3,pv C3,pv

a6

(A13)

so that the only coefficients we need to calculate are C3,p,
and C4 &„. The calculation is rather lengthy, but can be
performed using a symbolic manipulation program, such
as MATHEMATICA [9]. The result is

2

C3„„T,= ——[A„+A„,F„„],
(A14)

+—[(8„+8„)(A„+A„),F„„]

+ [A„+A„, [A„+A„,F„„]].

Substituting Eq. (A11) and Eq. (A14) in Eq. (A13)
one can verify, as a nontrivial check, that all gauge-
noninvariant terms disappear, as do the coefBcients of
odd powers of a. The final result is, as expected,

g2a4
T Z(U (.,„„&) = —,T(F„'.)

2g6
Tr F„„(D„+D„)F„

(A15)

the non-Abelian generalization of Eq. (66).
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