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Emergence of new quasiparticles in quantum electrodynamics at finite temperature
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We study the spectrum of fermionic excitations in a hot relativistic electron plasma. Numerical

analysis of the one-loop electron propagator shows the appearance of new quasiparticle modes, as al-

ready studied in the massless fermion limit, as the temperature is raised to exceed the electron mass m.

We calculate the relevant spectral densities and show that one mode, whose splitting in energy from the

original electron is of the order of m, moves as the temperature is raised towards higher frequency along

with the electron while retaining a narrow width. We compare results derived in Feynman and Coulomb

gauges. The role of the zero-temperature counterterms is discussed.

PACS number(s): 12.20.Ds, 52.55.Mg, 52.60.+h

I. INTRODUCTION

In studies of the elementary fermion excitations of a
hot relativistic quark-gluon plasma, it was found that the
spectrum develops a gap of order gT at zero momentum,
where g is the coupling constant and T the temperature,
and that at finite momentum the spectrum is split [1—6].
In this paper we study this phenomenon in the Yukawa
theory (electrons interacting by exchange of massless sca-
lar "photons") and in QED, focusing particularly on how
the spectrum changes as the temperature is raised. We
find that a number of new poles appear in the fermion
propagator at various threshold temperatures, of which
only one corresponds to a state narrow enough to be con-
sidered a quasiparticle. As we shall see, the new modes in
the spectrum do not appear in a discrete transition, ' rath-
er broad spectral weight in the neighborhood of the new
excitations sharpens with increasing temperature.

Previous authors (with the exception of Refs. [5—7))
have concentrated on the physics of massless fermions or,

gT

4

FIG. 1. Spectrum of electron excitations in an ultrarelativis-
tic plasma. The upper branch is the "normal" electron state.
The dashed line is the line co=p.

in other words, on the extreme relativistic limit in which
T)&m, where m is the bare fermion mass. Figure 1

shows the fermion dispersion relation found to second or-
der in the coupling, when the mass is neglected. (We
consider only the case of zero chemical potential. A dis-
cussion of what happens with a finite chemical potential
will be given in [9]). In order to see how this spectruin
comes about as the temperature is raised from zero, we
confine our attention below to the situation at zero quasi-
particle momentum, p=O. Just as a small nonzero p
splits the dispersion relation, a nonzero mass splits the
state at p=0. Moreover, just as a large p broadens the
new (lower) state and makes it disappear from the spec-
trum [5], a sufficiently large mass does the same. In fact
the new state has features of a collective excitation, and
as such its presence in the spectrum is expected only
when p and m ~gT. Turning this argument around: for
fixed m at p=O, one expects that a new fermion state,
split from the original fermion, will gather strength as T
is raised past m/g and become, as T increases, a quasi-
particle, eventually as narrow as the (now-broadened)
original fermion. This new quasiparticle has been dubbed
the "plasmino" by Braaten and Pisarski [8].

In the next section we study the Yukawa theory, intro-
ducing the many-body formalism we employ. We display
explicitly the poles of the propagator and the correspond-
ing peaks in the spectral densities. We use throughout
gi/4m=a= 1/137 so that 1/g=3. 3. In Sec. III we ap-
ply the same analysis to QED. Our main result is that a
new electron state appears gradually at T=3m. At that
point the electron has shifted to co=1.1m, and the new
peak in the spectral density is at m=O. lm. As the tem-
perature is raised further, both peaks move off together
towards higher cu, maintaining the splitting of order m as
their shapes change.

Since our analysis in the case of QED is based on the
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electron propagator which is a gauge-dependent object,
the question of gauge invariance arises. As is well
known, irrespective of the temperature, the location of
well-defined poles in the propagator is gauge indepen-
dent, since the poles correspond to physical excitations.
(For a recent discussion, see [10,11].) The full spectral
weight is not necessarily gauge independent; moreover,
one-1oop calculations are insufficient to account correctly
for the widths of the quasiparticles. Since our calculation
is limited to one loop, we expect our results for inter-
mediate values of the temperature to be gauge dependent,
and this is indeed what we find by comparing, for the
sake of illustration, calculations in Feynman and
Coulomb gauges. As it turns out, the peak positions ap-
pear to coincide in the two gauges for the entire tempera-
ture range studied, while the widths are different. To go
systematica11y beyond leading order requires resumma-
tion of higher-order loops [8,12].

We discuss in Sec. IV the oft-neglected zero-
temperature piece of the propagator. It has usually been
tacitly assumed that its effects vanish into renormaliza-
tion counterterms. In fact, the finite-temperature shift of
the electron off its mass shell makes it necessary to take
into account an infrared-divergent zero-temperature con-
tribution to the inverse propagator, which gives a further
shift in the dispersion relation. This also applies to the
new quasiparticle, which of course is not on the original
electron mass shell, either. We include this contribution
with the aid of an infrared cutoff, and show that our re-
sults are essentially unchanged for reasonable values of

the cutoff. Removal of this cutoff will have to await a
more systematic analysis.

II. YUKAWA THEORY

G '(p, co) =Go '(p, co) —X(p, a)) .

The free particle propagator is

Go '(p, ~)=coyo —
y p —m, (2)

and the self-energy X has the structure

X(p, co) =ayo+by p+c,

where a, b, and c are functions of co and
~ p ~, and thus

G '(p, ro) =(co—a )yo
—(1+b )y.p —(c+m ) .

(3)

(4)

The temperature-dependent part of the one-loop self-

energy, illustrated in Fig. 2, is given in the limit p=0 by

Consider the coupling of a Dirac fermion g to a mass-

less scalar field P with the interaction qPgP. Because this
case shares the basic features of the fermionic spectrum
of QED, which we discuss in the next section, we shall
refer to the fermion as an "electron" and to the scalar
particle as a "photon. " The electron modes are given by
the poles of the Green's function G(p, co), where

d k
X(0,co) =g f (2n. ) 2k

yo+m
2ek

6k go m

2

nk fk nk +fk+
N 6k k 6) 6k+k

t

&k fk &k+—fk+
co+e&+k m+6k —k

e ~+1
l

Pke —1

where e =+p +m and k =
~
k ~. The thermal factors

are
tron with momentum k annihilates with the initial elec-
tron into a photon with momentum k [Fig. 3(b)]. For
both these processes the energy of the particle in the
thermal bath cancels that of the intermediate state, and

where P=l/T The self-en. ergy has the form X(0,m)

=a(~)yo+c(co). The four terms in Eq. (5) correspond to
the processes shown in Fig. 3.

In the high-temperature limit, T »m, one can ignore
c ~ m in X. The main contributions to the integral in X
come from the region k = T. The leading terms in a cor-
respond to two processes: one in which a scalar photon
with momentum k is absorbed, producing an electron
with momentum k [Fig. 3(c)], and one in which a posi-

p+k

p+k

(b)

(c)

FIG. 2. Electron self-energy to order one loop.

FIG. 3. Physical processes contributing to the imaginary part
of the fermion self-energy. Processes (b) and (c) are the dom-

inant ones at high temperature.
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the denominators in Eq. (5) reduce to that of the incident
particle, namely co. Then a is simply given by

2 /3k 2+2
a(co) = f, (n„+f„)=

(2n) 2k 16co

The poles of

G(0,co) = Vo

co gT—/16co

are then at co=+gT/4.
The energies of the states look like those of free fer-

rnions with mass gT!4. However, the interactions in the
heat bath produce a mixing between the positive- and
negative-energy solutions of the free Dirac equation
which results in a richer structure than that of a free par-
ticle spectrum. To a certain extent, this structure is dic-
tated by symmetry considerations. The single particle
Hamiltonian, H=u —yoG ', at p=O commutes with
both y& and yo. Since y~ and yo do not commute, eigen-
states of H (or of G) must be degenerate. For massless
free particles this degeneracy is realized by the positive
and negative energy branches for nonzero p meeting at
co=0 when p~O. Here, however, the existence of the
gap g T/4 forces an additional degeneracy on the system.
Consider, for example, a state with co =g T/4 and
yo=+1. Acting on it with y5 fiips it to a state with

yo= —I, leaving its energy unchanged. There are thus
four degenerate states at energy gT/4 and four at energy

gT/4, and—each group of states exhausts the possible
quantum numbers which may be attributed to a Dirac
spinor. Two of the states with co=gT/4 have helicity
equal to their chirality, and two have helicity opposed to
chirality. [This is easily seen by multiplying Eq. (4) by
ysyo. ] For fuller discussion of the symmetry properties
of the massless spectrum, see [13,4]. The degeneracy at

p =0 is broken at nonzero p, giving the two branches seen
in Fig. 1. A similar splitting appears at p =0 when the
fermion mass m is nonzero.

At zero temperature, the spectrum e is that of free
fermions of mass m; at low temperatures the spectrum
undergoes a small shift through the coupling to the
thermal bath of photons. How then does the richer
structure seen in Fig. 1 develop as the temperature is
raised'7 To answer this question we study the poles and
the spectral weight of the Green's function G(0, co) as the
temperature is raised. It is useful to decompose 6 ac-
cording to the eigenvalues of yo. From Eqs. (1)—(3), it
follows that at an arbitrary temperature

G(co) = 1+yo
G+ (co)— G (co),

where

G+(co)=
coWm —(a+c) (10)

The Green's functions G+ can be written in terms of
their spectral densities A+ as

A ~(co')
G~(co) =

2' CO CO

Since G (co)= —G+ (
—co), the spectral functions are re-

lated according to A ( —co) = —A+(co).
First we trace the roots of the real part of the denorni-

nators co+ m —(a+c) in G. Wherever the imaginary part
of the self-energy, which we examine below, is small,
these roots correspond to well-defined quasiparticle
modes. Since c is even in co, and a odd, the solutions of
co+m —Re(a —c)=0, corresponding to yo= —1, are just
the negatives of the solutions of co —m —Re(a+c)=0,
corresponding to y0=1. Explicitly,

d'k m k fk nk+-fk

(2~)34k ek co —ek —k co ek +k—
+ 1+ nk fk nk +fk+

co+ e& +k co+ e&
—k

(12}

g d k nk fkf , + &0,
m {2~) k Ek

(13)

while a (0}=0. Similarly,

g d kf [nk(2k +m~)+2kekfk](0,
m {2~) k

(14)

where P denotes a principal value.
The shapes of the functions Re(a+c ) for positive co are

shown in Fig. 4. At co =0,

while (Bc/Bco) 0=0. Thus at small T/m, the equation
Re(a+c) =co—m has one root, co=m, corresponding to
the free particle solution. As the temperature increases,
e(0) becomes more and more negative, and the negative
slope at the origin increases in magnitude, so that eventu-
ally the curve of Re(a+c) begins to intersect the line
co —m in two more places, at small co/m [Fig. 4(a)]. For
larger temperatures, c(0) becomes more negative than—m, and the lower root moves to negative co [Fig. 4(b)].
The behavior of the yo= —1 branch is seen in Fig. 4(c).
For small T/m, the value of Re(a —c) is always smaller
than co+m, so that there are no positive roots. However,
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with increasing T, as seen in Fig. 4(c), the curve of
Re(a —c) intersects the line ca+m twice. The upper of
these two roots becomes the yo= —1 partner of the
yo=+1 quasiparticle state. The lower root with yo= —1

stays at small co when the temperature rises. When the y

2

(a)

intercept of the curve, which is equal to —c(0), exceeds
m, another yo= —1 root moves from negative to positive
co. For large temperatures, these roots accumulate in a
narrow interval above co=a. The flow of the roots for all
co and yo =+1 is shown in Fig. 5.

In order to determine the physical significance of the
roots shown in Fig. 5, it is necessary to examine the imag-
inary part of the self-energy. The spectral weight I of
the self-energy X(O, co), defined by

O
+

0

y(0 ) I dN &co )

2'lT co co

has the form

(15)

(16)

0.5

The functions I + are the spectral weights of abc. From
(5) we find the spectral weights to be given by

'2

I += k 1+— [(n f )8(lcol —m )
Pl

SENT CO

20U T" +(n+f }8(m —
Ical )], (17)

10---
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f
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FIG. 4. (a) Re[a(co)+c(co)] for T=1,2, 3,4, 5 (in order of in-

creasing amplitude). We have set m =1 and g /4+=1/137 in
this and all following figures. The area around co=1 is omitted
because of numerical difficulties. The straight line is (~—m j.
(b) Same, for T=4, 5, . . . 11, emphasizing structure at small co.

The straight line is again (co —m). (c) Re[a(co) —c(co)] for
T= 1,2, . . . 7. The straight line is (co+ m ).

0.

FIG. 5. (a) Positions of zeros of ReG~'(co) vs temperature.
Solid curves are for yp=+1 while dotted curves are for
yp= —1. (b) Magnification, showing disappearance of yp=+ 1

zero and appearance of yp= —1 zero near T =9.
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height perhaps 100 times that of the latter at T=20m.
At high temperature, T»m, the centroid of the two
peaks is at co=gT/4; their splitting is approximately m
and their heights and widths are not very different.

3p
3
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3
+
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FIG. 6. Spectral weight I +(m) for T=2, 3. . . , 10, in order of
increasing amplitude. 20—

0 ~ I

0

where the distribution functions n and f are evaluated at
k =k„=~(m —co )/2'~. Note that I /1
=[(m+co)/(m —co)] . The spectral densities A+ are
then

r, (~)
A p(co) =

[coTm —Re(a+c)] +I ~/4 3
I

60

40—

I I I

I

I I I I

I

I I I I

Figure 6 shows the spectral weight I + for values of
T/m between 2 and 10. The characteristic feature is a
sharp bunching up of I'+(co) at co«m for T~m. (In
this range of co values, I + —-I . ) The reason is the fol-
lowing. We have already mentioned that at high temper-
ature, the dominant processes are those in which an ini-
tial scalar photon of momentum k = T »m is absorbed,
producing an electron of momentum k, or in which an in-
itial positron of momentum k annihi1ates with the initial
electron into a photon of momentum k. In either case,
the initial electron couples to a state of low energy,
co=m /k. The increase with temperature of the number
of particles in the heat bath to which the electron can
couple in this way is what causes the bunching observed
in Fig. 6. When I + is not small compared with the cor-
responding root of the real part of G ', as is the case for
small co/m, the root is not associated with a well-defined
quasiparticle state. I + is clearly important for
co ~ 0.05m.

In Fig. 7, we show the spectral densities A+(co) for
several values of T/m. Note that at moderate values of
T/I, A+ has a sharp peak at co=I, corresponding to
the normal fermion state with yo=+ 1. In contrast, A
is small for co &0. As the temperature is raised, the con-
tinuum at sma11 co/m in A begins to sharpen into a
peak, corresponding to the upper yo= —1 solution
displayed in Fig. 5. The peaks in A+ both survive fur-
ther increase of the temperature. For temperatures be-
tween 10m and 50m, the peak in A is in fact much
sharper than the peak in A+, with the form. er reaching a

0.2 0.4 0.6

50

40—

I I I I

)

I I I I

t

I I I I

(c)

30—

20—

10—

FIG. 7. (a) Spectral density A+(~) for T=3,5, 10, 15,20
(peaks moving left to right) in Yukawa theory. The area around
co=1 is omitted. (b) Spectral density A (co) for T=3,5, 7, 10
(peaks moving left to right). (c) Superposition of A+(co) (right
peak) and A (m) (left peak) for T =50.
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III. QED
The previous section shows how the additional state in

the fermion spectrum of the Yukawa theory arises
through a sharpening of go= —1 strength as the temper-
ature increases. In this section we extend the discussion
to the realistic case of quantum electrodynamics at finite

temperature, where the results are qualitatively the same.
A subtle issue is the choice of gauge. We carry out calcu-
lations in both Coulomb and Feynman gauges. In either
gauge, the formulas for X are easily obtained from those
given in Sec. II for scalar exchange. Let us first rewrite
Eq. (5) in the form

r

ek yo+ m n (co') fk —n (co')+ f&
X(O, cd) =g

3 p(k,co'), +
(21T) o 2~ 26k co cl, cd co ek +co

ekyo —m n(co') fk —n(co')+ fk
26' co+ EI, + co co+ E'k co

(19)

where

p( k, co ) =—[5(cd —k )
—5(co+ k ) ]k

(20)
Coulomb gauge (a)

is the spectral function of the free scalar field. The pho-
ton propagator in Feynman gauge is

pv
DPV g

k
(21)

and the corresponding spectral function is simply related
to pby

plF'"(k, co) = —g""p(k, co) . (22)
'3

l ()()

The self-energy in Feynman gauge is then obtained by re-
placing p(k, co) by pF'(k, co) in Eq. (19), and inserting at
appropriate places the gamma matrices describing the
electron-photon coupling. Using the relation

l. ;&p

"Op

Feynman gauge

~. J. L J=L

yp(~kyo+m )y, = 2ckyo+4m—

one easily obtains

(23)

T T
'~

T T

aF(co) =2a(co), cF(co)= —4c(co) .

In Coulomb gauge the propagator is given by

D (k)= 1

k'kj 1
D "(co,k)= 5'i—

(24)

(25)

r

I

r I

l

jr

r

jr
'l

r

(

l

R

/I
I
I

T

T

I,

I'

t
/
I

Coulomb gauge (b)

It is convenient to separate the self-energy into a purely
static piece Xc,„& arising from the Coulomb interaction
and a piece X„,„,involving the interaction of the electron
with the transverse photons. Proceeding as we did for
Feynman gauge one easily obtains

F'e man g ge

a„,„,(co) =2a(co), c„,„,(co) = —2c(co) . (26)

In addition, the static Coulomb interaction induces a
constant shift in the quasiparticle energies, given by

k m 1
coul g I (2 )3 e. kg

fk (27)

This contribution turns out to be numerically very small.
We display in Fig. 8 the spectral densities A+ in Feyn-

p

0

FIG. 8. (a) Spectral density A+(co) for T=3,5, 10, 15,20, 25

(peaks moving left to right) in Coulomb gauge (top) and Feyn-
man gauge (button). The tallest peak in the Coulomb gauge plot
is truncated, having a true height over 2X10. (b) Same for
spectral density A (co) in both gauges.
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man and Coulomb gauges. The results are similar to
those for the Yukawa theory. The main quantitative re-
sult is that the new state, with y~= —1, rises out of the
continuum at co=0. 1m when T=3m, when the original
electron state has shifted in energy by about 10%%uo. In
terms of the coupling constant, this reads co=g m and

A comparison of the results in the two gauges is in-
structive. The locations of the peaks are the same in the
t gauges while the heights of the peaks, and indee
their signs, are gauge dependent, as are their widths. e
spectral densities are always positive in Coulomb gauge,
where the particle content of the theory is manifest; this
is not the case in Feynman gauge, where spurious states
contribute. Moreover, as seen in Fig. 9, the peak in the
spectral density A+ in the Feynman gauge changes sign
when T =29m. This means, according to (18), that I + at
the peak starts out negative at low temperatures and goes
through zero at that point. Indeed, according to Eqs.
(17) and (24), I +(co) in the Feynman gauge contains a
factor (1+m /co )+4m/co, so that I + =0 when
co/m =2+&3 at all temperatures, while I' is positive

200
I I I

I

I I I I

I

I I

(a)

100—

0

—100—

-200
0 2

I I I I

3
4

FIG. 9. (a) Feynman gauge spectral density A+(co) for
T=3,5, 10, 15,20, 25, 35,50 (peaks moving left to right). (b)
Spectral density M (co) for T=3,5, 10, 15,20, 25, 30,35,50
(peaks moving left to right). Note change in scale relative to (a).

—0.5

I I » I II I I

1 2 3 4

FIG. 10. Feynman gauge spectral weight I +(co) for T=30.
The region co &0.2 is suppressed. The function rises to a peak
value I + ——2075 at co =0.0055. As the temperature is raised, the
amplitude of the spectral weight increases as in Fig. 6, with t e
zeros remaining at co =2+&3.

for co&0 (see Fig. 10). In Coulomb gauge, on the other
hand, I'+(co) ~(1+m/co) &0.

This gauge dependence of the spectral function is very
much reminiscent of the problems encountered in the cal-
culation of the gluon damping rate, and points to the in-
consistency for the one-loop calculation of the spectral
function. In particular, while the energies of the quasi-
particles are of order gT, their widths are of order g T.
Contributions of order gT are entirely contained in the
one-loop calculation. This is not the case for the terms of
order g T which receive contributions from multiloop
processes. A fully consistent calculation of the spectral
functions should incorporate these higher-order effects,
and indeed once this is done, a gauge-invariant and posi-
tive value is obtained for the width of the quasiparticles

However, this discussion should not be allowed to ob-
scure the physics correctly identified in the one-loop cal-
culation. As we have seen, the new quasiparticle emerges
gradually in the system as the temperature is raised, from
accumulation of single particle strength at small energy.
This accumulation is due to processes similar to those re-
sponsible for Landau damping in an ordinary plasma,
and gives the new mode a collective character. The re-
sulting peak in I (co) grows with the temperature and its
existence is obviously independent of the choice of gauge.
[Note in particular in Fig. 10 that the absolute value of
I +(co) in the region where it is negative is very much
smaller than the height of the peak at small co.j Via the
usual dispersion relation, the peak at small co in the imag-
inary part of the self-energy induces the 1/co behavior of
the real part which is ultimately the cause for the ex-
istence of two quasiparticle peaks in the electron propa-
gator. The new quasiparticle emerges at an energy locat-
ed away from the peak in I, the more so the higher the
temperature. Therefore, the new quasip article very
quic y nkl fi ds itself in a region where I is small, and its

art of Xenergy is then entirely determined by the real part o
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correctly given by the one-loop calculation. Indeed the
real part of' X in the one-loop approximation depends
very weakly on the gauge in which it is calculated; the
pole positions are independent of the gauge.

IV. THE ZERO-TEMPERATURE PROPAGATOR

In Secs. II and III we considered only the finite-
temperature part of the self-energy X. In point of fact,
X=XO+Xz, where X~ vanishes at T=O and Xo is the
zero-temperature part of the self-energy. We have so far
taken only X~ into account. Now we study the inhuence
of the zero-temperature piece Xo on the quasiparticle
properties. Since the deviation of the original electron
state from the mass shell is of order gT, these terms are
potentially important when gT &&m. They could also be
important for the new yo= —1 quasiparticle right from
its appearance, since it appears well off the electron mass
shell.

At zero temperature, the electron propagator can be
written

Ga '(co) = [co —a~(co}]yo —m —c~ (co), (33)

where az(co) and cz(co) are finite functions of co which
depend on the infrared cutoff A, . For the scalar case, one
has

a~ (co)

cg (co )

CX

(K L— L—),
4 a a c

(K, +L, +L, ),
(34)

where It,„K„L„andL, are integrals to be given below.
The corresponding formulas for QED are easily obtained
from Eqs. (34}by multiplying the integrals lc:, , and L, ,
by simple numerical factors. For Feynman gauge, E,
and L, are multiplied by 2, while E, and L, are multi-
plied by —4. For Coulomb gauge, K, and L, are multi-
plied by 2, while K, and L, are multiplied by —2.

The integrals K, , and L, , depend on the infrared
cutoff A, . However, in the limit X~O, IC, and E, are
finite and are given by

G '(p=O, co)=(co—ao)yp —(cp+m ),
so that

(28)
T

m'
,

m4 COIt.(co)= ~ 1 — +-,' 1 — ln 1—
CO m '

(35)
Xo(0,co) =ao yo+ co (29)

Both ao and co are divergent. Following a standard pro-
cedure, we absorb the divergences into renormalization
constants which are a correction to the mass 5m and a
field renormalization Z2. The finite parts of these coun-
terterms are fixed by demanding that in the vicinity of
co=m the propagator behaves as that of a free particle
with mass m. The renormalization constants appear in
the renormalized propagator as

m CO

&,(co)= 1 — ln 1—
N m

When m)&m,

K, (co}-—,'ln

K, (co)-ln

(36}

Ga '(p=O, co)=zz[(co ap)j p (cp+—m)+5m] .

The renormalization conditions give

(30) The infrared divergent integrals L, and L, are indepen-
dent of co and given explicitly by

Rap Bco
Z ' —l=—

Bco c)co

5m =ao(m)+co(m) .

The renormalized propagator then takes the form

ap(co ) B(ap +co )
G„'(p=O, co) = coypl — +

N BQ7

B(ao+co)—m 1—
Bco

(31)

L,= —2 dx
x (1—x)

(1—x) +xA, /m

L, = —2 dx~
x{1—x)

o (1—x) +xg /m

In the limit A, ~O these integrals behave as

A,
2

L, =3+in +8
m m

i2
L, =2+in +8

m m

(37)

(38)

cp(co) —cp(m) —ap{m }
(32)

Gz as given in (32) is ultraviolet finite. As is well known,

however, the integrals contributing to Z2, i.e., the in-

tegrals giving the derivatives of the self-energy with
respect to co at cu=m, are also infrared divergent and so
is Gz. They can be regularized by assigning a small mass
A, to the photon. Once this is done, the renormalized
propagator may be written in the form

Let us now analyze the infiuence of az(co) and cz(co}
on the quasiparticle masses. We restrict ourselves to the
scalar case. It is not difficult to show that the T=O
terms do not have much effect at small temperatures,
T =3m, when the new quasiparticle emerges. Indeed, at
small co, E, and K, are well behaved [K,(x)-1—x /2
and 1(.,(x)—3/4 —x /3 where x =co/m ], and the dom-

inant effect of the T =0 terms, az+cz, is to shift c(0}to
c(0)+(am /2m. )ln(A2/m ), where A, is the photon mass.
Since c(0)= avrT /2m [see Eq—. (13)], the effect of the
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new term is negligible unless A, /m -exp( t—r T /m ),
which is already a very small value when T-m. Similar-
ly, when co, T &&m, i.e., in the vicinity of the quasiparticle
energies at high temperature, the equation for the poles,
co —m —Re(a +aa =c+ca )=0, becomes

a co X4
co 1 — ln ——ln

4m m m4
cx7T T2
4

(39)

where we have neglected the terms of order m &(T, and
kept only the logarithmic term in I, The function on
the left-hand side of this equation has a maximum at
to/rn =(A, / m ) exp(4n /a). If the temperature is so high
that the value of the function at this maximum equals
atrT /4, our calculation ceases to make sense. But un-
less the cutoff A, is very small this possibility occurs only
for extremely high temperature, of order
m (A, /rn )"exp(4m/a). Therefore, unless the cutoff A, takes
an exceedingly small value (on the scale of rn or T), one
can safely ignore the T =0 counterterms. However, as a
question of principle, the presence of this infrared cutoff
indicates that one must be more careful in defining quasi-
particle states at finite temperature when they involve
coupling to massless particles. This issue deserves fur-
ther investigation.

Our analysis is based on a one-loop calculation, and as
such is subject to criticism. It is now well known that,
while the one-loop calculation gives the dominant contri-
bution to the dispersion relation at high temperature, this
is not so for the full spectral function, as is apparent in
our illustrative comparison between Coulomb and Feyn-
man gauge spectral functions. It is not clear whether
higher-loop corrections would change our results materi-
ally, especially in the temperature range in which the new
quasiparticle emerges. We believe however that our main
conclusion that the structure in the spectrum develops
gradually rather than in a discrete transition would sur-
vive such corrections, as this is mostly determined by
well-identified physical processes.

Finally, our study of the role of the zero-temperature
counterterms point to another dilculty. We have seen
that these counterterms are infrared divergent and, when
regularized, depend on a cutoff A, . In calculations of
physical processes at zero temperature, the cutoff depen-
dence originating from various contributions cancels out.
We can expect a similar cancellation to take place at
finite temperature; however, the very definition of a
quasiparticle requires refinement.
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