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Strong Higgs binding of heavy-fermion systems
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We study the fermion-antifermion bound-state spectrum for heavy quarks and leptons by including

the effect of Higgs-boson exchange. We use the Bethe-Salpeter equation in the ladder approximation
and the N/D method for our calculation. The ladder Bethe-Salpeter equation is solved by using several

well-known approximation schemes: the instantaneous approximation, the Blankenbecler-Sugar approx-
imation, and covariant expansion in terms of Tschebeshev polynomials. Our results show that for
quark-antiquark systems the Higgs-boson exchange generally dominates over QCD for quark masses

larger than 500 GeV, and leads to very deep binding for quark masses in the TeV region. In the absence
of the QCD force, as is the case with leptons, we determine the minimum value of the fermion mass

needed to form a bound state as a function of the Higgs-boson mass. We further find that tightly bound

states where the bound-state masses drop to zero appear for fermion masses between 1 and 1.8 TeV for
all the approximations to the Bethe-Salpeter equation that we employed. The N/D method also leads to
tightly bound states for fermion masses larger than about 1 TeV but does not in general yield zero-mass

bound states. The meaning of the tightly bound states is discussed.

PACS number(s): 14.80.Gt, 11.10.St, 11.50.Ec, 12.38.Lg

I. INTRODUCTION

The standard model of SUc(3) XSUL (2) XU(1) in-
teractions with a fundamental scalar boson sector has the
interesting property that the fermion Yukawa coupling,
which takes the form g =rm&/v, where m& is the fer-
mion mass and U =-250 GeV is the electroweak
symmetry-breaking energy scale, increases with the fer-
mion mass. The quark-quark interaction, which is dom-
inated by color SUc(3) gluon forces for quarks of mass
up to a few hundreds of GeV, will be subject to a
significant scalar force due to Higgs-particle exchange
when the quark mass further increases. The Higgs-
boson-exchange force will eventually become dominant as
the quark mass rises to more than approximately 500
GeV. The Higgs particle effects are larger the lighter its
mass, of course, and multiscalar multiplet models can
also complicate the picture. But the general feature that
some Higgs particle exchange force will get strong as fer-
mion masses get large should survive the model-
dependent details.

The feature of the Yukawa coupling mentioned above
is academic for the experimentally confirmed quarks be-
cause their masses are small in comparison with the elec-
troweak symmetry-breaking scale U. The experimental
lower bound on the mass of the top quark, m„is now 91
GeV [1],and, within the minimal standard model frame-
work, experimental data constrain m, to be in the vicinity
of 150 GeV [2]. Given such a high value of the lower
bound of m„for which the Higgs-boson effect can no
longer be discarded, and the possibility of even heavier
fermion mass scales associated with supersymmetry or a
possible nearly degenerate fourth generation, for
example —the interest in probing the effects due to
Higgs-boson exchange in heavy fermion systems is far

from academic. Furthermore, it is possible that very
heavy neutrinos exist that have no electric or color
charge yet are able to form bound states through the Yu-
kawa coupling.

The study of heavy fermion interactions within the
standard model framework dates back some time. Uni-
tarity constraints on the scattering amplitudes [3] and ra-
diative correction effects on low-energy processes [4] have
been used to constrain Higgs particle and fermion masses
in the standard model. In the past few years, several
studies using the Schrodinger equation have focused on
the Higgs-boson effects in ultra-heavy-
fermion —antifermion bound states [5—7]. In a related to-
pic, several authors [8—10] have elaborated on the
theoretical study of the tt threshold region by Fadin and
Khoze [11] to include @CD effects more completely
[9,10] and to include Higgs-boson-exchange effects [8,9].
Both Refs. [8] and [9] use a Yukawa potential in a nonre-
lativistic approximation and conclude that for m, ) 150
GeV the Higgs-boson exchange can affect the cross sec-
tion significantly enough to complicate the interpretation
of the threshold behavior.

We report here on the results of studying heavy quark
binding subject to the gluon and Higgs-boson-exchange
interactions, using the field-theoretical Bethe-Salpeter
(BS) equation. We focus on the bound-state problem in
the strong-coupling regime. Several widely used schemes
of treating the kernel of the ladder approximation are
adopted. We report their predictions for the binding en-
ergies of low-lying states as functions of u&cD, mf, and
the Higgs-boson mass M&. Although the computational
tools for dealing with the strong binding are not well es-
tablished, the topic of deep binding and therefore large
coupling in the BS equation has been studied by a num-
ber of authors in relation to analytic solutions of the BS
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equation [12]. Our motivation is different. Our
viewpoint is that the ladder BS equation, which partially
sums up the perturbative series, represents a scheme of
approximation which allows us to examine some of the
main features of the strong binding problem at intermedi-
ate couplings. Such an approximation, like all approxi-
mations, will break down eventually, and hence our study
will allow us to find out where the approximation ceases
to make sense or when new physics may emerge and has
to be examined in a more appropriate framework.

It is expected that for heavy quarks the confining force
contributes very little to the bound-state energy. The
bound-state characteristics can be attributed to the
Coulombic gluon interaction and, in our consideration,
the Higgs-boson interaction. In order to see the effect of
this interaction and its interplay with the gluon interac-
tion, we will study the pure Higgs-boson interaction first
and then combine it with the QCD interactions to study
the total binding force of the standard model. We will

employ four known approximations to the BS equation
for these studies: (a) the instantaneous approximation in-

cluding both the positive- and negative-frequency parts of
the amplitude, denoted as IA1; (b) the instantaneous ap-
proximation with the positive-frequency part of the am-
plitude only, denoted as IA2; (c) the covariant gauge
ladder (CGL) approximation; and (d) the Blankenbecler
and Sugar (BBS)approximation. For comparison we also
consider the Schrodinger equation and the N/D method.
The latter is a dynamic scheme which unitarizes the t-

channel Born diagram of a scattering amplitude. It gen-
erates not only a right-handed cut but also bound-state
poles if the t-channel exchange represents an attractive
force. Therefore the N/D method is also an appropriate
scheme for the study of the strong binding problem.

In Sec. II we study the effect of the pure scalar ex-
change, ignoring the confinement and one-gluon-
exchange effects. As in the nonrelativistic potential mod-
el [5], we find that in all the BS schemes we have con-
sidered, a pure Higgs-boson-exchange force supports
bound states only when the Yukawa coupling gz ~ mI/O,
or the fermion mass, is greater than a critical value which
depends on M~. We find that the mass of the bound
state increases with the fermion mass at first. In the deep
binding limit, the bound-state mass drops to zero, and in
some approximation schemes, rather abruptly. We refer
to the coupling value at which the bound-state mass goes
to zero as the "collapsing coupling. "

For comparison, we include in Sec. III a study of the
strong binding limit of the various ladder approximation
schemes in the pure "QED gluon" case. As expected
from previous studies [13], the ground-state (J =0 )

mass of the bound state goes to zero as the coupling in-

creases, sometimes rather abruptly depending on the ap-
proximation being used. The collapsing coupling is
smaller than that of the Yukawa interaction in the corre-
sponding cases. We compare the numerical results of the
different models of the Bethe-Salpeter kernel to each oth-
er and to the weak-coupling expansion in the literature
on the positronium spectrum.

In Sec. IV we investigate the bound-state problem by
combining the QCD interaction with the Higgs-boson-

exchange force. A brief discussion is given in Sec. V,
where we also discuss the effect of the Z contribution, in
particular its longitudinal component whose effects we
found in general to be small in the weak- and
intermediate-coupling regions where a perturbative ker-
nel is appropriate. Some details of the BS equation in the
previous approximations employed in this article are
given in Appendix A. The N/D method applied to a sca-
lar exchange is given in Appendix B. Throughout this
work only the ground state of the fermion-antifermion
system is considered for illustration, though several re-
marks on vector-meson bound states are included in Ap-
pendix A. The behavior of the excited states will be con-
sidered in a later work.

II. SCALAR BOSON EXCHANGE:
THE HIGGS-BOSON EFFECT

where Gz is the Fermi constant. Equation (1) provides a
useful guideline for the region where Higgs-boson ex-
change is expected to dominate. However, the field-
theoretical approach becomes essential when the fermion
mass mI is of the order of hundreds of GeV. We need a
more complete formalism to assess the Higgs particle
binding effects.

We adopt the ladder approximation to the BS equa-
tion. We evaluate the energy of the ground-state ff sys-
tem using both the covariant kernel

1
K(q)=g&

q
—M~

(2a)

which is used in the covariant gauge ladder approxima-

Scalar-meson exchange generates an attractive force in
fermion-fermion and fermion-antifermion systems, and it
was established long ago that a significant scalar ex-
change contribution is needed to account for low-energy
nucleon-nucleon scattering data in particle exchange
models of the strong interaction [14]. Curiously enough,
the weak interaction sector of the standard model with
fundamental scalar fields and heavy fermions
( —10 X mass of nucleon) contains a strong-coupling
fermion-scalar meson sector with Yukawa coupling
g z —

m& /U ~ 4. It is natural to explore this strong-
coupling situation, and in this section we report the re-
sults of relativistic bound-state calculations with a
Higgs-boson-exchange kernel which is essentially the
whole story in the heavy neutrino and heavy lepton cases.
We note that the forces arising from scalar exchanges for
the fermion-fermion and fermion-antifermion systems are
of the same sign. This can be understood from the fact
that the scalar interaction is like a mass term.

For orientation, we first summarize the result of a
Schrodinger equation analysis of the problem, with a Yu-
kawa potential modeling the Higgs-boson-exchange effect
as given in Ref. [5]. Using a variational argument, one
finds the condition for the existence of a bound state of
the ff system to be [5]

GFm/ & 4&2vrM~,
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tion, and the instantaneous approximation to this kernel,

(2b)

The instantaneous approximation simplifies the problem
to a three-dimensional one where the BS amplitude can
be readily integrated over the time component of the
four-momentum to yield Salpeter's equations. In the
evaluation of Salpeter's equations, one can take into ac-
count both the positive- and the negative-frequency parts
of the wave function or simply the positive-frequency
part. They are, respectively, the approximation schemes
denoted as IA1 and IA2. See Appendix A2 for a sum-

mary of these methods.
Another three-dimensional reduction of the BS equa-

tion that we have used is the Blankenbecler-Sugar equa-
tion. The Blankenbecler-Sugar scheme replaces the two
free fermion propagators appearing in the BS equation
with an appropriately chosen substitute propagator. The
substitute propagator is chosen to contain the correct
imaginary part of the nonrelativistic propagator, to
preserve elastic unitarity, and to allow reduction of the
BS equation to a Lippmann-Schwinger-type equation.
The Blankenbecler-Sugar propagator contains positive-
energy projection operators so that only positive-energy
components of the wave functions appear, and it contains
a 5 function that accomplishes the reduction to three di-
mensions. Like the instantaneous approximation, the
Blankenbecler-Sugar equation ignores boson retardation.
See Appendix A3 and references therein. The instan-
taneous approximation and the Blankenbecler reduction
are the classic first approximations to the kernel for posi-
tronium studies [15,16].

. The calculation of the ground-state binding energy in
the Feynman gauge CGL approximation is sketched in
Appendix A 4.

The minimum fermion mass (minimum Yukawa cou-
pling) m& at which bound states begin to form is shown
in Fig. 1 as a function of M&. Also shown is the corre-
sponding Schrodinger equation result of Eq. (1), and the
result of an N/D model analysis. The Yukawa coupling
is taken to be the standard model form, gr=mf/250
GeV. We do not include momentum dependence of this
coupling in the calculations presented here, since we are
exploring the general features of strong binding without

attempting detailed numerical predictions. The questions
of the choice of mass scale for evaluating the couplings
and the possible strong momentum dependence at the
largest fermion masses considered are discussed in Ap-
pendix A2. The minimum fermion mass, i.e., minimum
Yukawa coupling, necessary for binding to occur in-
creases with the Higgs-boson mass. Experimental studies
at the CERN e+e collider LEP now put a lower bound
on the standard Higgs-boson mass at 50 GeV, which lim-
its the strength of the Higgs effects for a given fermion
mass according to Fig. 1. In order for the binding to
occur by the Higgs-boson-exchange force alone, the fer-
mion mass cannot be less than about 400 GeV.

Comparing the various formalisms we see that they all
give qualitatively similar results. With the exception of
the CGL approximation for MH & 180 GeV, the field-
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FIG. 1. Minimum fermion mass for which a ferrnion-
antifermion bound state can form when the ferrnions interact
solely through the exchange of a Higgs scalar of a given mass.
Solid curve: variational Schrodinger solution; dotted curve:
COL; long dash curve: IA1 and IA2; short dash curve: BBS,
dash-dot curve: N/D.

theoretical schemes bind lighter fermions for a given
Higgs mass than does the Schrodinger equation result. In
the N/D calculation the subtraction point s in Eq. (B7)
or Ro in Eq. (B8a) is taken to be zero. We choose this
particular value for the subtraction by requiring that the
N/D curve pass through the origin, the one point com-
mon to all other curves.

For a top quark with m, ~ 150 GeV, the Higgs effects
are small for MH &50 GeV, not yet comparable to the
QCD Coulomb energy, as already noted in several papers
[8,9]. It is therefore interesting to examine the case of
heavier fermions. Increasing the fermion mass pushes
the Higgs interaction to the "deep-binding" region where
it becomes the dominant fermion binding force. If the
fermion mass is large enough, the system becomes so
tightly bound that its invariant mass is zero; that is, the
binding energy is 2mf. The fermion mass at which the
bound-state mass goes to zero and how fast the bound-
state mass falls to zero with increasing fermion mass de-
pends on the formalism used. One purpose of this study
is to establish a mass scale beyond which the bound-state
formulations which we use cease to be valid and we take
this as the energy scale where different physics may
emerge. We will come back to this point in the discus-
sion section.

Our calculations should, however, be qualitatively reli-
able in the intermediate-coupling region where the bind-
ing energy is much larger than that provided by QCD but
still small compared to twice the fermion mass. They
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suggest the exciting possibility of a region where rather
tightly bound, ultraheavy systems exist. Depending on
its actual mass value, which will affect the available decay
channels of the bound states, it may be long lived.

In Fig. 2 we show for six different models the ground-
state mass as a function of the fermion mass. The Yu-
kawa coupling is taken to be proportional to the fermion
mass, g~=mf/250 GeV, as in the standard model. We
note that the full propagator CGL, BS equation, and
N/D models are fully covariant; the Blankenbecler-Sugar
equation and the instantaneous approximations include
some relativistic effects. Solutions to the Schrodinger
equation with Yukawa potential, which is not expected to
be applicable in the deep binding region, are shown for
comparison purposes. In the four BS schemes we show
two curves each to exhibit the variation arising from
different choices of the Higgs-boson mass. The upper
and lower curves are, respectively, for MH =200 and 50
GeV. The single curve for the Schrodinger and X/D are
for MH =100 GeV.

From Fig. 2 we see that for mf (1 TeV all formula-
tions under consideration give bound-state masses which
continue to rise with mf. Up to moderate coupling
values, mf &600 GeV, results of various schemes are
similar although not identical. It is interesting to note
that the Schrodinger equation lies in the rniddle of the
various relativistic results, below CGL and IA2 approxi-
mations but above BBS and IA1 approximations. For
mf =1.8 TeV, the bound-state energy vanishes in all the
formulations except for the N/D approach. Taking the
curves literally, we would conclude that there is no

mf ) 1.8 TeV possible when the fermion is subject to a
Yukawa coupling of the spontaneous symmetry-breaking
type.

The drastically different behavior of the N/D ap-
proach as shown in Fig. 2 at large Yukawa coupling re-
quires some explanation. The bound-state energy actual-
ly goes to zero asymptotically for mf ~ ao for our choice
of s0 =0. The mechanics of this result can be readily seen
from Eq. (B7). The integral is non-negative for the spec-
tral function as given in Eq. (B6). In order for the equa-
tion to be satisfied, we have to have

SB —$0

and sB ~0 only for mf ~~, where sB is the bound-state
mass squared. The subtraction, which in general is neces-
sary to render the dispersion integral convergent,
effectively introduces, in the present consideration, a
repulsive core to cancel some of the effect of the attrac-
tive force. Depending on the value chosen for s0, the
bound-state energy may not vanish even for mf ~~. If
the subtraction scheme for rendering the integral conver-
gent has any validity, it shows that collapse of the
bound-state system will not necessarily occur even for
infinite couplings.

For completeness we also investigate the effect of vary-
ing the Yukawa coupling for fixed fermion and Higgs-
boson masses. We show in Fig. 3 a graph of bound-state
mass vs the strength of the Yukawa coupling, a&, again
in the absence of other forces, for fermion masses of 150,
500, and 1000 GeV and Higgs mass M&=100 GeV. All
three curves are IA1 results. These curves are appropri-
ate for a model where the Yukawa coupling of the fer-
mion to the scalar is independent of the fermion mass, un-
like the case of the standard model. There are several in-
teresting features of this type of coupling. (a) For given
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FIG. 2. Ground-state (0 ) bound-state mass of fermion-
antifermion system vs fermion mass when the fermions interact
solely through exchange of a massive Higgs scalar. Solid line:
M~ =2mf line, the "edge" of the continuum; pair 1: IA1; pair
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in computing curves 5 and 6.

FIG. 3. Ground-state (0 ) mass of a fermion-antifermion
bound state in which the fermions interact solely through the
exchange of a massive scalar boson, shown for three different

fermion masses vs the coupling strength of the interaction.
Dotted curve: mf =150 GeV; short dash curve: mf =500 GeV;
long dash curve: mf =1000 GeV; all curves were computed
with MH =100 GeV using IA1. The horizontal axis is g'/4',
where g is not proportional to the fermion mass as is the case
when the scalar boson is a Higgs boson. The coupling at which
each curve begins on the left is approximately the minimum

coupling necessary to bind the fermions.
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values of mf and M& there is a minimal coupling
strength for the binding to occur. This is similar to the
effect shown in Fig. 1. The value of the coupling at the
left end of the curves indicates this minimal coupling for
each of the fermion masses considered. (b) The minimal
coupling decreases as the fermion mass increases. This
shows that the scalar interaction is more effective in
forming bound states for heavy fermions. (c) For a fixed
scalar mass, the collapsing coupling at which the bound-
state mass vanishes has a very weak dependence on the
fermion mass. As shown in Fig. 3 the collapsing coupling

a& where the bound-state mass goes to zero varies from
1.5 to 1.6 for mf varying from 150 to 1000 GeV. This is
similar to the behavior shown in Fig. 2 for IA1, where
the scalar coupling is proportional to mf. Figure 2 shows
the IA1 bound-state mass going to zero at mf =1050
GeV, i.e., at a& =1.45. Discussion of possible effects due
to running of the Yukawa coupling is given in Appendix
A2. The point of this plot is to illustrate the fact that a
new scalar interaction with g~=3 can produce impor-
tant, perhaps dominant, bound-state effects in the mass
scale region which is of interest for the next generation of
collider experiments.

III. MASSLESS VECTOR-BOSON EXCHANGE

In this section, we briefly review results of various
models for bound-state formalism based on constant cou-
pling, massless vector boson t-channel exchange. This
class of models is relevant to the ground state of QED
and to slowly running QCD-like theories with colorless
bound states (no single gluon annihilation graphs in the
1 channel). An extensive literature exists [17] and the
predictions can be readily compared with appropriate ex-
perimental data in the weak-coupling case such as posi-
tronium. Furthermore, work on strong-coupling limits
exists in some of the models. In particular, the deep-
binding limit at the breakdown couplings of M~~0 for
the ground state, 0, and the lowest 1 state have been
investigated in the covariant gauge BS equation in Ref.
[12].

We first compare the QCD one-gluon-exchange effect
with that of the Higgs-boson exchange. Figure 4 shows
the 0 bound-state mass vs quark mass for a constant
coupling value —,aQCD=0. 25 and Higgs-boson exchange
with MH =100 GeV in the region around mf -—450 GeV,
where the latter becomes dominant. The use of a
momentum-independent aQcD and the choice of its
effective value is discussed in Appendix A 2. The "QED-
like" QCD model will be discussed further in Sec. IV
The top (solid) curve is the straight line of slope 2. The
second (dotted) curve is a plot of the order-a perturba-
tive result (E/M=2 —a /4 —21a /64). The IA2 and
BBS bound-state energies for one-gluon exchange lie
essentially on top of this line over the range of quark
masses covered by the figure. The IA2 result lies slightly
below this line but is not shown. The third (long dash
lines) curve is the IA2 and BBS result when both gluon
and Higgs couplings are considered. The bottom curve
gives the result of IA1. The two bottom curves both drop
to zero as the quark mass increases to values beyond that
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teract solely via OGE. The OGE-only line shown also approxi-
mates closely the order-a vector boson exchange result. A
Higgs mass of 100 GeV was used in computing the curves.
Solid line: Mz =2mf line; dotted line: order-a and one-gluon-
exchange IA2 and BBS results; long dash curve: one-gluon ex-

change with Higgs interaction IA2 and BBS result; short dash
curve: one-gluon exchange with Higgs interaction IA1 result.

covered by the figure. We will come back to them again
in Sec. IV. We see from Fig. 4 that the Yukawa coupling
becomes dominant above about 500 GeV for IA2 and
BBS,and is already dominant at 400 GeV for IA1.

Next we study the dependence of the binding energy on
the strength of the (nonrunning) massless vector boson
coupling constant. In Fig. 5 plots of ground-state mass
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parison are the order-a and -a perturbative results. Since the
bound-state mass scales with the fermion mass, the fermion
mass was set at one GeV in computing the curves. Horizontal
axis is

3 a, . For each curve, the binding gets stronger as the

coupling increases until the bound-state mass is driven to zero.
Curve 1: IA1; curve 2: IA2; curve 3: CCrL; curve 4: order-a
result; curve 5: BBS;curve 6: order-a' (Schrodinger) result.
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vs coupling are shown for this pure QED-like case for
IA1, IA2, BBS, and CGL approximations. The order-a
(E=2—a l4) and order-a (E=2—a /4 —21a l64)
perturbative results [18] are also shown for comparison.
Since the bound-state mass scales with the fermion mass,
we set the fermion mass to unity. Clearly the IA1
method gives the steepest descent to the "deep-binding"
region. This is caused primarily by the two-body velocity
operator a, a2, which gives rise to large off-diagonal ma-
trix elements between the positive- and negative-
frequency wave functions (see Appendix A2). With the
exception of the BBS model, the BS models all drive the
bound-state mass to zero much more quickly than the
order-a curve, with collapsing couplings of
0.35 &-', a &0.8.

As a further comparison we note that the semirelativis-
tic reduction of a two-body Dirac formalism has been
used to generate an energy eigenvalue equation for posi-
tronium good through order a, which can be solved ex-
actly [19]. Plotting this bound-state eigenenergy as a
function of coupling yields a curve which begins to fa11

rapidly toward zero as the coupling approaches 0.5.
(This curve is not shown in Fig. 5; the small coupling part
of it is shown in Fig. 6.) The eigenenergy becomes com-
plex for couplings larger than 0.5 presumably indicating a
breakdown of the semirelativistic reduction at large cou-
pling.

In Fig. 6 a blowup of the weak binding region is given.
The CGL and IA1 models form upper and lower boun-
daries of an envelope with the a, a, BBS, and IA2 ap-
proximations, and the two-body Dirac formalism falling
in between. The BBS solution tracks the order a curve
remarkably closely all the way out to the strong-coupling
limit. The CGL approximation is known to contain
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curve representing the two-body Dirac formalism (see text) has
been added to the figure for comparison. Since the bound-state
mass scales with the fermion mass, the fermion mass was set at
one GeV in computing the curves. Horizontal axis is 3(x, .
Long dash-dot curve: CGL; solid curve: order-a (Schrodinger)
result; dotted curve: BBSand order-cx result; short dash curve:
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a in+ ' and a terms which disagree with the positroni-
um ground-state value [20,21]. In fact, as described in
Appendix A4, the numerical solution shown in Fig. 6 is
in agreement with the a lna ' and a deviations from
the lowest-order u Schrodinger result, confirming the re-
liability of the numerical procedure.

It has long been known that the radiation gauge has
enormous advantages in capturing the main features of
the experimental positronium spectrum and in serving as
a practical gauge for doing perturbation theory
refinements on the spectrum and calculations of transi-
tion rates. But how one extrapolates results to the
strong-coupling, deep-binding relativistic regime is not
known, and we offer the range of models shown here as
an indication of the range of extrapolations one might ex-
pect. The striking feature that we wish to emphasize is
that a rather abrupt transition to a deep-binding, Mz =0,
limit occurs in the range 0.35 & —3a & 1.7 for the various
models, while in the a —+0 limit they converge on the
leading-a Schrodinger result from above and below.

IV. THE FULL STANDARD MODEL BINDING FORCES

In the preceding sections we have seen the effects of
the scalar and vector binding forces separately. For the
same value of coupling strength the vector interaction
causes stronger binding than the scalar interaction. In
this section we investigate the effect of combining the two
interactions. This is the total standard model force for
heavy fermions, neglecting the electroweak interaction.
We wi11 comment on the effect of the longitudinal corn-
ponent of the Z in the next section. We take MH =100
GeV, and the QCD fine structure constant to be

3
cxQCD 0.25 by ignoring the slowly running effect . Note

that this coupling is nearly three-fourths the IA1 collaps-
ing coupling for one-gluon exchange alone (see Fig. 5).
The Yukawa coupling constant is the conventional form

g„=mf/U. We consider the CGL, IA1, IA2, and BBS
models. The results are shown in Fig. 7. The IA2 and
BBS bound-state energies are driven to zero at slightly
lower quark masses than in the case where the Yukawa
interaction alone was considered (see Fig. 2). The IA1
curve of Fig. 7, however, plunges to a zero mass at a
much smaller quark mass than the Higgs-boson-
exchange-only result of Fig. 2. Without the gluon in-

teraction, the collapsing coupling for the Yukawa in-

teraction corresponds to a fermion mass of slightly more
than 1 TeV. With the one-gluon exchange included, the
collapsing coupling is significantly reduced, taking place
at about mf =580 GeV, almost a factor 2 smaller. We at-
tribute this peculiarity of the IA1 curve of Fig. 7 to the
fact that, as noted above, the one-gluon coupling em-

ployed in generating the curves of Fig. 7 is already close
to the IA1 collapsing coupling for one-gluon exchange.
In this situation the gluon contributions obviously can no
longer be regarded as a perturbation even to the large
coupling scalar interaction.

The momentum space wave functions and their
Fourier transforms for the bound states represented in

Fig. 7 were also obtained. They show that as the quark
mass increases and the binding gets stronger due to larger
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scalar coupling, the rms value of the momentum grows
larger while the rms radius of the spatial wave functions
gets smaller. The rms radius changes most dramatically
as the collapsing coupling is approached. The wave func-
tions indicate that as the bound-state mass is driven to
zero by the increasing coupling the bound state shrinks
rapidly in spatial extent.

V. DISCUSSION

We have investigated in this article strong-coupling
effects of the scalar force due to massive scalar particle
exchange and the vector force due to massless vector bo-
son exchange. We found that for the same coupling
strength, an attractive vector exchange force is more
effective in forming bound states than an attractive Yu-
kawa force. A manifestation of this property is the ex-
istence of a minimal coupling in the case of pure scalar
exchange for a given MH, below which bound states can-
not be formed. Because of the nature of the spontaneous
symmetry breakdown, for light quark system where the
Yukawa coupling strength is small, the QCD force is the
dominant component of the binding force. The Higgs-
boson-exchange effect is negligible in all the known quark
sectors —even as heavy as the Y system. However, for
heavy quarks with a mass of 500 GeV or greater, the Yu-
kawa force becomes dominant.

Realizing that the strong-coupling regime is uncharted
territory, we employed several well-known bound-state
calculation schemes in the hope of obtaining some valid
qualitative features of the strong-coupling problem. One

Quark Mass (GeY)

FIG. 7. Quarkonium 0 bound-state mass vs quark mass.

The quarks interact through both one-gluon exchange (OGE)
and Higgs-boson exchange (HBE). Also shown for comparison
is the line displaying the bound-state mass when the quarks in-

teract solely via OGE. A Higgs mass of 100 GeV was used in

computing the curves. In each case, 4, a, =0.25 was used for the

OGE coupling. Solid line: M& =2mf line; dotted line: IA2 and

BBS result for one-gluon-exchange interaction only; long dash

curve: IA2 result for one-gluon exchange with Higgs interac-

tion; short dash-dot curve: BBS result for one-gluon exchange
with Higgs interaction; short dash curve: IA1 result for one-

gluon exchange with Higgs interaction; long-dash-dot curve:
CGL.

aspect of the present study is the appearance of bound
states of zero mass. The investigation of such ultra-

tightly bound states in the BS equation can be traced
back four decades [22]. The motivation of this early
study was to investigate analytic solutions of the BS
ladder approximation. Physical interpretations and pos-
sibilities to avoid collapsing were offered in several later
studies. For example, Haymaker [23] studied bound
states in the O(,N) o model and interpreted the appear-
ance of the tachyon solution as an indication of phase
transition analogous to the transition from the symmetric
phase to the symmetry-breaking phase of the Higgs po-
tential as the Higgs mass squared varies from positive to
negative values. The unphysical tachyon does not really
appear in the physically accessible sheet. Caussignac and
Wanders [24], working effectively in the P3 theory, found
that collapsing can be avoided when a nontrivial spectral
function is introduced to modify the free scalar particle
propagator which enters in the ladders of the BS equa-
tion. More recently, Rupp [25] interpreted the collapsing
of the scalar particle bound state in the spontaneous
symmetry-breaking phase of the P theory as a break-
down of the vacuum [26].

The relationship of these interpretations to our work is
not clear, although they are not necessarily excluded by
our results. Our particle content is different and we start
with a theory in which the vacuum is already broken
spontaneously. We do not see how to break the vacuum
further to avoid collapsing unless there emerges an ener-

gy scale which is much larger than the standard model
symmetry-breaking scale, U =250 GeV, so that the
effective Yukawa couplings for very massive fermions are
reduced. As for the modifications of the fermion propa-
gator, the proper way to include dynamical effects is by
simultaneous solutions of the Schwinger-Dyson equation
for the propagator in an approximation consistent with
the one used for the Bethe-Salpeter equation. Modeling
of the momentum dependence of the couplings, discussed
in Appendix A 2, would be appropriate at this stage of
the calculation. Such a study goes beyond the goals of
the present work.

There are several possibilities to interpret the collaps-
ing of the bound state in the present study. One possibili-
ty is that the standard model still defines the group struc-
ture of the theory but a nonperturbative regime is entered
beyond a certain heavy fermion mass threshold so that
the perturbatively motivated approximation to the BS
equation is no longer valid. Another is that the heavy
fermions of TeV scale are associated with a higher
symmetry-breaking scale where the heavy fermion Yu-
kawa coupling is reduced and a perturbative treatment is
still valid. Or, for a m.ore drastic possibility, the Higgs-
boson and/or the heavy fermion states are composite ob-
jects so that their couplings are softened by form factors
and are much weaker than that expected from point par-
ticles. In all these possibilities, except for the first one,
new physics is required when fermion mass scales of the
order of 1 TeV appear.

Despite the absence of a clear interpretation of bound-
state collapsing toward zero mass, we think that their oc-
currence is perhaps not surprising given the bound-state
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equation we used. However, that the collapsing takes
place in the region around 1 to 2 TeV in all the diverse
approximation schemes of the BS equation, as indicated
in plots of Figs. 2 and 7, is noteworthy. If the collapsing
of bound state is an indication of the onset of new phys-
ics, the energy range that collapse occurs agrees with the
various other estimates of the energy scale at which the
standard model is expected to break down. We surmize
that the region below the turnover to collapsing which is
the intermediate-coupling region, the ladder approxima-
tion of the BS equation, provides a reasonably reliable
description of bound-state physics. In this intermediate-
coupling region the binding is already tight. The binding
energy of the bound state can be a sizable fraction of the
total mass of the constituents. This is a new regime of
the bound-state physics. It represents an intriguing new
effect to be searched for in the future collider experi-
ments. One possibility is the formation of tight binding
and strongly interacting leptonic systems if heavy leptons
exist in the scheme of the standard model spontaneous
symmetry breakdown. Some phenomenological studies
related to this tight-binding problem, in the nonrelativis-
tic Schrodinger approximation, have been reported in the
literature [5—7], and we plan to explore experimental im-

plications of these states in a future study.
In our investigation we have neglected the electroweak

interaction, in particular the contribution of the longitu-
dinal Z . At the energy regime of our consideration, one
can argue that the longitudinal Z effect is equivalent to
that of a 0, Goldstone boson and hence it may not be
negligible. We investigated the longitudinal Z effect in
the Feynman gauge. The effect of Z itself in this gauge
is very small. The main effect comes from the Goldstone
boson which has a pseudoscalar coupling of the same
magnitude as the Higgs-boson coupling, and hence in-

creases with the mass of the fermion under consideration.
Our explicit calculation in IA1, CGL, and BBS approxi-
mations shows that the inclusion of such a repulsive,
pseudoscalar force decreases the binding only slightly in

the intermediate-coupling region, The fact that the pseu-
doscalar coupling effect is not large when the bound state
is not ultrarelativistic can be understood from the follow-

ing consideration. The y~ coupling mixes the large and

small components of the fermion spinor wave function
and the coupling vanishes at zero momentum. The cou-

pling becomes significant only when the momentum of
the fermion becomes large. Because of this feature, the
pseudoscalar coupling cannot overcome the dominant at-

tractive, scalar exchange force if the constituents are not
ultrarelativistic. Therefore the inclusion of the effective
longitudinal Z will not change our qualitative con-
clusions in any significant way in the intermediate-
coupling region.

7405-Eng-82 with the U.S. Department of Energy and
was supported in part by the U.S. Department of Energy
Grants Nos. DE-FG02-85ER40214 and DE-FG02-
87ER40371, Division of High Energy and Nuclear Phys-
ics. One of the authors (A.J.S.) acknowledges financial
support from a grant to Iowa State University from the
U.S. Department of Education, Graduate Assistance in
Areas of National Need Program.

APPENDIX A: BETHE-SALPETER CALCULATION

1. Bethe-Salpeter equation

We work with the standard Bethe-Salpeter amplitude
[16]

q, (x)=&olT[q(o)t((x)]lp &, (Al)

where ~p ) is a color-singlet state of four-momentum p.
Spinor and color indices are suppressed in our discussion.
In order to establish notation and to provide the frame-
work necessary to discuss approximations that we use, we
sketch the derivation of the approximated form of our
Bethe-Salpeter equations for a quark-antiquark system.

The general form of the homogeneous Bethe-Salpeter
equation is, in momentum space,

—+g —m g ——g+m = Vg,
2 2

(A2)

2 d4q', 1
Vg =—i

4~ 4 3 P
( I)2 ~2x (q')

d4q ( —', a, )
+i y q' y",

4m' (q —q')
(A3)

and —', a, is the QCD "fine structure constant" with the

color-singlet factor 4.

2. Salpeter's instantaneous approximation

where m designates the fermion mass. This form is ap-
propriate to the quark-antiquark channel in which we are
interested.

Since we are primarily interested in heavy-quark-
anticipated (QQ) systems with quark masses m& of order
100 GeV or more, we confine our discussion to the
Coulombic part of the QCD potential. In the one-
particle-exchange, or ladder, approximation to the "po-
tential" V we have included the Higgs potential as well:
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To project onto a quarkonium state of definite spin-

parity, one needs the matrix elements of Eq. (A2) between
spinors u and U. Since U =C(u ) up to a phase, it is con-
venient to multiply Eq. (A2) on the right with the charge
conjugation matrix C and recast Eq. (A2) in the form

[16], restricting ourselves to 1 exchange for this discus-
sion:
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~+/ —m
2

—g —m K
2 2

d4 '
q

4' (q —
q )'

(A4)

where K &
—=C&&y &,

' the labels 1 and 2 distinguish the Q
and Q variables. For lightly bound, Coulombic systems,
one expects that q

—
qo && m for the important contribu-

tions to the integral, and so we adopt a version of the "in-
stantaneous" approximation, setting (q —q')
= —(q —q ') in the denominator. Before collapsing
takes place, E~ is of the order of 3-10 GeV in most of
the cases investigated. Hence ~q

—q '~ is of the order of a
few GeV which will be the energy scale that defines the
QCD coupling, not the fermion mass as one might expect
at first sight. This much smaller energy scale that is be-
ing exchanged between the fermion and antiferrnion as
they propagate through the ladder also implies that the
fermions and antifermions are mostly on mass shell. This
is the reason why we choose the fixed value for the QCD
coupling constant, —', aQcD 0.25. This value is also in ac-
cord with the estimates of the strong coupling given by
Strassler and Peskin [10) (the strong interaction coupling
constant is called a,s by the authors}, who show a range
of 3 aQCD between 0.28 and 0.2 1 for 100 ~ m „„500.
However, near collapsing, the momentum q and q' can be
large and the value of aQcD will become smaller.

A similar discussion can be given to the Yukawa cou-
pling, but here the effect of large Yukawa coupling has to
be considered and the assumption of ladder dominance of
the Bethe-Salpeter equation needs to be examined more
carefully. One can imagine that in a more refined calcu-
lation, higher-order diagrams will be included. Parts of
the high-order corrections due to vertex and propagator
correction will turn the fixed coupling into a running cou-
pling [27]. However, in the region away from the collaps-
ing as argued in the paragraph above, the effect of the
momentum dependence is not large since the high-order
correction is only logarithmic and the range of momen-
tum variation is small. Therefore a fixed value for gz
would be a good approximation. However, the value of
the coupling which has to be defined at some fixed point
as an initial condition may be ambiguous. In the present
application we interpret the value gz =mf /v to be
defined with on-shell fermions and zero-momentum
Higgs boson. Hence away from the collapsing point, gz
will approximately be constant. Near collapsing, howev-
er, the wave function acquires large momentum com-
ponents and variations in the Yukawa coupling may be-

&—y —m
1 2

and integrating over qo, one obtains, in the overall rest
system p =(E,O), a set of coupled homogeneous equa-
tions known as Salpeter's equations [14,15]:

4a, /3
(2 E)y++—(q) =A,+(q)A2+( —q)

2m.2

q 1,1z—a .az
(q —q')

y [y++(q ')+~ (q '}], (A5a)

and
4a, /3

(2~+E)y (q)=Ai (q)A2 ( —q)
27r2

(q —q')'
X [y+ (q ')+y (q ')], (A5b)

where

y+—+—(q) =A +—

, (q)A2~( —q)p(q),

A +—(q) = [co+(a q+ Pm ) ]/2' .

Here ~=V q ~+m ~, a =yoy, and p= yo in terms of the
usual Dirac matrix convention. One also finds

x' (q)=x +(q}=o. (A5c)

Our aim is to solve for the eigenvalues E in the indivi-
dual spin-parity channels. To project Eqs. (A5a) and
(A5b) into the appropriate channels, we first project onto
the helicity basis, from combinations of definite total spin
and finally project out amplitudes of definite total angular
momentum J [30]. Designating helicity states in the total
rest frame as ~A, „A,2, q), we write the corresponding pro-
jections of Eqs. (A5a) and (A5b) as

come significant. The reason is that the large initial Yu-
kawa coupling means that the Landau pole [28,29] may
not be too far away from the momentum range that is
reachable in the problem under consideration as hinted
froin the one-loop result [27]. Then the Yukawa coupling
can increase drastically. This will accelerate the collaps-
ing so that the collapsing may occur earlier than Fig. 2
indicates.

In the approximation just described, the qo integral is

simply

f dqÃ(qo' q'}=x—(q'},

and one can recast the problem into the form of an in-

tegral equation for y(q). Multiplying Eq. (A4) by

(2' E)(A, A2, q~y++(q)) = — (Pi, &2, q~Ai+(q)A2+( —q) f g (1i12—a, az)~h„hz,q')
2m. (q —q') I, I,

x (hi h2, q'[Ix'+(q'})+ ix (A6a)
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(2cu+E)&A, Az, qlg (q)&=
2 &k, , k2, qlA, (q)Az ( —q) f z g (l, lz —a, .a2)lh„h2,q'&

x &h, , h2, q'[ly++(q') &+ ly (q') &], (A6b)

A+(q)uz(q) =uz(q),

A (q)vq( —q) =vq(q ), (A7)

where gh z includes an energy sum over + and —en-

ergy solutions.
Now one uses the features of the energy projection

operator:

where q( —q) lies in the x —z plane at an angle 8(m. +8)
with respect to the z axis.

From the helicity projections one forms the amplitudes
of definite total spin.

(i) Spin singlet

0 &+, +;qlx(q) &
—

&
——;qlx(q)&xq =

2

where
1/2

1

2xlql

(ii) Spin triplet

& —,+;qly(q) &
—

& +, —;qly(q)&

v'2 (A lob)

and

E

2Q)

2xlql

Xg

are the noncovariantly normalized spinors:

X u~(q)ux (q)+ X v~(q)v~ (
—q) = 1 .

"y(q) =
& +, +;qlp(q) &+ & —,—;qlp(q)&,

y(q) =
& +, —;qlx(q)& + & —,+;qly(q) & .

(A10c)

(Alod)

One obtains the total angular momentum projections by
inverting the expansion of the interaction, V-(q ), in
terms of the "rotating top" functions dM M (8):

(Ag) & A )A2l V (q, q')lh )h2 &

The conventions in Eq. (A7) are

~=&q'+m',
E —CO+ Pl

1

0
0 —1

0

Following the notation of Ref. [14],we define
—i o (0/2)

Xdq) =e ' X~(0»
—i a (6)/2)

X~(
—q) =e ' X-d0»

(A9)

=2~f d(cos8)dM M, (8)&qi, k,, lVlq'h, h, &,

where q =
l ql, M = I, ,

—
A, z, and M' =h, —h 2. Integrals

such as

f d 0'(q q') —I'J(8')=,QJ(Z),
qq

where the PJ(8) are the Legendre polynomials and the
Qz(Z) are the Legendre functions of the second kind
with Z=(q +q' )/2qq' are used to express the equa-
tions in a form suitable for numerical solution.

The spin-0 equations are relatively compact, and they
read

4a, /3 1

0 AMP

(A 1 1)

Equations (Al 1) are handled numerically by expressing the amplitudes as linear combinations of cubic B-splines and
solving the resulting matrix equations by a Galerkin method using the Iowa State University (ISU) bound-state code
[31].

Note that in each equation the opposite frequency amplitude is the more heavily weighted. This is especially clear
when only the leading powers in q/m are kept in the integrand, and the expressions in square brackets become
p+ + 3 g and 3 y + y+ in the g+ and g equations, respectively. This enhancement of the opposite energy con-

tribution is due to the off-diagonal a, a2 part of the vector boson interaction. Interestingly, there is no such large



46 STRONG HIGGS BINDING OF HEAVY-FERMION SYSTEMS 4039

enhancement of opposite energy contributions from the a, a2 term in other partial waves.

3. The Blankenbecler-Sugar reduction of the Bethe-Salpeter equation

The Blankenbecler-Sugar equation [32] is one of an infinite set of so-called quasipotential equations which are three-
dimensional reductions of the Bethe-Salpeter equation. The equation is obtained by replacing the center-of-momentum
fermion propagator

1

by [33]

m A,+(q)Az+( —q)
2ni . . 2

- 5(q )=2ni
m A,+(q)A2+( —q) 5(q'),

co(k —q +is)
(A12)

CO +lE'
2

where k =—(p/2) —m =(E/2) —m .
The 5 function accomplishes the reduction to three dimensions. Carrying out an expansion in a helicity state basis

yields, for the reduced Bethe-Salpeter equation [33],

&q~~~~lx&=, , g J d'q'&q~~~2ll'lq'~~~~&&q'~~~2lx& . (A13)

The partial wave decomposition is done as in Appendix A 1 with F. —2co replaced by k /m —
q /m and gives, for the

spin-0 equation,

4a, /3 1 2coco m—& 'x+(q) = f dq—'q'QJ(», 'x'+(q')
m m q 0 m coco'

(A14)

where 8 is the binding energy. The X+(q ) of Eq. (A14) is not the same function as the X+(q) of Eqs. (A 1 1). Equation
(A14) is solved using the ISU bound-state code [31].

4. Feynman gauge, covariant Bethe-Salpeter calculations

In the present paper we concentrate on the ground-state 0 particles. For the pseudoscalar mesons y can be decom-
posed as

x,(p, q) =r,(x.+px, +~x,+[~,~]x,) (A15)

In the weak binding limit, Xo and X, dominate over the remaining functions and it is possible to solve Eq. (A2) quite
accurately by keeping just these two functions. It is well known that the ladder approximated BS equation does not ac-
curately reproduce the positronium spectrum though the correct 0, 1 splitting is obtained to leading order [21]. It is,
however, suitable for the present study since we are not interested in obtaining the precise values of the binding energies
but only to extract some qualitative features of how the binding energy changes as the coupling is increased.

For the deep-binding case, Xo dominates over all other functions and (A2) can be solved accurately by including only
this function. Again the reliability of the ladder approximation is questionable when the coupling gets too large. How-
ever, our use of (A2) is not unreasonable since we are using it only to determine the value of the coupling at which the
binding energy gets very large and where the ladder approximation breaks down completely. As discussed in the text,
our results show a rather de6nite value of the coupling at which the mass of the pseudoscalar ground state suddenly
drops to zero.

From the above discussion, it is clear that Eq. (A2) can be accurately solved in both the weak-coupling and strong-
coupling (for bound-state mass =0) regime by including only the function Xo and X,. For the weak-coupling case it can
be easily seen that

Xp
X]

Using this we find from (A2)

4 a, (q+m ) gz 3M', d'k Xo
3 2 Z

dk + q+ +m
3n D(q, M&, cosB) (k —q) D(q, M&, cosB) 4 (2m) (k —q) +MH

where M& = —p is the mass squared of the bound state, 8 is the angle between p and q, and

(A16)
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M~
D(q, Ms, cos8)= —

q + 2 +M 2
q 2cos20

Equation (A16) has been written in terms of Euclidean variables. We reiterate that this equation also gives the correct
limit of Eq. (A2) for the case when Ms ~0, in addition to being reliable in the weak-coupling limit.

Equation (A16) is still quite complicated because of the dependence on the angle 8 between p and q. In the pure QCD
case, i.e., when gr =0, it is possible [16] to make a change of variables such that the resulting equation does not depend
on this extra degree of freedom. In the general case, however, one has to find an approximation scheme to treat the two
variable problems. In order to solve Eq. (A16) we will expand the ground-state wave function yo(q, M&, cos8) in terms
of Tschebeshev polynomials T'"'(cos8) [34]:

yo(q, Ms, cos8) = g y~o"'(q, Ms ) T'"'(cos8) .

For the present paper, we will ignore all Tschebeshev polynomials higher than TI '(cos8). This approximation was
found to be quite accurate for the present purpose since T' '(cos8) gave smaller than 15% correction to the binding en-

ergy for all the cases. The properly normalized T' ' and T' ' are given by

2Z"I(cos8)=—1 /2 1/2

T' '(cos8)= — (4cos 8—1)2
7T

with the normalization

f d8sin 8T'"'(cos8)T' (cos8)=6„
0

T"' does not give any contribution for the equal mass case. The equations for y0
' and g0

' can easily be obtained from

Eq. (A2) by projecting out with appropriate T'"'. We expect yz
' to be dominant for the ground state and therefore we

can approximate y0
' by its inhomogeneous piece. %e find

4 +0a (q'+m') A, f d4k
3~' '

k —
q

d4k Xo 4(k q)
(k —q) kq

(2) (0)A2
X0 g X0

0

3M 4 (0)
a 2 dk Xo

(2n') (k —
) +M

~2 d k XO 4(k q)
(2m. ) (k —q) +MH k q

(A17)

when A0 and A2 are given by

30= 2

C+QC +Msq C

—M,'q'

M
C+ +QC +M C C+Q C2+ M2q 2C

2 2
M~C= q

— +rn
4

For the ground state yo'
' is a function only of q and hence the angular integration in Eq. (A17} can be easily per-

formed. The necessary integrals are given by

k +q +MH —2lkllqlcosP k'+q'+MH+[(k +q +MB} —4k q']' '

7r sin pd k'+ '+M' —2lkllqlcosp [(k'+q'+MH)+[(k'+q'+MH) —4q k ] I
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The resulting equations were then solved numerically.
The results are given in Sec. II and III.

For the case of the vector mesons, since we are only in-
terested in qualitative results, we simply use the well-
known results in the weak-coupling and in the strong-
coupling (M&=0) case. In the weak-coupling case the
vector-meson bound-state mass is slightly larger than the
pseudoscalar meson mass, and the approximate splitting
can be easily calculated by using the well-known nonrela-
tivistic expansion. The strong-coupling (Ms =0) case for
a pure Coulomb interaction is reviewed in Ref. [13]. One
finds that the vector-meson mass becomes zero when the
coupling a =2n.. Correspondingly the pseudoscalar
meson mass for pure Coulomb interaction is zero for
a=n/4 T. hi.s suggests that the vector-meson mass goes
to zero much more slowly in comparison to the pseudos-
calar meson mass as the coupling is increased. %e expect
similar behavior in the case of Higgs-boson exchange.

s[T (s)]„„=PP DI(s)
(B1)

where p' and p are final state and initial state helicities.
N (s) has only left-hand singularities and D (s) has only
right-hand singularities in the complex s plane [35]. Sub-
tracting at s =so, one has

s —so „[N(s')]„.
„[D (s)]„.„=1— f, ,

"" p(s')ds',
1T 4mf $ s s so

(B2)

where p(s')= ,'mk(s')/&s—' and k(s')= ,' 1/s' 4mf f—or-
two-body fermion-antifermion channel. %e approximate

N„~by the one-Higgs-boson exchange amplitude (i.e.,
Born approximation, denoted Ttt):

APPENDIX 8: N/D METHOD

Here we summarize the N/D partial wave amplitude
calculation of the ground-state mass with a Higgs-boson
exchange in the t channel. For the fermion-antifermion
partial-wave amplitude T (s), where s is the invariant
mass squared, one defines

r

f =—f fdoo(x)dx, (B5)

from (B4) and (B5) we find that our Born approximation
gives the 0 amplitude

2

f (s)= 1+
4m

4mf' —MH 4S
2

ln 1+
4~ 2 M

(B6)

with the Born approximation understood and where p is
the magnitude of the quark three-momentum in c.m. sys-
tem. In the standard model, gY=mflu where u =250
GeV, which is the value we will adopt for our numerical
work.

The condition for the formation of a bound state is that
the D (s) function vanish for some value of s below
threshold, stt ~ 4mf, and referring back to (B2), we write

0 oo, pS S0=1- ds
7T 4mf S' —S S' —SB

(B7)

sB &4m, , as our bound-state condition in this model.
This condition assumes a rather simple form if we rescale
p2 by 4mf2, use y =p /4mf as our variable, and define

Rs =ss/4mf and R 11 =so/4mf,

where p'=A, ', —Az, @=A,,
—

A2, and s=(pi+p2)
=(p1+p2) . The spinors and antispinors are u and u

and spinor indices are suppressed, as usual. The Yukawa
coupling of the Higgs boson to the fermion is denoted by
gy.

For the ground state with J =0 we need the spin-0,
negative-parity and total angular momentum zero projec-
tion [35]. Defining

f= T++;++ T++;——

and

[N (s)]„.„=[T( s)]„s„
=—f dx d J„.(x)[T~(x,s )]„„,2 —1

with x the cosine of the scattering angle
in the center of mass. In more detail, we write

I I

T~(x,s)„„—=Ttt(x, s) ' ' ' ',
I I

[T ( }]2' 1' 1 2

gYu(p l~~1)u(pl~~1 u p2~~2 u p2'~2

MH2+(s —4mf }'~ (1—x)
(B4)

2

0= 1 — [I(R ) —I(R )],
16

where

I(R )= dy
[y(1+y }]'"y+1 —R'

X R —1+(1—R )ln 1+0
RH

and the bound-state mass value squared is given by

MB =SB=4mf'RB

(B8a)

(B8b)

[1]CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 6S, 447
(1992).

[2] P. Langacker and M. Luo, Phys. Rev. D 44, 817 (1991).
[3]M. Chanowitz, M. Furman, and I. Hinchliffe, Nucl. Phys.

B153,402 (1979).
[4] M. Veltman, Nucl. Phys. B123, 89 (1977); P Q. Hung, .

Phys. Rev. Lett. 42, 873 (1979); H. Politzer and S. Wol-
fram, Phys. Lett. 82B, 242 (1979);83B, 421(E) (1979).



JAIN, SOMMERER, McKAY, SPENCE, VARY, AND YOUNG

[5] H. Inazawa and T. Morii, Phys. Lett. B 203, 279 (1988).
[6] H. Inazawa and T. Morii, Z. Phys. C 42, 563 (1989).
[7] H. Inazawa, T. Morii, and J. Morishita, Z. Phys. C 46, 273

(1990).
[8] J. Feigenbaum, Phys. Rev. D 43, 264 (1991).
[9]W. Kwong, Phys. Rev. D 43, 1488 (1991).

[10]M. Strassler and M. Peskin, Phys. Rev. D 43, 1500 (1991).
[11]V. S. Fadin and V. A. Khoze, Pis'ma Zh. Eksp. Teor. Fiz.

46, 417 (1987) [JETP Lett. 46, 525 (1987)].
[12]An early discussion on zero-mass bound states was given

by J. S. Goldstone, Phys. Rev. 91, 1516 (1953). For early

references on this subject, see L. G. Suttorp, Nuovo

Cimento 29A, 225 (1975); 33A, 257 (1976). For a recent
review, see N. Seto, Prog. Theor. Phys. Suppl. 95, 25

(1988).
[13]Seto [12].
[14]J. J. Kubis, Phys. Rev. D 6, 547 (1972); K. Erkelenz, Phys.

Rep. 13C, 192 (1974); R. Machleidt, K. Holinde, and Ch.
Elster, ibid. 179, 1 (1987).

[15]E. Salpeter, Phys. Rev. 87, 328 (1952).
[16]A review of the Bethe-Salpeter equation and its applica-

tion to positronium is given by C. Itzykson and I. Zuber,

Quantum Field Theory (McGraw-Hill, New York, 1980).
We follow their notation.

[17]See, for example, Prog. Theor. Phys. Suppl. 95 (1988).
Especially useful in this context is the review by T. Muro-

ta, ibid. 95, 46 (1988).
[18) These order-a and -a results can be obtained in more

than one way. For a Schrodinger-type perturbative treat-

ment, see H. A. Bethe, Quantum Mechanics of One and-
Two-Electron Atoms (Plenum, New York, 1977), Sec. 23.
The same is obtained in the Bethe-Salpeter approach in

Ref. [16],Sec. 10-3-2.
[19]H. W. Crater and P. Van Alstine, Phys. Rev. D 37, 1982

(1988).
[20] S. Love, Ann. Phys. (N.Y.) 113, 153 (1978).
[21] See also Murota [17] and the discussion in Itzykson and

Zuber [16].
[22] Goldstone [12].
[23] R. W. Haymaker, Phys. Rev. D 13, 968 (1976); 16, 1211

(1977).
[24] P. Caussignac and G. Wanders, Nuovo Cimento 55A, 45

(1980).

[25] G. Rupp, University of Maryland Report No. 92—131 (un-

published); another recent Higgs-boson bootstrap is

presented by D. Sivers and J. Uretsky, Phys. Rev. Lett. 68,
1649 (1992).

[26) In Rupp's calculation the kernel includes the ladder dia-

grams as well as the s-channel bubble diagrams. The s-

channel bubble diagrams give rise to a repulsive force and

can therefore slow down the collapsing as a function of the

coupling constant. We have checked his result against
that of the ladder diagrams alone. Indeed the inclusion of
the s-channel bubble diagram postpones the collapsing (by

a factor 2) as a function of the constituent scalar particle
mass.

[27] T. P. Cheng, E. Eichten, and L. F. Li, Phys. Rev. D 9,
2259 (1974); C. T. Hill, ibid. 24, 691 (1981). We thank Pro-
fessor Li for a discussion of the fermion —Higgs-boson run-

ning coupling.
[28] L. D. Landau, A. A. Abrikosov, and I. M. Khalatnikov,

Dokl. Akad. Nauk SSSR 95, 1177 (1954).
[29] The existence of a Landau pole in the

nucleon —pseudoscalar-meson coupling was pointed out in

A. D. Galanin, B. L. Ioffe, and I. Ia. Pomeranchuk, Zh.
Eksp. Teor. Fiz. 29, 51 (1956) [Sov. Phys. JETP 2, 37
(1956)]. We thank Professor Ioffe for pointing this out to
us.

[30] This procedure is reviewed by R. Machleidt, K. Holinde,
and C. Elster, Phys. Rep. 147, 1 (1987), for a variety of po-
tentials under the further approximation y =0. See
also K. Erkelenz, Phys. Rep. 13, 191 (1974).

[31]J. Spence, Ph.D. thesis, Iowa State University, 1989.
[32] R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051

(1966).
[33] This replacement is that proposed by M. Partovi and E.

Lomon, Phys. Rev. D 9, 1999 (1970), as a way to adapt the
method of Ref. [32], which deals with scalar particles, to
the spinor-spinor Bethe-Salpeter equation.

[34] P. Jain and H. Munczek, Phys. Rev. D 44, 1873 (1991);46,
438 (1992).

[35] P. D. B. Collins and E. J. Squires, Regge Poles in Particie
Physics, Springer Tracts in Modern Physics Vol. 45

(Springer, Berlin, 1968), Chap. VI. We use the notation of
A. D. Martin and T. D. Spearman, Elementary Particle
Theory (North-Holland, Amsterdam, 1970).


