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Decoupling a fermion whose mass comes from a Yukawa coupling: Nonperturbative considerations
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Perturbative analyses seem to suggest that fermions whose mass comes solely from a Yukawa coupling
to a scalar field can be made arbitrarily heavy, while the scalar remains light. The effects of the fermion
can be summarized by a local effective Lagrangian for the light degrees of freedom. Using weak cou-
pling and large-N techniques, we present a variety of models in which this conclusion is shown to be
false when nonperturbative variations of the scalar field are considered. The heavy fermions contribute
nonlocal terms to the effective action for light degrees of freedom. This resolves paradoxes about anom-
alous and nonanomalous symmetry violation in these models. The application of these results to lattice
gauge theory implies that attempts to decouple lattice fermion doublers by the method of Swift and Smit
cannot succeed, a result already suggested by lattice calculations.

PACS number(s): 12.15.Ff, 11.15.Ha, 11.15.Pg

I. PRELUDE AND PARADOX

As its title suggests, this paper should be thought of as
a continuation of the work of D'Hoker and Farhi [1] on
the decoupling of heavy fermions which transform in
chiral representations of a spontaneously broken gauge
group. This is a phenomenon which is crucial to several
ideas in modern particle physics. The conventional wis-
dom holds that the chirality of the observed fermion rep-
resentations is a fundamental property of the world, but
mirror fermions could be discovered at the next accelera-
tor. Are there theoretical bounds on how large their
masses could be? If, indeed, chirality is fundamental and
not a low-energy accident, it may have profound implica-
tions, for we know of no gauge-invariant regulator for
chiral gauge theories, nor any real argument that they are
consistent outside the realm of perturbation theory. ' At-
tempts to construct chiral gauge theories as continuum
limits of honest lattice field theories with short-range
coupling s are hampered by the Nielsen-Ninomiya
theorem. In the naive lattice version of the standard
model, this theorem guarantees the existence of mirror
partners of quarks and leptons in the continuum limit.
One can only hope to decouple them by giving them large
Yukawa couplings to the Higgs field, and perhaps masses
of the order of the cutoff. The success of this program

would imply that there can be no theoretical upper
bounds on the masses of mirror fermions. If lattice gauge
theorists can send them off to infinity on the computer,
God should be able to do the same in the real world. In
order to argue against the existence of very heavy mirror
fermions one would be reduced to complaining about
fine-tuning (the question of how much work we believe
God is willing to do) or the failure of perturbation theory
(the question of how much work we are willing to do).

In a recent paper [2], one of the authors pointed out a
possible problem with most attempts to construct the lat-
tice standard model by these techniques. Any SU(3) lat-
tice gauge theory with no colored Higgs fields and a La-
grangian bilinear in fermions has a global U(1) symmetry
that acts on the lattice quark fields like baryon number.
This conserved baryon-number symmetry would appear
to forbid the nonperturbative baryon-number-violating
process discovered by 't Hooft [3] in the semiclassical ap-
proximation to the continuum standard model. If
baryons are constructed from quark operators in any
quasilocal way, lattice Green's functions with nonzero
baryon number will vanish identically for all values of the
parameters on the lattice. Thus, either the lattice theory
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lAmong the many pleasing aspects of string theory is the natu-

ral cutoff it provides for theories of chiral fermions. Friedan
has argued that this should be viewed as a hint that string

theory, rather than pointlike field theory, describes the real
world. Note that although string theory does not yet give a
nonperturbative description of chiral gauge theories, it is a finite

gauge-invariant regulator in perturbation theory. All other per-

turbative regulators break chiral gauge invariance explicitly.

~In almost all theories, this symmetry can be gauged on the lat-

tice. The single exception of which we are aware is a theory in

which 3 and 3 fields are put on different sites of an Euclidean
lattice. This theory has a global baryon-number symmetry
which cannot be gauged. It is an interesting example of a lattice

gauge theory where the Lagrangian is gauge invariant but the

functional measure is not.
3We are assuming that in those cases where equal numbers of 3

and 3 fields sit on each site, the U(1) symmetry is not spontane-

ously broken. We believe this to be the conventional wisdom.

If it did suffer spontaneous breakdown the theory would contain

a Goldstone boson not observed in nature, and would not con-

verge to the standard model.
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does not succeed in reproducing the conventional contin-
uum model in perturbation theory, or we have discovered
a nonperturbative violation of universality.

In an attempt to understand this puzzle without resort-
ing to a computer, we have constructed a model in which
heavy-fermion decoupling can be studied entirely within
the framework of weakly coupled continuum field theory.
The model was motivated by a remark of Kaplan. In or-
der to turn a vectorlike gauge theory into one with a
large hierarchy between fermions and their mirror
partners, we must make the Yukawa couplings of the
mirrors to the Higgs fields which break the gauge symme-
try much larger than the gauge coupling. Kaplan
remarked that this was possible within the perturbative
domain, if we are willing to consider theories with ex-
tremely small gauge coupling. While not directly applic-
able to the real world, such models might prove to be an
interesting theoretical laboratory. This is indeed the case
as we will see below.

Our model then begins as the standard model with all
of the usual couplings scaled down by a factor f. For
definiteness we might consider f -10 . We add to this
a set of mirror fermions, left-handed Weyl fields that
transform in the complex-conjugate representation of the
standard-model fermions. The vacuum expectation value
(VEV) of the Higgs field is arranged to be -250 GeV as
usual, and the mirror fermions are all given Yukawa cou-
plings g;„„oforder 1, so that their masses are of order
100 GeV. The gauge bosons and conventional fermions
have masses below 1 GeV. We forbid the gauge-invariant
mass terms that could be made by pairing conventional
fermions with their mirror partners. This is natural, due
to a symmetry that will be discussed below. The hierar-
chy between vector-boson and heavy-fermion masses in
this model requires no fine-tuning. Radiative corrections
to the squares of gauge-boson masses due to loops of mir-
ror fermions are of order (es,„s~;„«/4n )v, and are
small compared to the tree-level masses. Note, however,
that if we insist that the Higgs-boson mass be as small as
the vector-boson mass, the conventional vacuum state be-
comes metastable. This is a consequence of the familiar
unboundedness of the fermionic one-loop correction to
the effective potential. In the present model, when the
Higgs- and vector-boson masses are a hundred times
smaller than the fermion mass, the turnover of the
effective potential occurs in a region accessible to pertur-
bation theory, and one might think that the conclusion
that the vacuum is only rnetastable is reliable. If this is
the case, then the discussion below can be read as a
description of processes going on in this rnetastable state,
and one is confronted with issues of the relative rates of
the 't Hooft process and the decay of the false vacuum.
We note, however, that Kuti and Shen [4] have argued
that in a theory with only bare quartic couplings one can-
not attain the renormalized parameter values for which
the vacuum is metastable. The Higgs-boson mass
remains a finite fraction of the fermion mass for all pa-
rameter values. We do not know if this conclusion
remains true in the presence of irrelevant couplings in the
bare Lagrangian, or when the system is coupled to gauge
fields.

We believe that the issue of metastability of the pertur-
bative vacuum as we vary the relative ratio of ferrnion to
Higgs-boson masses is a crucial one, and we will have
much more to say about it in Sec. III when we examine a
two-dimensional model in the large-N limit. There we
will show that by fine-tuning of many parameters we can
obtain a model with a stable symmetry-breaking vacuum
in which the ratio of the fermion mass to both vector-
boson and Higgs-boson masses is extremely large. The
puzzle we describe in the next paragraph exists in that
model as well. Therefore, we ask the reader to ignore is-
sues of vacuum metastability for the moment.

A bit of thought about nonperturbative baryon-
number-violating processes in this model reveals an ap-
parent paradox, whose resolution will be the subject of
this paper. The baryon-number current built out of rnir-
ror quarks has an SU(2) gauge anomaly which is exactly
equal to that of the ordinary baryon-number current.
Thus, the difference between ordinary and mirror baryon
numbers is an exactly conserved anomaly-free symmetry.
Coupled with the fact that all mirror baryons have
masses of order 100 GeV, this symmetry forbids the de-
cay of particles with ordinary baryon number and masses
of order 1 GeV or below, since any such decay would
have to produce mirror baryon number and there are no
light particles that carry this quantum number.

Now let us study the same model using conventional
ideas of decoupling and low-energy effective field theory.
The particle spectrum at 1 GeV and below coincides with
that of the conventional standard model rescaled by f.
One might conclude then that the physics at this energy
scale was well described by the standard model with re-
scaled couplings. But then, 't Hooft's calculation of the
deuteron decay rate could be carried out, giving a result
many orders of magnitude below that in the standard
model, but still nonzero. This is in blatant contradiction
with the exact result demonstrated in the previous para-
graph. Note the similarity to the lattice models discussed
in [2]. The role of mirror fermions is played by lattice
doubles of the continuum fermions. The U(1) symmetry
discussed above is continuum baryon number plus
double-mode fermion number. If the doubles indeed have
masses of the order of the cutoff while the continuum fer-
mions have their observed masses, then we have a para-
dox very similar to that in the superweakly coupled stan-
dard model.

The arguments of D'Hoker and Farhi [1] do not seem
to shed much additional light on this situation. These au-
thors work in the limit of a fixed-length Higgs field. They
tell us that if we try to compute the mirror baryon-

4Note that a very similar argument appears in 't Hooft's origi-
nal calculation of deuteron decay in the standard model. If
first- and second-generation baryon numbers were separately
conserved, the deuteron could not decay. Its decay rate van-
ishes with the Cabibbo angle. By omitting the mass term mix-
ing ordinary and mirror fermions we have eliminated the corre-
sponding "Cabibbo mixing" in our model.
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number current in the low-energy theory then it will be
equal to the Skyrmion-number current of the nonlinear
model representing the unphysical Higgs degrees of free-
dom. When the model is gauged, this is the same as the
Chem-Simons current built out of the gauge-invariant
massive gauge fields. It is a gauge-invariant current
whose divergence is proportional to the SU(2) topological
charge. The difference between it and the ordinary
baryon-number current is an anomaly free gauge-
invariant conserved current. However, this gauge-
invariant Chem-Simons current exists in the standard
model even when there are no mirror fermions. Argu-
ments based on it cannot resolve our paradox unless they
imply that 't Hooft's calculation is wrong in the unex-
tended standard model. There is always a gauge-
invariant conserved current which acts as baryon number
when applied to quark fields. Furthermore, the change in

the Chem-Simons charge built from massive gauge fields

is the integral of a total derivative of a gauge-invariant
object constructed out of massive fields. One would ex-

pect it to be zero. If the Chem-Simons current were real-

ly a well-defined operator in the conventional standard
model, this argument would rule out baryon-number
violation completely. Thus, if we believe that 't Hooft's
calculation is correct in the unextended standard model,
the arguments of D'Hoker and Farhi cannot help us to
understand the paradoxes of decoupling in the model
supplemented with heavy mirror fermions.

This is perhaps the place to discuss the criticisms of
the arguments in Ref. [2] made by Dugan and Manohar
[5]. These authors claim to show that the conserved lat-

tice current corresponding to the symmetry discussed in

[2] is not gauge invariant. As we have stated it, this
claim is obviously wrong on the lattice. We can define

the current by gauging the U(1) lattice baryon number
discussed above (and varying with respect to the back-
ground gauge field), and since every term in the Lagrang-
ian is invariant under the standard-model group, so is the
current. As the authors of [5] point out in their Eq. (14),
the real meaning of their calculation in a model in which

gauge invariance of the Wilson term is enforced by intro-
ducing a Higgs field, is that the conserved current differs

from the light baryon-number current by the Chern-
Simons term of the massive gauge fields. Thus, their
conclusions are identical to those of D'Hoker and Farhi
and do not really shed any more light on the baryon-
number paradox.

We will present the resolution of this paradox in the

next section. It is, we believe, rather surprising, and

shows that the decoupling of a fermion whose mass

comes from a Yukawa coupling is profoundly different

5In Sec. III we will present a two-dimensional model in which

the D Hoker-Farhi scenario is realized. It is indeed the case
that baryon number is not violated in the low-energy effective

action of this model.
Dugan and Manohar are clearly working in the fixed-length

Higgs model, or ignoring zeros of the Higgs field.

than ordinary decoupling, even more so than one would
have concluded from the work of [1]or from recent work
on new parameters arising from loops of heavy chiral fer-
mions in electroweak radiative corrections. In effect,
what we will show is that although the particles associat-
ed with mirror fields are heavy, the mirror fields them-
selves do not decouple from low-energy physics, as long
as the Higgs field is light. Depending on the
configuration of low-energy gauge and Higgs fields, an ar-
bitrarily large number of modes of the mirror fields can
contribute significantly to low-energy tunneling process-
es. They completely transform the instanton dynamics of
the low-energy gauge system.

As a counterexample to the claim that one can entirely
decouple mirror fermions, this weakly coupled model is
not completely satisfactory. The nonperturbative effects
which exhibit this dramatic violation of decoupling are,
in the weak-coupling regime, much smaller than the per-
turbative effects of nonrenormalizable operators in the
baryon-number conserving sector. Thus, there is not a
completely clean separation of scales. We cannot reduce
the perturbative effects of the heavy mirror particles to
arbitrarily small size without leaving the realm of pertur-
bation theory. In addition, and more importantly, if we

try to make the Higgs-boson mass much smaller than the
fermion mass in this model we are confronted with vacu-
um instability. Nonetheless, the fact that the zero
modes and lack of decoupling are evident for all values of
the mass that are amenable to a perturbative analysis,
suggests that the phenomenon that we have uncovered
persists into the strong-coupling regime. Even if we are
able to construct a model with heavy fermions, light
Higgs-bosons, and a stable vacuum, we will still find that
the fields of the heavy fermions do not decouple from
low-energy physics.

To obtain further evidence for this, we examine in Sec.
III some two-dimensional chiral gauge theories which are
almost soluble. We show that in a model with a fixed-

length Higgs field (which is renormalizable in two dimen-

sions), we can indeed decouple heavy mirror fermions.
Our paradox about baryon-number conservation is
resolved by showing that baryon-number-violating ampli-
tudes vanish in the limit of the fixed-length Higgs field.

When the modulus of the Higgs field is allowed to fluctu-

ate this is not the case. We study the fluctuating-length
theory in the large-N approximation. In order to keep
the radial mode of the Higgs field light, and the classical
vacuum stable, we have to fine-tune a number of parame-
ters that grows with the fermion mass. This is a conse-
quence of a general property of decoupling of heavy par-
ticles (gauge bosons as well as fermions} whose mass
comes solely from the vacuum expectation value (VEV}
of a scalar field. It is quite generally true that the
effective potential for the scalar induced by virtual heavy
particles is large and has curvature of the order of the

7We will see later that this problem of vacuum instability is the

real iceberg on which decoupling founders, and that our para-

dox about baryon number is only the tip of it.
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masses of the heavy particles. It is also nonanalytic when
the Higgs-field VEV goes to zero, because in this limit the
"heavy" particles become massless and the theory con-
tains infrared divergences. Thus, if we perform no 6ne-
tuning, the mass of the Higgs particle itself (the excita-
tion of the radial mode of the Higgs field) is large. Fur-
ther, because of the nonanalyticity of this potential at the
origin, we cannot fine-tune the coefficients of a finite
number of analytic functions in the tree-level potential to
cancel the large effects of the heavy particles. We will ar-
gue below that the Linde-Weinberg lower bound on the
Higgs-boson mass [6] is another example of this effect. It
can be viewed as a failure of decoupling of heavy vector
bosons from an erstwhile effective field theory for light
Higgs bosons. We believe that this fundamental obstacle
to obtaining a light Higgs boson in the presence of heavy
fermions or bosons whose mass is driven by the Higgs
VEV is the real reason for the failure of decoupling of
chiral fermions. We can obtain a model with a large fer-
mion to scalar mass ratio and a stable vacuum only by
fine-tuning many parameters.

If, in our two-dimensional model, we perform the
infinite-parameter fine-tuning required to obtain a light
Higgs boson and a stable vacuum, we still find problems.
Heavy fermions have light modes and do not decouple in
the presence of configurations where the Higgs field goes
to zero in some regions of spacetime. The effect of these
light modes is to drastically change the nonperturbative
(in N) physics of the low-energy theory. Baryon-number
violation and confinement of fractional charges, which
are both present in the model without heavy fermions,
disappear in the model with heavy fermions.

To summarize, it appears very difficult to construct a
model in which fermions that get their mass from a Yu-
kawa coupling to a scalar field are allowed to have masses
much larger than that of the mode which controls fluc-
tuations in the magnitude of the scalar. In two dimen-
sions, using the in6nite number of relevant operators at
the scalar Gaussian fixed point, it is possible to construct
such models. However, when the system is coupled to a
gauge field, there are light modes of the heavy fermions in
instanton configurations in which the magnitude of the
scalar field vanishes locally at certain points in spacetime.
These light modes completely change the dynamics of the
low-energy theory. The only way to truly decouple the
fermions is to freeze the magnitude of the scalar field
simultaneously. In this limit, instanton processes have
zero amplitude because the instanton action goes to
infinity. Thus, all paradoxes related to chiral fermion
decoupling are removed, but at the price of "throwing
the baby away with the bathwater. "

In four dimensions, it seems highly unlikely to us that
it is possible to do the fine-tuning necessary to keep the
Higgs field light in the presence of extremely massive
chiral fermions. The effective potential generated by the
heavy fermions naturally has an energy scale of the fer-
mion mass. Furthermore, it is singular at the origin of
field space and cannot be well approximated by a quartic
polynomial. Renormalizability restricts us to quartic po-
lynomials, so we cannot cancel the effect of the fermions
with local counterterms. The Higgs-boson mass would

be driven to infinity with the fermion mass. Since there
are no sensible continuum theories with fixed-length

Higgs fields in four dimensions [7], this argument sug-
gests that it will be impassible to find a four-dimensional
model with decoupled chiral fermions, and hence impos-
sible to build a lattice version of the standard model with
many of the current local algorithms. In any case, no
model built in this way can contain the 't Hooft mecha-
nism for baryon-number violation. If finely tuned models
with light Higgs bosons exist, baryon-number conserva-
tion will be enforced by confinement of instantons
through heavy-fermion zero modes, while in models with
fixed-length Higgs fields, instantons will have infinite ac-
tion. In the penultimate section of this paper we will give
a brief survey of attempts to construct lattice standard
models and point out those which may evade the
difficulties discussed in this paper.

A disturbing possibility raised by our analysis of finely
tuned models is the occurrence of important low-energy
fields which create only very heavy particle states from
the vacuum. This dramatic failure of the association be-
tween fields and experimentally accessible particle states
would make it difficult to find experimental tests of a
theory containing such phantom fields. The large-N mod-
el of Sec. III certainly contains phantom fields. One is
led to ask whether their occurrence is likely in the real
world. D'Hoker and Farhi [I] suggested the existence of
fermionic solitons in the effective action generated by
decoupled chiral fermions. These had the same quantum
numbers as the original fermions and masses of the order
of the low-energy scale. The solitons of D'Hoker and
Farhi are topological excitations in a theory with fixed-
length Higgs fields. A related phenomenon is the ex-
istence of baglike [8] nontopological solitons in models
with a Higgs field of fluctuating magnitude. In these
configurations, light states with single fermion quantum
numbers are created by deforming the Higgs field from
its VEV over a finite region of space. Since the fermion
mass is zero in the region where the Higgs field vanishes,
these states can be much lighter than fermions propaga-
ting in the vacuum if the energy required to deform the
Higgs boson is small compared to the fermion mass.

Bagger and Naculich have recently studied these bag-
like solutions in a strongly coupled large-N model [8].
They find that these states have mass comparable to the
fermion mass in the strong-coupling region. However,
they do not perform the fine-tunings necessary to keep
the Higgs-boson mass finite as the fermion mass goes to
infinity (their model is four dimensional, and it may not
be possible to do this in a consistent way). Thus, it is not
surprising that the bag picture, which depends on an easi-
ly deformable Higgs field, fails in their model. It seems

We do not really understand the relation between these two
types of soliton.

At large N, as we will see in Sec. III, single fermion bags can-
not form. Bagger and Naculich study bags containing N fer-
mions.
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plausible, however, that baglike solitons with single fer-
mion quantum numbers will exist in most models in
which it is possible to fine-tune the Higgs-boson mass to
be much smaller than the fermion mass, without destabil-
izing the vacuum. These are precisely the models in
which one might suspect the occurrence of phantom
fields. The existence of light bags in such models would
eliminate the phenomenon of phantom fields. The phan-
tom would be interpolating fields for the light bag states,
and we could ascribe the nonperturbative dynamics asso-
ciated with them to the action of these particles. Our
two-dimensional large-5 model is an explicit counterex-
ample to the conjectured existence of light bags in all
models with phantom fields. We will argue, however,
that this may be a peculiarity of the large-N limit.

We have not really studied the question of the ex-
istence of light bag states in much detail. It deserves
more attention, for it may be the key to finding a theoret-
ical upper bound on the mass of mirror fermions or other
as yet unobserved chiral representations of the standard-
model gauge group.

II. MASSLESS MODES OF MASSIVE PARTICLES

Let us then study the weakly coupled version of the
standard model introduced in the previous section, ignor-
ing questions of stability of the perturbative vacuum.
That is, we will study classical solutions to the Euclidean
equations of motion, and the fermion determinant in
these backgrounds. The crux of our argument is that the
Euclidean Dirac equation for mirror fermions (or ordi-
nary fermions for that matter) in the standard model has
such zero modes in the presence of an instanton field.
Indeed, if we set the Yukawa couplings to the Higgs field
to zero, the existence of such modes is a trivial conse-
quence of the anomaly equations for mirror baryon num-
ber and lepton number. Since the zero modes carry
baryon number and the Yukawa couplings preserve
baryon number, there is no way for the Yukawa cou-
plings to lift these modes to nonzero (Euclidean) energy.

More mathematically, near the center of the instanton,
the Higgs field goes to zero and the gauge field ap-
proaches that of the instanton solution of pure gauge
theory. The solution of the zero-eigenvalue Dirac equa-
tion in this region is

(2.1)

(2.2)

where go[ A] is the zero-mode solution of the left-handed

Weyl equation in the pure gauge instanton background,
and gz is the solution of the right-handed Weyl equation
with a source given by the product of the Higgs field and

$0[ A]. Since go[ A] is not singular at the origin, and the

Higgs field goes to zero there, no special choice of bound-
ary conditions must be made to make the full solution
normalizable at the origin. At infinity, the Higgs field

goes to a constant and the gauge field falls off exponen-
tially (in unitary gauge). The Dirac equation becomes
that for free massive fermions. There are exponentially

increasing as well as exponentially decreasing solutions of
this equation, but since we have not used up any parame-
ters making the solutions regular at the origin, we have
enough parameters left to eliminate the exponentially in-
creasing solution. Consequently, the zero modes are nor-
malizable despite the fact that asymptotically the fermion
fields behave as if they were massive.

The existence of these zero modes Ineans that ampli-
tudes which involve a change of topological charge, and
involve only particles which exist in the low-energy
theory, vanish identically. The t Hooft interaction,
which describes the effect of instantons oa the fermions
in the theory, is an operator which changes mirror
baryon number. Its form is

(2.3)

where the products run over light- and heavy-fermion
zero modes. This interaction connects the heavy sector
to the light sector, but has no matrix elements within the
light sector itself. Note that this is an exact consequence
of the full theory, but it cannot be derived from a low-
energy Lagrangian from which the mirror fields are omit-
ted. Thus, 't Hooft's calculation of baryon-number viola-
tion is radically altered in the theory with heavy mirror
particles. It no longer predicts baryon-number violation
in the light sector.

It is worth pointing out that the dramatic violation of
decoupling that we have just discussed is actually implicit
in 't Hooft's original calculation of baryon-number viola-
tion in the standard model. 't Hooft included two gen-
erations of quarks and leptons in his calculation of deute-
ron decay. The second-generation quarks and leptons
have instanton zero modes, and if there is no Cabibbo
mixing to convert these modes into modes of first-
generation fermions, the amplitude for deuteron decay
vanishes. It is proportional to sin 8c,b;», . This, by the
way, is the reason that the deuteron rather than the pro-
ton decays by the 't Hooft process. The instanton
violates first-generation baryon number by 1 unit, and
second-generation baryon number by 1 unit, preserving
their difference. Cabibbo mixing violates individual gen-
eration baryon numbers by —,', preserving their sum. The
final change in baryon number in a process in which no
second-generation particles are involved is 2 units. In a
three-generation model, the amplitude is further
suppressed by mixing angles between the first and third
generations, and the total change in baryon number in
the minimal instanton process is 3.

The zero modes of the heavy fields have consequences
even within the sector of zero topological charge, when
we restrict attention to Green's functions containing only
the fields of light particles. Indeed, the heavy-fermion
determinant in the presence of an instanton —anti-
instanton pair factors into the product of the deter-
minants in each individual configuration when the sepa-
ration between the pair is large. Since the instanton and
anti-instanton determinants vanish, the determinant in
the pair configuration must go to zero as the separation
goes to infinity. %'e have noted above that the zero-mode
wave functions die exponentially. The pair determinant
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is thus an exponentially vanishing function of separation.
In terms of the statistical mechanics of the dilute instan-
ton gas, this is equivalent to an attractive linear confining
potential between instantons and anti-instantons:

ZI+I —fd Rid Riexp( N—m+~RI —R-~), (& 4)

where N is the number of heavy-fermion zero modes.
Again we see that the dynamics of the low-energy gauge
fields is drastically affected by the virtual modes of the
heavy mirror fermions.

Is there any kind of effective low-energy field-theoretic
description of the system we have studied at energies of
order 1 GeV? Certainly the conventional description, in
which only fields for the light particles are included, is
wrong. Recently a class of models was described in
which the low-energy effective theory had to be supple-
mented by a number of discrete global variables [9].'
The resulting effective theory violates the clustering ax-
iom. Is a similar description of decoupled mirror fer-
mions available? We suspect that the answer is no. In
the nonperturbative regime, the number of heavy-fermion
field modes which are important to the low-lying dynam-
ics depends crucially on the configuration of low-energy
boson fields. Since the separation between heavy- and
light-fermion degrees of freedom is light-field dependent,
one should not expect a local effective Lagrangian, unless
we keep the fields of the heavy particles in the low-energy
effective Lagrangian. There is no way that a local
effective Lagrangian for the light fields can produce a
linear confining force between instantons. "

If the heavy-fermion masses could really be taken to
infinity, we would have a somewhat paradoxical situation
in which the low-energy theory contained fields which
created no particle states from the vacuum. A less radi-
cal description is suggested by the work of Refs. [1,8]:
soliton states of the combined heavy-fermion-Higgs-
boson system survive at low energy even when the ele-
mentary ferrnion masses go to infinity. These solitons
have the quantum numbers of the elementary fermions
and masses of the order of the vacuum expectation value
of the Higgs field. D'Hoker and Farhi were not able to
firmly establish the existence of such solitons because

' Note that the irrational couplings which were the focus of
[9] are not necessary to the existence of these global variables.
They exist in many perfectly renormalizable four-dimensional
field theories.

This situation bears a certain resemblance to that which
occurs in theories which have large numbers of degenerate,
physically inequivalent vacuum states. In such theories, it is
possible for a particle that is massive at a generic point in the
vacuum manifold to become massless at certain special points.
The effective action, obtained by integrating out this massive
particle at a generic point, becomes singular and nonlocal at the
special points. The new observation that we are making here is
that these nonlocal effects are also important for field
configurations which visit special points in the field manifold in
a local region of spacetime.

they dealt with a theory of fixed-length Higgs fields and
relied on the topology of the compact Higgs manifold as
well as on hypothetical short-distance corrections to the
effective action that could stabilize the soliton
configurations of the nonlinear model. However, the ex-
istence of such solitons is also suggested by early work on
baglike nontopological solitons [8]. In these references,
the crucial ingredient is the variable radius of the Higgs
field. When a fermion gets its mass from a Yukawa cou-
pling, a single fermion state can exist in which the value
of the Higgs field vanishes near the location of the fer-
mion. Fermion modes of low energy exist in which the
elementary ferrnion wave function is trapped in the vicin-
ity of this zero of the Higgs field, avoiding the region of
space where the fermion mass is large. If the energy re-
quired to locally deform the value of the Higgs field away
from its vacuum value is much less than the elementary
fermion mass, a light-soliton state with elementary fer-
mion quantum numbers is formed. It is plausible that
such states exist in the present model, though we have
not investigated the question in detail. If they do, the
necessity of keeping the heavy-fermion fields in the low
energy Lagrangian would no longer be paradoxical or
bizarre. They would be necessary to a description of the
light-soliton states.

We should point out that in the model which we have
described in this section there is no really tight argument
that a purely low-energy description of instanton process-
es should exist. In a conventional theory with a heavy
sector, an effective local theory of the light particles is
supposed to describe low-energy physics up to the accu-
racy (M„„,/M„«„„) for all positive p. In our model

M&;sh, /Mh„„„-e/g, where e is the gauge coupling and g
is the Yukawa coupling of the heavy fermions. g is re-
quired to be of order 1, so these effects are small only
when e is very small. On the other hand, the 't Hooft

—Sn /eprocess is pararnetrically of order e ' . Thus, it is
smaller than effects of the heavy particles, and we do not
have the right to insist that it is described correctly in
terms of a low-energy Lagrangian. (On the other hand,
in trying to construct a lattice standard model, we really
want the lattice fermion doubles to go off to infinite ener-
gy, leaving no trace behind. In this case it is crucial that
there be a low-energy Lagrangian which correctly de-
scribes the symmetries of the model. ) We do not believe
that this criticism of our analysis is truly substantive.
The fermion zero modes and almost zero modes that are
crucial to us exist for all values of the Yukawa coupling,
and for all configurations in the functional integral that
have widely separated lumps of topological charge.
There is no indication that anything qualitatively new
happens when the Yukawa coupling begins to leave the
perturbative regime, other than the fact that the
confining force between instantan and anti-instantan gets
stronger.

We are, however, deeply disturbed by the potential in-
stabilities of the perturbative vacuum in this model.
Thus, in order to confirm and enhance our understanding
of the picture of fermion decoupling that we have
presented here, we turn in the next sectian to same two-
dimensional models.
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III. TWO-DIMENSIONAL MODELS

Our analysis of the weakly coupled mirror standard
model suggests that the failure of decoupling of mirror
fermions is related to the existence of configurations in
which the Higgs field is equal to zero (or is at least very
small) at some point in spacetime. Indeed, the 't Hooft-
constrained instanton solution has a vanishing Higgs field
at the core of the instanton, and the mechanism for con-
structing light fermionic bag states also depends on zeros
of the Higgs field. If we restrict attention to
configurations in which the magnitude of the Higgs field
is everywhere bounded from below by a positive constant
pl p it is probably possible to use the methods of Witten
and Vafa [10] to prove that the effective action obtained
by integrating over heavy fermions contains nonlocality
only over some finite scale of order I/gmo. To confirm

this intuition, we will study a two-dimensional model
with a fixed magnitude Higgs field.

The model that we will study has a U(1) gauge symme-
try. It contains two massless left-moving fermions P;,
with gauge charges q, , and a massless right mover g with
charge q. The charges satisfy the anomaly cancellation
condition q =q, +q2. We will also include gauge singlet
partners for each of these particles, in order to describe
them in terms of two-component Dirac fields. We use the
letter 4' to denote the triplet of light Dirac fields. In ad-
dition, we have mirror fermions P; and P which are right
movers (left movers) and carry charge equal to that of
their mirror partners. The mirror fermions also have
singlet partners, and we will include Yukawa couplings
between mirror fermions and Higgs fields which provide
Dirac masses for the mirror fermions in the presence of a
Higgs-field vacuum expectation value. The triplet of
heavy Dirac fields is denoted P. The Lagrangian is

F„„+~B„iA—„Q~ AV—(gt, g)+Viyi' d„q—1+ey3
A„%

+P iy" 8„—q
1 —ey3 A„+g(Pt)»

1 —ey,
+g((t )»

1+ey3 P. (3.1)

F„„+(B„O—A„)4e'

+%iy" 8„—q
1+ey3

A„%
2

Here q and e are 3X3 matrices: q =diag(qi, q2, q) and
e=di ag( e„e2, e3)=diag(1, 1, —1). The gauge coupling e

and the Yukawa coupling g both have dimensions of
mass, and we take g &)e. The coeScient A, in the Higgs
potential has dimensions of mass squared and determines
the spacetime scale of fluctuations of the radial mode of
the Higgs field. We will first take this scale to be much
larger than the Yukawa coupling so that this mode does
not participate in the physics at any scale of interest.
Thus, the radial mode of the Higgs field is frozen: P =e' .
Instanton configurations of the gauge-Higgs system will
then have infinite action.

In this limit it is convenient to transform the heavy-
fermion fields by multiplying them by functions of the
Higgs fields in such a way as to make the~ gauge invari-
ant. Let P=exp[ —iq[(1 ey3)/2]8]P—be the gauge-
transformed field; then the Lagrangian becomes

the model evidently reduces to a current-current coupling
between a massive fermion and a massless Goldstone bo-
son, a renormalizable Lagrangian. The coupling to the
gauge boson is super-renormalizable.

Let us now imagine doing a renormalization-group
analysis of the theory, integrating out degrees of freedom
above some cutoff scale A which is much larger than e
and much smaller than the fermion mass. In this integra-
tion, the gauge coupling can be treated perturbatively
since it is super-renormalizable and the fluctuating de-
grees of freedom have an infrared cutoff. The result of
this integration is an effective field theory for the light bo-
sonic degrees of freedom P and A„and the massless fer-
mions. The effective action depends only on the gauge-
invariant field 8„=8„8—A„, which couples to a chiral
current of the heavy fermions. We can classify the possi-
ble terms in this effective action according to their dimen-
sion. The only term of dimension 2 is quadratic in B„.
Its coefBcient will be logarithmically divergent in the lim-
it m —+ oo. A11 other terms in the action have dimen-
sion greater than 2 and their coeScients vanish in the
heavy-fermion limit. To lowest order in e, the effective
action is obtained from that of the field 0 in the theory,

+P iy" 8„—q
1 —ey3

2
(A„—BO) +g P .

(3.2)

Note that the mirror fermions now have a constant mass
term. In the limit at which the gauge coupling becomes
very weak (i.e., is much smaller than the fermion mass)

' In fact, in the lowest order in the loop expansion this diver-

gence cancels when the contributions of all heavy-fermion loops
are summed. It is proportional to the anomaly. This cancella-

tion does not persist in higher orders.
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(1+F3) m„
%iy" 8„—qB„O 4+ (8„8)

2 2e
(3.3)

B„„+(8„4; q—;B„)+a(B„)4e'

by the substitution B„O~B„. Higher-order corrections
in e vanish in the limit of large mass.

Although the above analysis is motivated by an exam-
ination of Feynman diagrams, we believe that it is valid
nonperturbatively. When e=O, the model from which
we obtain the effective action is a version of the two-
species Thirring model with one of the fermions made ex-
tremely massive. There seems to be no place for unex-
pected surprises. If this is the case, the decoupling of
mirror fermions seems to work in this model. Their effect
on the low-energy effective action is simply to introduce
an infinite renormalization of the gauge-boson mass term
B„. If we are willing to tune parameters to ensure that
the gauge boson remains light, then we obtain a chiral
gauge theory in the limit m —+ 00.

Not surprisingly, in this theory with fixed-length Higgs
fields, the D'Hoker-Farhi analysis of the baryon-number
current goes through. If we couple an external gauge
field a„ to the nonanomalous sum of ordinary and mirror
baryon number, it is easy to verify that in the low-energy
theory a„couples to Jg —(q&+q2 —

q )e""(8„8 A„). —
However, we can also verify that in this model the result
of this low-energy identification is to rule out the t Hooft
process in low-energy physics. As in Sec. II, the
D'Hoker-Farhi identification of the divergence of the
baryon-number current with the divergence of a current
constructed from gauge-invariant, massive fields, suggests
that global baryon number is conserved. In the present
model the low-energy theory is exactly soluble (when the
massless fermions are bosonized the Lagrangian becomes
quadratic), and we can verify this conjecture explicitly.
The simplest way to see this is to integrate out the mas-
sive vectors, to obtain a baryon-number-conserving ac-
tion for the massless fermions:

+ g q, e, 4,e""B„ (3.6)

+Trln iy" 8„—qA„
1+ey3

+Trln iy" 8„—qA„
1 —ey3

2

where 4;=y; —q;0. Note that we have had to use the
anomaly cancellation condition to show that 0 does not
appear in this final form of the Lagrangian. The fixed-
length Higgs model described above thus realizes the goal
that one would like to achieve in constructing the stan-
dard model on the lattice. However, it does so at the ex-
pense of eliminating the 't Hooft process from low-energy
physics. This is perfectly consistent within the frame-
work of the low-energy effective Lagrangian, where the 't
Hooft amplitudes clearly vanish in the limit at which the
mass of the Higgs boson goes to infinity. ' In four di-
mensions we do not know of a consistent version of the
standard model with an arbitrarily heavy Higgs particle,
so the above scenario cannot be achieved.

In order to study a two-dimensional model with vari-
able length Higgs bosons in a reliable manner, we intro-
duce N copies of both the low-energy and mirror fer-
mions, and take the limit N ~ 00 with e N =E,
g N =6, and A,N =~ fixed. In this limit, quantum Auc-
tuations of the boson fields are suppressed, while the ratio
of tree-level gauge boson to fermion masses is E/6, and
can be as small as we like.

To leading order in N, the theory is solved by finding
stationary points of the effective action:

%i y"d„V+Cf dx dy J"(x )

g„,+B„B„/My

V

(3.4)

r

1 —ey3 1+ey3
Gp tlj Gpg

2 2

(3.7)

where J„=Vy„q[(1+ey3)/2]%. Although this action is
nonlocal on the scale of the vector-boson Compton wave-
length, it contains no infrared divergences, and no viola-
tion of baryon number.

For completeness, we record the bosonized form of the
low-energy action before the vector bosons are integrated
out. Each low-energy Dirac fermion is realized in terms
of a scalar field whose gradient is the Uector current of the
fermions. We call the scalar corresponding to f, , y;.
The bare Lagrangian is

62
v„,.(y) = (3.8)

The large-N vacuum state is determined by stationary
points of this effective action with vanishing gauge fields
and constant Higgs fields. The heavy-fermion contribu-
tion to the effective potential for the Higgs field dom-
inates the classical term for 6 )&~. It has the form

F„.+(a„q;—q; A„) +(a„e—A

+ gq;e;g;e" F„„. (3.5)

After integrating out the heavy fields and rewriting
things in terms of the gauge-invariant massive vector-
boson field 8„,this becomes

~3In four-dimensional non-Abelian gauge theories, the validity
of this claim is not obvious, although it is certain that the con-
ventional instanton action becomes infinite with the Higgs-
boson mass. It is hard to discuss the question rigorously, since
the entire theory becomes strongly coupled as the Higgs-boson
mass gets large, and probably the limiting theory does not exist
P).



4024 T. BANKS AND A. DABHOLKAR 46

V(x)

1000 '"

800

600

400

200

—200

FIG. 1. The one-loop fermion contribution to the effective potential in two spacetime dimensions as a function of y= P .

This potential is shown in Fig. 1. It has the typical spon-
taneous breakdown form, and is bounded from below. It
determines the minimum of the Higgs field to lie at
~P~ =e, and the Higgs-boson mass, determined as the
curvature of the potential at its minimum, is of order G .
Although this seems to be a consistent theory, it is not
what we want if we intend to decouple the heavy fer-
mions while keeping the Higgs boson light. In that case
we expect to keep the Higgs particle at low mass, and we

may attempt to do this by fine-tuning the coefficients of
relevant operators in the low-energy theory. In two di-
mensions there are an infinite number of relevant opera-
tors for a scalar field, although conventional renormaliza-
tion theory leads us to expect only a quadratic term in
this leading X approximation. In order to keep the
minimum at its classical value / = 1 and keep the Higgs-
boson mass of order &a, we need to tune at least two pa-
rameters. The quartic and quadratic couplings of the
classical Lagrangian suffice, but the resulting potential
has a negative quartic coupling and is unbounded from

below. The addition of a
~ P ~

coupling allows us to keep
the potential bounded. There is then one free parameter.
For all values of this parameter, the resulting potential
has a deeper minimum either much closer to or much
further from the origin than /= 1. For a ratio of 100 be-
tween the fermion and Higgs-boson masses, the potential
typically looks like Fig. 2. The perturbative vacuum with
small Higgs-boson mass that we have constructed by
fine-tuning three parameters is metastable and rather
short lived. One must add higher-order terms to get sen-
sible results. After a while it dawned on us that what we
were doing could best be described as follows: for any
value of G lit ftnd a polynomial approximation P(P) to

~P~ ln(~P~ ) which approximates this function with accura
cy Ir/G in a range 0 ~P~ ~go with Po&1. Arrange fur
ther that Vt„($)—(G /4n)P(P) be positive and mono

tonically increasing for P & (()c. Then add (G /4' )P(P—)
to the classical potential. The resulting effective potential
looks just like the classical potential for P (Pc and shoots
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FIG. 2. The effective potential of Fig. 1 with a sixth-order polynomial added to fine-tune the Higgs-boson mass. The figure is

scaled by the square of the Yukawa coupling so that any finite curvature implies a mass that goes to infinity.
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up dramatically beyond this point. With sufficient fine-

tuning we can even make Po very large. As the fermion
mass gets larger we need to tune more and more parame-
ters to obtain a low-energy effective potential that agrees
with that in a theory where the fermions are absent. A
similar situation would be found if we tried to use a basis
of analytic functions other than polynomials' to con-
struct our local counterterms. We would still need a
number of parameters which grew with the fermion mass
to construct a satisfactory theory with a light Higgs field
and a stable vacuum.

The reason for the difficulty we had in obtaining a sa-
tisfactory low-energy potential is not hard to find. The
fermion contribution to the potential is not analytic at
the origin. This is a consequence of infrared divergences
which occur because the fermion is massless when the
Higgs field vanishes. If the potential had been an entire
function, we could have canceled it exactly with a se-
quence of allowed counterterms. This difficulty is famil-
iar from four dimensions, and was the origin of the insta-
bility of the perturbative vacuum in our superweakly cou-
pled standard model with heavy fermions and light Higgs
bosons. The two-dimensional example shows that the
problem is more general than the unboundedness of the
fermion-induced effective potential, for in two dimensions
that object is perfectly well behaved. Rather, it is the at-
tempt to make the scalar field, whose VEV was responsi-
ble for the fermion mass, much lighter than the fermion
itself, which was the cause of the problem. In this way of
saying things, it becomes clear that these difficulties are
not restricted to the decoupling of fermions. Indeed, the
Linde-Weinberg [6] lower bound on the Higgs-boson
mass may be viewed as an example of the same
phenomenon. Looked at from the point of view of an
effective field theory for the conjectural light Higgs bo-
son, the two problems are almost identical. It is only be-
cause we have always viewed this problem from the van-
tage point of the heavy scale (the gauge-boson masses)
that it has not caused the same confusion. The statement
that the standard-model vacuum is not stable unless the
Higgs-boson mass is greater than a certain finite fraction
of the gauge-boson mass is equivalent to the statement
that one cannot decouple the heavy gauge boson from an
effective field theory for the light Higgs boson, despite the
fact that the ratio of their masses at tree level appears ar-
bitrary. Again, the problem is caused by the size and
nonanalyticity of the effective Higgs potential induced by
the heavy particles.

It is also amusing to note that the local terms in the
effective Lagrangian which describe the failure of decou-
pling of chiral fermions in perturbation theory (and in
particular, the Peskin-Takeuchi S parameter), are also
nonanalytic at vanishing Higgs field. When written in a
gauge-invariant manner, they have the typical Higgs
dependence'

We might for example use operators of fixed dimension at
the Gaussian fixed point, i.e., sines and cosines.

T. B. thanks L. Randall for explaining this point to him.

H' . H"
(3.9)

This suggests that they may also be viewed as coming
from infrared divergences.

Suppose now that we have performed the massive fine-

tuning described above and constructed a theory with a
stable vacuum and a Higgs boson to heavy-fermion mass
ratio which is very small. To all orders in the 1/N ex-
pansion, the theory will conserve the baryon number of
the light fields. To investigate whether this continues to
be true nonperturbatively in N we look for solutions of
the equations of motion of the large-N effective action
which carry nonzero topological charge. There are none.
In any configuration of gauge and Higgs fields with
nonzero topological charge, the heavy fermions will have
normalizable zero modes. The fermion determinant van-
ishes, and the effective action of instantons is infinite.
Note that the polynomial potential P(P) cannot change
this conclusion. Like the fermion mass, it is finite but
large. It cannot cancel an infinity coming from the zero
mode.

We would now like to exhibit fermion zero modes in
the instanton background in a more explicit manner. To
this end, we study a single charged Dirac field in the in-
stanton background, with a Lagrangian

Py" i r}& eA„—1+$3
2

(3.10)

The instanton configuration with winding number n is
given by

(3.11)

At the core of the instanton, A(r)-0 and f(r)-r~"',
whereas at infinity A (r ) —+n Ir and f(r ) —const. Here
we have chosen to work in Landau gauge. The Dirac
equation in this background is similar to the one analyzed
in [11]for a fermion-vortex system where zero modes of
definite chirality were guaranteed by an index theorem
[12]. In our problem the Higgs coupling is slightly
different, and there are no chiral zero modes. We will,
therefore, explicitly solve the equation to find n normaliz-
able zero modes in this sector. Substituting

T

P pexp + A r

the Dirac equation becomes

exp(i8) +— q
8 l

Br r BO

f(r )exp + f A (r ) exp(+—in 0)p,

(3.12)
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l
exp( —i 8 ) —— pBr r BO

f—(r )exp —J A (r ) exp( in—0)q .

To separate the angular dependence we write
p=e ™~p(r) and q=e'" "q (r) and obtain the
coupled first-order equations

local counterterms cannot mimic these effects. The ap-
pearance of a confining force between instantons and the
corresponding disappearance of the confining force be-
tween fractional charges will not be affected by the in-
clusion of local gauge-invariant terms in the bosonic ac-
tion.

IV. APPLICATIONS TO LATTICE GAUGE THEORIES

m
p = f(r—)exp A(r) qBr r

(3.13)
n —m —1

q = f(r—)exp —J A(r) p

We can turn these into a single second-order differential
equation for either p or q, which will have two linearly
independent solutions. For large r, the fermion is mas-
sive, so apart from powers of r the two solutions go as
e +—"". Only e "' is acceptable as a normalizable solution.

At the origin, from (3.13) and using the asymptotics
f(r)-r "' and exp[ —f A(r)]-const, we see that the

two solutions go as

and

m l,n ~+m+1

(3.14)

rlnl+n —m rn —m —I
pm r 9'm r

In general, the solution that is well behaved at infinity
will be an arbitrary linear combination of these two solu-
tions, which should also be well behaved at the origin.
Thus, from (3.14) we see that, for positive n, there are n

normalizable zero-energy solutions for 0 ~ m ~ n —1. For
negative n, the normalizable zero modes come from the
Dirac equation for g. (Note that in Euclidean space, 1(t

and 1( are not related by complex conjugation. ) As a
consequence, the 't Hooft effective action will violate the
fermion-number symmetry of these heavy fermions, as re-
quired by the anomaly, leading to the physical effects de-
scribed above.

In particular, as noted above, the large-N effective
action will not have finite action instanton solutions
with nonzero topological charge. If we consider
configurations of zero topological charge, which consist
of two widely separated lumps of charge of opposite sign,
then, as in four dimensions, the fermion determinant will

contribute an effective confining force between instantons
and anti-instantons. The confinement of instantons leads
to another dramatic effect, which can be studied without
the aid of light chiral fermions. The purely bosonic
Abelian Higgs model exhibits confinement of external
charges which are fractions of the charge on the Higgs
field. The mechanism for confinement is a dilute gas of
instantons. We now see that the "mere" introduction of
very heavy chiral fermions into the theory completely
eliminates this nonperturbative and nonlocal effect. The
heavy chiral fermions do not decouple as their mass goes
to infinity. In this context it is even more apparent that

The results that we have obtained for continuum mod-
els suggest analogous problems in any lattice gauge
theory which attempts to decouple lattice fermion dou-
bles by using the device of a Wilson- Yukawa coupling to
a Higgs field. This includes all of the models studied in
[13].

Strictly speaking, our analysis applies only in the spon-
taneously broken phase of the theory. Lattice analysis
had already led to the conclusion that the Wilson-
Yukawa method does not work in this phase. Much
analysis has been devoted to the symmetric phase of these
models. When the Higgs field in the symmetric phase is
allowed to have a mass of the order of the cutoff, we can
achieve a symmetric phase in which the absolute value of
the Higgs field is not small. Symmetry is achieved by
making local quantum singlet states by superposing states
with the same large magnitude of the Higgs field but
different orientations in group space. There can be no
analogue of this phase for a continuum Higgs field. The
Higgs bilinear which appears in the Wilson- Yukawa cou-
pling is not small in such a phase, and this term in the ac-
tion can provide a mass to fermion doubles. However, all
attempts to utilize this mechanism to construct chiral
gauge theories have failed. The fermions always appear
in vector representations of the gauge group [14].

With a bit of hindsight and a bit of effective field

theory, we can understand why this failure was inevit-
able. As usual in theories with Wilson terms one must
perform fine-tuning in order to make some of the fer-
mions in the theory massless. This means that the
erstwhile chiral gauge theory is part of a continuum of
theories in which the masses of the massless fermions are
nonzero but very small on the scale of the lattice spacing.
Now consider an effective field theory for these light, but
not exactly massless, fermions. It must be a gauge theory
with no spontaneous breakdown, for we are in the sym-
metric phase. But it must also contain mass terms for the
light fermions. This means that the light fermions can
have gauge-invariant masses, and are thus in vector rep-
resentations of the gauge group.

The only lattice gauge theories which can avoid the
problems we have described are those which do not use a
Higgs field to decouple the fermion doubles. These fall
into two categories. The approach of Rossi and co-
workers [15] puts a gauge-fixed theory on the lattice.
Non-gauge-invariant Wilson terms are added to decouple
the doubles, as well as a host of non-gauge-invariant
counterterms whose coe%cients are supposed to be fine-
tuned to achieve Becchi-Rouet-Stora-Tyutin (BRST) in-
variance in the continuum. As a consequence of the ex-
plicit choice of gauge, the theory is not equivalent to a
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gauge-invariant lattice theory with a Higgs field. ' In
particular, Dugan and Randall [16] have shown that the
fermion doublers do not lead to a contribution to the
Peskin-Takeuchi S parameter in this model. When ap-
plied to the lattice standard model, this approach appears
to contain an unwanted baryon-number symmetry that
the continuum model does not have. Maiani has argued
that the current of this symmetry may not be BRST in-
variant in the continuum limit. It may indeed be correct
that this is the meaning of the Dugan-Manohar calcula-
tion in the context of the model of Rossi and co-workers
(we have argued that it has quite a difFerent meaning in
the Swift-Smit model). Nonetheless, we remain disturbed
by the fact that within this model we cannot write down
a lattice Green's function which violates baryon number.
In order for Maiani's argument to completely resolve the
baryon-number paradox in this model, we must demon-
strate that the bothersome U(1) symmetry is spontane-
ously broken on the lattice. Maiani's argument could
then be used to show that the corresponding Goldstone
boson was an unphysical gauge excitation. It seems that
a lot of work must be done to prove that the approach of
Rossi and co-workers can really reproduce the continu-
um standard model. In applications to strongly coupled
chiral gauge theories such as the SU(5) model, there does
not seem to be a similar problem with the approach of
Rossi and co-workers.

We note also that serious questions about the treat-
ment of Gribov ambiguities have been raised in connec-
tion with this approach. In addition Parisi [17]has made
the very interesting suggestion that conventional
renormalization-group arguments about the relevance of
operators which break a gauge symmetry may fail in the
presence of gauge-field configurations belonging to non-
trivial fiber bundles. The corresponding vector potentials
are singular somewhere in spacetime (perhaps at infinity),
and naive power counting arguments may not be applic-
able. %e do not know whether either of these two poten-
tial problems with the approach of Rossi and co-workers
is real.

The only model of which we are aware that escapes
completely from the problems that we have described is
the staggered fermion model [18]. This model has no ex-
tra fermion degrees of freedom on the lattice; the doubled
modes are identified with known continuum fermions.
The only consistent way to do this is to break color SU(3)
symmetry on the lattice, or equivalently to introduce
colored Higgs fields. This we consider a point in the
model's favor, for it destroys the baryon-number syrnrne-
try which was the source of all of our worries. It remains
to be seen whether enough tuning of parameters can be

' A formal argument seems to show that the equivalence is
reinstated in the continuum limit, but this argument neglects
wildly fluctuating lattice Higgs modes. This subtle point was
explained in great detail by Smit, Golterman, Petcher, Neu-
berger, Maiani, and Testa in informal discussions at the Rome
conference on chiral lattice gauge theories.

done in this model to truly reproduce the standard mod-
el, but we see no obvious reason for it to fail.

Finally, we should mention the model of Eichten and
Preskill [19]. Recently Golterman and Petcher [20] have
suggested that this suffers from the same problems as the
Smit-Swift models, despite its careful attempt to break all
unwanted symmetries by adding rnultifermion terms to
the lattice Lagrangian. %e do not understand the phys-
ics of either the original model or the recent criticism of
it very well. If the criticism is incorrect, the Eichten-
Preskill model may also provide a convenient method for
simulating the standard model.

V. CONCLUSIONS

We have demonstrated fairly conclusively that the su-

perweakly coupled mirror standard model introduced in
Sec. I has a low-energy sector whose nonperturbative
physics is not described correctly by a local Lagrangian
for the fields of the light particles of the tree-level
analysis. This result is confirmed in the two-dimensional
model with soft Higgs fields. There we were able to make
the mass ratio between the heavy fermions and gauge bo-
sons arbitrarily large by letting the number of fermion
multiplets tend to infinity. The zero modes of massive
fermions in instanton fields showed up directly as a con-
tribution to the large-N effective action. We also studied
the limit of rigid Higgs fields in the two-dimensional
model, and showed that although the heavy-fermion
fields in this model truly decoupled, the low-energy
theory had no baryon-number violation.

It seems to us that phenomena analogous to those we
have described would aNict any lattice version of the
standard model with an exactly conserved baryon-
number current, if one succeeded in eliminating all un

conuentional particles from the continuum spectrum. By
analogy with the model studied here, one would suspect
that no good continuum limit with such a spectrum could
exist, and if a limit were to exist it would certainly not be
the standard model. Explicit baryon-number violation
must be incorporated into lattice versions of the standard
model if they are to converge to the right answer. We
caution that it is by no means certain that this necessary
condition is a sufficient one. If the conjectures that have
been made about Lee-%ick, SLAC, or D'Hoker-Farhi
solitons are correct, then one might expect light states
with fermion quantum numbers to exist in almost any
theory in which ferrnion masses come solely from the
Higgs mechanism. In the limit of large Yukawa cou-
pling, the masses of these states are determined primarily
by the dynamics of the Higgs field. Only by sending the
renormalized Higgs mass to infinity can we expect to
decouple these soliton states. In the two-dimensional
model we found that baryon-number violation also van-
ishes in this limit, in accord with the general argument
that in this limit the anomaly is the divergence of a
gauge-invariant massive operator.

In four dimensions, it seems unlikely that there will be
a sensible continuum limit for any spontaneously broken
non-Abelian gauge theory with an infinite Higgs mass.
Thus, lattice models with Wilson-Yukawa terms cannot
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reproduce the spectrum of the standard model. In the
previous section we described the class of extant lattice
models which may evade this conclusion. Our results
also suggest the extra fermions which transform chirally
under the standard-model gauge group will be found at
scales not too far removed from the weak scale, if they
exist at all. The question of the chiral nature of the weak
interactions should be settled once and for all by the next
generation of accelerators.
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