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Yukawa-coupling-constant unification together with the known fermion masses is used to constrain
SO(10) models. We consider the case of one (heavy) generation, with the tree-level relation mb =m „cal-
culating the limits on the intermediate scales due to the known limits on fermion masses. This analysis
extends previous analyses which addressed only the simplest symmetry-breaking schemes. In the case
where the low-energy model is the standard model with one Higgs doublet, there are very strong con-
straints due to the known limits on the top-quark mass and the ~-neutrino mass. The two-Higgs-doublet
case is less constrained, though we can make progress in constraining this model also. We identify those

parameters to which the viability of the model is most sensitive. We also discuss the "triviality" bounds

on I, obtained from the analysis of the Yukawa renormalization-group equations. Finally we address

the role of a speculative constraint on the ~-neutrino mass, arising from the cosmological implications of
anomalous 8 +2 violation in the early Universe.

PACS number(s): 12.10.Dm, 12.15.Ff

I. INTRODUCTION

Two major factors have led to a recent revival of in-
terest in the renormalization-group calculations associat-
ed with grand-unified gauge theories. The first factor is
the increasing precision of coupling-constant measure-
ments at the Z resonance [1]. New calculations of gauge
coupling unification have reduced the viability of some
unification schemes and perhaps enhanced the attractive-
ness of others [2,3]. The second factor is the increasing
lower bound on the top-quark mass from direct searches
[4]. Yukawa-coupling-constant unification makes a
heavy top quark difficult to accept in some models, and
calculations have shown how an upper bound on m,
lower than those from the so-called "triviality bound" or
from the p-parameter constraint can arise in SO(10) mod-
els with the simplest viable symmetry-breaking scheme
[S,6].

The purpose of this paper is to analyze the unificatior.
of Yukawa couplings in the SO(10) theory for symmetry-
breaking schemes more general than those previously
considered. In particular, we separate the scales of
SU(2)it breaking and U(1)t breaking. Using the known

3R

bounds on the mass of the top quark and the mass of the
~ neutrino, we are able to eliminate large regions of pa-
rameter space for the model. The original motivation for
this work was to understand in detail the consequences of
a certain speculative neutrino mass bound discussed pre-
viously [7,8]. Thus, we devote a section to a discussion of
this bound and its manifestation in SO(10). We assume
the tree-level relation mb=m, corresponding to a Yu-
kawa coupling of the fermion multiplet to the scalar 10 of
SO(10). This is not the most general relation, but the
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complications are great enough that we leave the general
case for later work. In particular, the analysis of the
scalar-126 Yukawa case, with the general tree-level rela-

tion, is in progress [9]. Once we have a quantitative un-

derstanding of these cases we hope to perform a similar
analysis for the generic mixed case, with the machinery
described herein.

For definiteness we have settled on a particular set of
Higgs representations. The analysis here is easily extend-
ed to others, but we have chosen to consider only those
representations introduced below. However, the set of
"small" useful representations is not that large, and fu-
ture work can reproduce our renormalization-group cal-
culations for this handful of interesting cases if it be-
comes crucial to the analysis of SO(10).

II. SYMMETRY-BREAKING SCHEMES

In this section we review the Higgs representations
that we will consider, the symmetry-breaking schemes
which they will allow, the branching rules for these repre-
sentations with respect to the various chains of unbroken
subgroups, which give the content of the Higgs represen-
tations in the intermediate theories, and the Yukawa cou-
plings of these Higgs representations. None of this ma-
terial is new [10].

Recall that each generation of fermions in the SO(10)
theory resides in a spinorial 16 of SO(10), with the re-
quisite addition of a right-handed neutrino. Therefore,
possible Yukawa-coupled Higgs representations must lie

1 sym 0asym 126. The 120 is antisym-
metric and thus contributes only to intergenerational
mixing. Since we will be concerned here only with the
one-generation model (the top generation), we will ignore
the Yukawa couplings of the 120. Thus there are two in-

dependent Yukawa couplings at the SO(10) unification
scale.

The phenomenologically viable breaking of SO(10) is to
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the maximal subalgebra SU(2) XSU(2) XSU(4), one SU(2)
factor being identified as the weak isospin group, the oth-
er being right isospin, breaking to a U(1) of I3„,the SU(4)
breaks to SU(3} „,XU(1)s L [11]. The case of inter-
mediate SU(5} symmetry is ruled out by the nonobserva-
tion of proton decay combined with current measure-
ments of sin 0~. We use the notation

Gq2~ =SU(2 }~X SU(2 )„XSU(4), ,

G22)3 =SU(2)L XSU(2)„XU(1)a L XSU(3), ,

G2,~=SU(2)L XU(1)I XSU(4}, ,

Gqii3=SU(2)L XU(1)i XU(1)s L XSU(3), ,

G~,3=SU(2)L XU(1}rXSU(3), .

There are two symmetry-breaking chains:

Mz
0

(2.1)

Gzz4

62z4

M

- Gz2i3

= Gz&I3

Mz+

62113

=G2

M„
0

(2.2)

TABLE I. Higgs representations present at each intermedi-
ate stage of symmetry breaking. The top row shows the SO(10)
representation from which they descend. For the G»» theory
the Abelian quantum numbers are listed ( -

)& L & . For the
3R

theories with SU(2)z symmetry and with D parity broken at the
SO(10) scale, the right-handed triplet representations are omit-
ted from the spectrum. Notice that the 54 does not appear in
the Table since its function is solely to break SO(10), and after
accomplishing this it disappears from the spectrum since, by hy-
pothesis, it has a mass on the order of this breaking scale.

These chains can be induced by the Higgs representations
10, 45, 54, 126, and 210. Listed in Table I are the
branchings of these representations with respect to the
various subgroups. The minimal fine-tuning and extend-
ed survival hypotheses [12] have been invoked in order to
eliminate many Higgs representations in the lower-energy
effective theories. Simply stated, scalars which do not
need to be light are not, and this property is arguably nat-
ural since it involves a minimal fine-tuning of the scalar
potential [13].

In each of the two symmetry-breaking chains, the 54
breaks SO(10) to Gzz~. In the first chain, the (1,1,15)
breaks SU(4), down to SU(3), X U(1)a L, then the
(1,3,1)o breaks SU(2)a to U(1)i . Finally the (1,1)2+&

breaks both I3+ and 8 —L, leaving unbroken the linear
combination which is hypercharge; it is at this point that

lepton number is spontaneously broken, and the right-
handed neutrino acquires a Majorana mass and is subse-
quently integrated out. In the second chain, the (1,3,1)
first breaks SU(2)z', then the (1,15) breaks SU(4), . Again
the (1,1)2 +, breaks both I3„and8 L—to hypercharge.

By choosing a representation other than the 54 to
break SO(10), it is possible to also break the D-parity
symmetry, which forces the SU(2}L and SU(2)z coupling
constants to be the same down to the SU(2)„-breaking
scale [14]. This symmetry breaking manifests itself
through unequal scalar contributions to the running of
the left-handed and right-handed gauge couplings. We
will review the merits of this M„-scaleD-parity breaking
below.

III. GAUGE-COUPLING EVOLUTION AND
INTERMEDIATE SCALES

~~
=(1—40) X 10 ' yr

M„
10' GeV

(3.1)

The first step is to solve the renormalization-group
(RG) equations for the gauge couplings. This analysis
has been carried out previously [15,14] at various levels
of sophistication since the SO(10) model was introduced.
Our procedure in the analysis of the gauge-coupling evo-
lution is to express two of the intermediate scales in terms
of the other two scales and the measured values of the
gauge couplings at low energies. This information can
then be applied directly to the Yukawa-coupling evolu-
tion which is our interest here.

We use the one-loop P functions for the gauge cou-
plings, and we include the effects of the scalars in the
gauge-coupling P functions. Note that we have specified
particular representations, and by invoking the minimal
fine-tuning and extended survival hypotheses we remove
any ambiguities with regard to the scalar thresholds.
However, this is only a prescription, and as has been
pointed out previously [16], a two-loop analysis can be a
waste of effort without a good reason to believe in the ap-
propriateness of some particular scalar mass values and a
particular content of the representations at higher scales.
Also, the two-loop effects are generically small unless the
SU(4), symmetry survives to low scales [14]. This does
not occur in our models because we assume that D-parity
breaking, if it occurs, will occur at the SO(10)-breaking
scale, and because the observed value of sin 8~ does not
allow it, as we will see below.

There are several external constraints on the intermedi-
ate scales. The first is the constraint that the proton life-
time be greater than the observed bound, ~ & 5.5 X 10
yr [17]. A calculation of the lifetime [18) gives

G224

G214

G22I3

G2I I3

Gz&3

210

(1,1,15)

45 126

(1,3, 10)
(3,1,10)
(1,10)+,
(1,3,1)2
(3,1,1)2
(1,1)2 +1

10

(2,2, 1)

(2, 1)+,
(2, 1,1)

(2, 1)0+1
(2, 1)+,

so we must require M„&1.1 X 10' GeV. Also, the
choice of scale for SU(2)z breaking can have important
cosmological consequences. For example, in order to ex-
plain the observed baryon asymmetry of the Universe, it
has been shown [19],in the case where D parity is unbro-
ken above M~, that Mz must be at least as big as 10'

GeV. However, when D parity breaks well above this
scale, this lower bound on Ms disappears [14]. This is
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one of the merits of M„-scale D-parity breaking. Fur-
thermore, without implementation of M„-scale D-parity
breaking, one may be forced to fine-tune the scalar poten-
tial in order to avoid upsetting the standard neutrino
mass seesaw [20]. As we will see below, the D-parity
breaking of the models has little effect on the Yukawa-
coupling evolution, and so we relax the above bound on

MR without introduction of extra complication.

Recall [21] that the running coupling of an SU(N)
gauge theory obeys the RG equation

101x

1017

1
016

10 ':—

1 0 14

10':—

10'

o, -,
= 0.1/3

sin 0~ = 0.233

No Scalars

D-Broken

D-Invariant

2m.(L(, (a ) = "N —'—n G
———'S,—11 4 1

3 3 6
(3.2)

1011
10'

I

1010
I

10" 10'
I

1013
I

10" 10'

where a=g /4m, nG is the number of generations of
Dirac fermions, and S is the quadratic Casimir constant
for the scalar representation, tr(8'9 )=S5'. Solving
these with imposition of the unification boundary condi-
tions gives the following relations between the various
mass scales and low-energy couplings, analogous to the
relations derived in [15]:

M~, {GeV)

FIG. l. Intermediate scales M„and M, as a function of the
scale M& ', as discussed in the text, the dependence on M~ is

+ 0

very slight. This illustrates three cases: D parity broken at M„,
no D-parity breaking above Mz, and no scalar contributions

at all.

a(Mz ) —,ai(Mz ) = ln(x„"x+ x p x )
—1 8

—I ~u +~+ &0 ~c

377

(3.3)

1]. —2+q„ 3+q q 4+q
a(Mz) (3—8 sill el' ) = 1n(xg "x+ +xp'x, ') .

3~

(3.4)

Here, x; =M„/Mii, . The exponents p; and q, are
1

"small" in the sense that they vanish when the scalars are
not included in the analysis. The expressions for the ex-

ponents as functions of the Higgs-representation quadra-
tic Casimir constants are given in Appendix A, along
with some discussion as to their typical values. The
dependence on MR is slight, so that this scale is essen-

0

tially free, subject to the obvious constraint MR & M„
0 +

The exponents q, and q+ are directly relevant to the pro-
gram of Yukawa-coupling unification since they change
the determination of the intermediate scales at which Yu-
kawa couplings unify and these exponents are larger than
one might have expected due to the large dimensions of
the scalar representations at these higher scales.

As independent parameters to be input, we choose the
strong and electromagnetic gauge couplings at the Z
pole, a3(Mz ), a(Mz ), the Weinberg angle sin 0~, and the
intermediate scales MR and MR . From this informa-

+ 0

tion, using (3.3) and (3.4), we can calculate the other in-

termediate scales M„and M, . As an illustration of the
effect of the scalars on the calculation, consider Fig. 1,
where we plot M„and M, as a function of MR and MR+ 0

for fixed values of the other parameters. The solid lines
show these relations when the scalars are removed from

the analysis. The broken lines show the relations when
the scalars are included, both with and without D-parity
breaking at the SO(10)-breaking scale. By varying MR,

0

these broken curves can be shifted very slightly, corre-
sponding to the very slight dependence on M„ in (3.3)

0

and (3.4). For example, in varying MR over the range
0

10' GeV&MR &M„,the predictions for M, and M„
0 +

vary by a factor =1.2. From Fig. 1 we also see that the
models imply a lower limit on the right-handed breaking
scale, MR 10 GeV, since values less than that would

imply M, )M„.
Notice that the value of M, can decrease by approxi-

mately an order of magnitude when the scalars are in-

cluded, keeping the other parameters fixed. Since the
boundary condition for the Yukawa-coupling evolution is
set at M„this evolution is sensitive to the presence of the
scalars. M„and M, decrease when the scalars are intro-
duced because of the effect of the scalars on the running
of the Abelian couplings. The effect on the non-Abelian
couplings is to slow down their evolution, making them
"less" asymptotically free, but the effect on the Abelian
couplings is to speed their evolution. It turns out that the
effect of the scalar representa'tions on the latter is more
important, and thus M„andM, are brought downward.

IV. YUKAWA-COUPLING EVOLUTION

The RG equations for the Yukawa couplings in the
various intermediate theories are collected in Appendix
B. All our Yukawa-coupling results follow from the nu-

merical integration of these equations with appropriate
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boundary conditions, though it is possible to make great
progress in the analytic approximation of solutions to
these equations. A systematic approximation scheme
which reduces the solution to quadratures at each order
of approximation is explained in Appendix B. The
zeroth-order version of the scheme outlined in the Ap-
pendix produces accuracy of at least 5%, and often
better, depending on the initial conditions. Unfortunate-
ly, this is not good enough for our purposes. We require
accuracy comparable to the accuracy of the fermion
masses, the worst case being the bottom-quark mass, con-
servatively known to within 3% (see Sec. V). Also, as ex-
plained in the Appendix, our approximate solutions lose
all validity when the initial condition becomes large; thus
we must use the full equations in order to calculate trivi-
ality bounds. Therefore, all analysis quoted here was
done at the final stages by numerical integration of the
equations; the analytical approximations were used only
for guidance.

Within each of the symmetry-breaking chains exhibit-
ed above, there are two possible low-energy Higgs spec-
tra; we can have either one or two light Higgs doublets,
each deriving from the 10, with the implied tree-level
mass relation mb =m, .

In the case of one light Higgs doublet, some linear
combination of the (2, 1)I and (2, 1)

&
fields is assumed to

be massive. This introduces an arbitrary mixing angle,
which we denote by sin8. In the case of two light Higgs
doublets, there is also an extra parameter; this is the ratio
of the vacuum expectation values (VEV's) for the two
fields. The VEV's are denoted v„and Ud, since one of the
Higgs fields couples to "up-type" fermions, the top and
the neutrino, and the other couples to "down-type" fer-
mions, the bottom and the ~. The ratio is denoted by
tanP=U„/vd. Thus, in either of the cases we must speci-
fy two pieces of information, an initial condition and an
angle.

Neutrino masses in the low-energy limit of SO(10) are
naturally small due to the seesaw mechanism; in fact, the
seesaw mechanism for neutrino masses was first intro-
duced in the content of SO(10) [22]. Right-handed neu-
trinos become massive at the scale Mz, where the con-

0
densation of the (1,1)2+I breaks lepton number by two
units; the right-handed neutrino mass is a Majorana
mass. A subsequent diagonalization of the neutrino mass
matrix gives a heavy, mostly right-handed neutrino, with
mass =0 (Mz ), and a light, mostly left-handed neutrino

with mass =O(mo;„,/Mz ), which is identified as the
0

neutrino of the standard model. Here mD;„,is the mass
induced by the Yukawa coupling of the (2, 1)+&, the
standard-model Higgs doublet(s). A Majorana scale on
the order of 10' —10' GeV, a typical value in SO(10),
and a Dirac mass on the order of the Dirac mass of a gen-
erational counterpart fermion gives a physical neutrino
mass which is safe cosmologically [23] and which can
provide interesting physics, for example, a solution of the
solar-neutrino problem [24—27] via Mikheyev-Smirnov-
Wolfenstein (MSW) mixing [28,29].

The Yukawa couplings for the effective theories are as
follows:

G1 Higgs.
213

G2 Higgs.
213

G1 Higgs.
2113

h, QL p~~ +h ~ Ql. $b~ +h,LL ps~,
h Qik. 4+hi, &4~4+h.Lied&~

h, QLQ~„+hI,QLQb~+h, LL$7 g

+h~LLPvq +hq, vq vq4

G2„3 " h, QI p„tz+hqQL, pdbz+h, LL

+h,LI P„v~+h~v~ vq 4,
(4.1)

4'=4'(1, 1)2, , G22, 3: hqQgp;JQ~I. +hIL(L$(JLJx

+A~vg 4vg

4=4(1,3,1)2,

p,"=$(2,2, 1)0 .

The boundary conditions for the Yukawa couplings at
the intermediate scales are as follows.

One-Higgs-doublet case:

G213~G2»3' continuity,

G~„3~622,3. h, /hq =h„/h, ,

h =h +h h =h +hI v ~& q t b

G2»3~G»4. hb —h, =h„cos8

h, =h =h„sin8,

G2213~G224 ~ Aq
=AI:A+

(4.2)

Two-Higgs-doublet case:

G213~G21 13 continuity

G2»3 6214 h, =hb —h, =h ~
=h„

G2213~G224: Aq
=h) .

(4.3)

When the effective theory is the standard model, with
either one or two Higgs doublets, there are three indepen-
dent Yukawa couplings in the top generation: h„hb,and
h, . In the two-Higgs-doublet model, the up-type fer-
mions (top) couple to the Higgs field that we will call P„,
and the down-type fermions (bottom and r) couple to the
Higgs field that we will call Pd. In the one-Higgs-doublet
model, only the linear combination P =sin0$„+cosOpd is
light; however, at the level of couplings of representations
it is useful to imagine the couplings as being again to P„
and Pd,

' this simplifies the comparison between the two-
Higgs-doublet and one-Higgs-doublet cases at the illus-
trative level. In the G2113 theory we introduce another
Dirac- Yukawa coupling for the neutrino, and we also in-
troduce the coupling of the vz to the (1,1)2,. In the
G 221 3 theory the quarks and leptons have separate cou-
plings to the (2,2, 1)o bidoublet. Finally, SU(4), is re-
stored above M„and the Yukawa couplings must unify.

For later reference we note that we can write the
muon-neutrino mass as
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h
P

h,

h
P=0.6 eV

h,

m C

hz, M~
'2

10' GeV
h ~M~

(4.4)

m& ( m& ) =4.25+0. 10 GeV,

a3(Mz ) =0. 113+0.01,
sin 0~=0.233+0.002,

77( =1 784+ GeV .

(5.1)

Though we do not calculate generational mixing in this
paper, we can estimate the Dirac-Yukawa couplings h

and h, by the same code as is used for the heavy-
generation Yukawa RG flows. We know, for example,
that h & h, by the same argument as is given below for

the inequality h (h, . We are interested in m because
P

it must lie in a specific range 3 X 10 eV & m & 10 eV

[29,25] if we desire to solve the solar-neutrino problem
via MSW mixing between v, and v„.We have assumed
that m„«m, which is the situation in SO(10). By

e P
comparison with Eq. (4.4), Ref. [26] gives m

„

=(0.3) m, /h~M„, which is confirmed at the 25% level

by our numerical analysis.

V. THE ONE-HIGGS-DOUBLET CASE

Consider first the case of a one-Higgs-doublet standard
model embedded in SO(10). As outlined above, there are
ten parameters which we imagine varying: the fermion
masses m„mb, m, ; the Dirac-Yukawa coupling of the
neutrino at the lepton-number-violating scale, h„(M~ );

0

the mass scales M„and Mz,' a3(Mz); sin 9~; the
0 +

unified Yukawa coupling h„;and either sin8 or tanP.
There is also the neutrino Majorana-Yukawa coupling
h+, which descends from the Yukawa coupling of the 126
at the unification scale, but it is easy to parametrize the
effect of this coupling. We have determined that its effect
on the fermion Dirac masses is negligible; the solutions to
the Yukawa RG equations for the Dirac-Yukawa cou-
plings are sensitive to its value only at the level of 1% or
less. The only non-negligible effect of this coupling is, of
course, in the determination of the physical neutrino
mass through the seesaw mechanism, m =ID;„„/
h~M~ . Thus, by expressing our results in terms of the

0

scale h +MR we can remove this extra degree of freedom.
0

The boundary conditions for the RG equations give
four conditions on the ten parameters above. Our pro-
cedure is to fix m„m„M~,M~, a3(Mz), and sin 0~

0 +
and obtain m&, h (Mz ),h„,and sin0 or tanP; the param-

0
eters sinO or tanP are not of interest to us, and h„is of in-

terest only when it is forced to be large. We obtain
curves of mI, and h, (Mz ) as functions of m, for fixed

0

values of the other parameters. Then by varying a3(Mz)
and sin 0~ over their quoted ranges we obtain our con-
straints. In practice the uncertainty in a3(Mz } gives the
greatest contribution to the error, not only because its er-
ror is the largest fractionally, but because of the impor-
tance of the strong coupling in the running of the quark
masses. As nominal values for the measured parameters,
we choose

The definition of m& is as discussed in [30]. This mass is
the running quark mass in the modified minimal subtrac-
tion (MS) scheme. Higher values of m& are derived in

potential models [31],but these constituent quark masses
are not the appropriate quantities for our analysis. Note
that we will attempt to state all our results in a way that
does not hide the dependence on mb, since, as we will see,
this is a critical parameter.

The value of sin 8~ is an average of measurements in

[1]. The central value for a3(Mz) is that obtained by a
new analysis of jet shape distributions from the CERN
e+e collider LEP [32], and is somewhat lower than pre-
vious estimates. If one feels that this choice is suspect,
then it is reassuring to note that higher values of a3(Mz }

tend to make our derived constraints stronger since they
imply larger values for hb, making the agreement with
the measured mb worse.

As demonstrated for the simplest symmetry-breaking
scheme [5], it can be difficult to accommodate the known
fermion masses into this model as a low-energy limit of
SO(10), since it is difficult to reconcile the large top-
quark —bottom-quark splitting with unification when
there is only one low-energy VEV determining both
masses.

The current bounds on the top-quark mass which we
use are m, )91 GeV (95% C.L.) from direct search [4]
and m, & 182 GeV (95% C.L.) calculated from the con-
straint on the measured value of the p parameter for the
one-Higgs-doublet model [33]. Together with this bound,
we also have strong constraints on the mass of the ~ neu-
trino. The direct limit on the w-neutrino mass is current-
ly m & 35 MeV [34]. Cosmology provides a strong con-

T

straint in a large window just below the direct limit. The
analysis of [35] shows that we must demand m „&65 eV

or 1 MeV ~I (35 MeV in order to be consistent with
7

the constraint on the observed energy density of the
Universe, 0( 1, and the success of primordial nucleosyn-
thesis. Clearly, because of the nature of the constraint on

m, , the unexcluded region in the (Mz, Mz ) plane will
0 +

consist of two bands: one near M~ =10 GeV and one

above MR ——10" GeV. The detailed nature of these
0

bands, at the level of a factor —1 to 10 in the intermedi-
ate scales, depends on the values of the Yukawa cou-
plings as determined by the RG flows.

In Fig. 2 we show the excluded region for various con-
ditions on I„for the value of a3(Mz ) giving the weakest

constraint, using the above limits on I, and m, . For
a3(Mz ) )0. 113, the whole of the one-Higgs-doublet case
becomes unviable. The exclusions take into account the
lo. variation of sin 0~. A typical curve for mb as a func-

tion of m„with other parameters fixed, is shown in Fig.
3. We see that mb for fixed I is not very sensitive to the



FERMION MASSES IN SO(10)

10 I I I I 1 lfll I I I I I III[ I I ~ I I Illl

1012

R

1010

10

10

10
10 1012

c ~ i s&l s i s isis&l I

1013 1014 10

M (GeV)

FIG. 2. Exclusion plot in the (M&,M& ) plane for the one-
+ 0

Higgs-doublet case. The region near the top of the plot is ex-
cluded by obvious inequalities among the scales. The darker re-
gion is the allowed region for mb=4. 25+0. 10 GeV, and the
lighter region is the allowed region for mb =4.25+0.25 GeV.
10 variations in sin 8~ are included in the analysis.

strength of the Yukawa couplings (represented through
the top-quark mass) until the top quark is made quite
heavy. This is because the RG equations for the v and
the bottom quark in the G2&s stage (the standard model)
admit an approximation rendering them linear, as ex-
plained in Appendix B. Because of the fatness of these
relations and the uncertainty in mb, it is not possible to
give interesting bounds on m, in most of parameter
space. The effect on these curves of increasing a&(Mz) is
generically to raise the values of mb represented. Thus
we see why higher values of a&(Mz) constrain the model
more effectively. In Appendix B, some properties of the
RG How which lead to the qualitative features seen here
are illustrated for the two-Higgs-doublet case. The one-
doublet case behaves similarly, and is in fact somewhat

o, = 0.123
3

'I

4.5
Q

50

= 0.113
3

e = 0.103
3

M = 10 GeV
R+
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sin 8 = 0.233
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FIG. 3. mb vs m„for varying aq(Mz) and other parameters
fixed, in the one-Higgs-doublet case.

simpler to understand due to the existence of an analytic
solution for the standard-model regime, as also discussed
in Appendix B.

The turnover behavior of mb(m, ) in Fig. 3 at large
values of m, indicates the "triviality bound" phenomenon
for these RG equations. In other words, large values of
the initial. Yukawa coupling are required to generate
these high values at low energies, since values which are
large enough to make the P function positive are quickly
damped as we move downward in energy [36]. This effect
leads to a bound in the standard model, m, ~250 GeV
[37]; in our case the effect is more pronounced since,
roughly speaking, the P functions of the intermediate
theories are more positive than would be the naive exten-
sion of the standard-model P functions into the same en-

ergy regimes. This turnover phenomenon is obviously
problematic; if one were willing to trust the analysis at
large Yukawa couplings, then any lower value of mb
could be arranged by simply taking the initial Yukawa
coupling as high as necessary. Fortunately, the p-
parameter constraint makes this discussion academic in
the one-doublet case, and this constraint accounts for a
large fraction of the exclusion we have shown. Note that
both in the one-doublet and two-doublet cases, our
analysis extended only up to values of the unified Yukawa
coupling beyond which it seems certain that perturbative
corrections become large; for definiteness h„&10 or
h

„

/4n50. 8. .
The qualitative features of the exclusion plots are easily

explained. The exclusions in the vertical direction (M„)
0

are due to the bounds on the ~-neutrino mass. The ex-
clusions in the horizontal direction (M„)are due to the

bounds on mb. This follows because, as we have noted
above, the Yukawa-coupling P functions in the theories
at higher energies are less negative than would be an ex-
tension of the standard-model P functions into those re-
gions; thus there must be an increase in sin8 in order to
keep the v mass fixed. This also results in an increase for
the calculated value of mb, so as to strengthen the con-
straint.

The Yukawa-coupling evolution is very insensitive to
the choice of D-parity-breaking scale. Once this scale is
set and the intermediate scales are calculated, the only
way the D symmetry enters the evolution is through the
form of the scalar contributions to the gauge-coupling
evolution; the implicit effect on the Yukawa-coupling P
functions is small. It is fair to say that this holds true for
any of the scalar contributions; the scalars are important
in the calculation of the intermediate scales, but that is
the only significant way that they affect the Yukawa evo-
lution in our models.

VI. THE TWO-HIGGS-DOUBLET CASE

Consider next the case of a two-Higgs-doublet stan-
dard model embedded in SO(10). The discussion above
regarding D parity applies equally here, and we discuss it
no further. Following the analyses of the one-Higgs-
doublet case, we use the current constraints on m, and
m„ to generate an exclusion plot in the (Mz, Mz )"T 0 +
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plane. However, in the two-Higgs-doublet case we do not
have the benefit of a strong p-parameter constraint; the
p-parameter constraint in the two-Higgs-doublet stan-
dard model is significantly less stringent than that in the
one-doublet model [38]. A constraint derived indepen-
dently of the Higgs sector has been calculated in [33],
where they find m, & 310 GeV (95% C.L.); this does not
provide a sufficient extra constraint for us. In fact, it is
possible for us to give a much more stringent bound for
m„valid over the whole (M&,Mit ) plane, which is the

0 +
triviality bound for this incarnation of SO(10). We find
m, & 210 GeV. This bound, by its nature, is insensitive to
mb, and it is quite firm.

In Fig. 4 we show a typical curve for mb as a function
of m, in the two-doublet case. Numerically, we find
lower values of mb in the two-doublet case than in the
one-doublet case, fixing all other parameters. This is be-
cause the standard-model hb P function is more positive
in the two-doublet case than in the one-doublet case, as
can be seen by examination of the coefficients of the
Yukawa-coupling terms in these P functions. For lower
values of the Yukawa couplings this difference disap-
pears, but we operate in a regime where this effect is
becoming important. The resulting lower values of mb
tend to accumulate near mb ——4.3 GeV, and this renders
our method of constraint almost useless. Also, there is
little solid external information which we can apply to
further constrain the model. The exclusion plots for the
two-Higgs-doublet case are shown in Fig. 5.

Furthermore, as evidenced by the triviality bound
above, we find that the upper limit on m, derived in [5] is
relaxed, though we confirm the result of that analysis for
values of the intermediate scales corresponding to the
limited symmetry-breaking scheme considered there.

Some of the qualitative features of the RG How which
lead to the relations shown here are discussed in Appen-
dix B (see Fig. 7 therein).
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FIG. 5. Exclusion plots in the (M&,M& ) plane for the+ 0
two-Higgs-doublet case. The region near the top of the plot is
excluded by obvious inequalities among the scales. The darker
region is the allowed region for mb =4.25+0. 10 GeV, and the
lighter region is the allowed region for mb=4. 25+0.25 GeV.
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VII. A SECOND COSMOLOGICAL BOUND
ON THE v-NEUTRINO MASS
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FIG. 4. mb vs m„for varying a3(Mz) and other parameters
fixed, in the two-Higgs-doublet case.

It has been suggested that the standard picture of neu-
trino mass generation in SO(10), in conjunction with
anomalous B+L violation at high temperatures, could
lead to an unacceptable loss of baryons in the early
Universe [7,8], violating the constraint from the observed
baryon asymmetry [23]. This is because the condensation
which gives rise to the Majorana-neutrino mass necessari-
ly involves spontaneous violation of lepton number.
Effective lepton-number-violating interactions, though
suppressed by m D;„,/MzL, where MzL is the Majorana
scale, can combine with anomalous B+L violation to
wipe out baryon asymmetry in equilibrium. This is not a
danger for the two lighter-generation neutrino couplings;
however, the v, can provide an effective interaction large
enough that the rate for baryon-number depletion be-
comes problematic. Notice that the depletion of all
baryon number requires adequate mixing between the
generations, as discussed in [8]. Mixing questions are
beyond the scope of this paper; we deal only with the
heavy generation. However, we can calculate the ap-
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or

h &0.3h~"
Mz

10' GeV

1/4

(7.1)

How big can h@ be? Remember that its effect on the RG
equations for the other Yukawa couplings is small; it is
basically arbitrary, as long as it is not so big as to make
its P function positive, violating its own triviality bound.
So we can get an upper bound on h@ by finding that
value for which its P function would necessarily become
positive. Using typical values for the gauge couplings
azz and az, we find h@ &1.5, a relatively small value

since the gauge couplings of the 4 are weak. Therefore
we cannot escape the bound (7.1}by raising h~.

In Fig. 6 we have plotted h, (Ma ) as a function of m,
0

for the same parameter values which were used in Fig. 4.
The relation between m, and h„(M& ) is linear at low

0

couplings, as it should be, so that the bound (7.1)
translates directly into a bound on m, . Typically the
bound (7.1) will correspond to a bound on the top-quark

propriate Yukawa coupling h (Mz );M+ =M&L.
0 0

The example calculated in [8] to indicate the bound on
M& uses an implicit value for the Yukawa coupling

0
h „(Mz ) =&2 in our normalization. This is actually

0
somewhat large compared to typical values for this cou-
pling in the SO(10} model, as indicated in our analysis.
In particular, this coupling is comparable to the top-
quark Yukawa coupling at the scale M~, and as such it

0

is significantly smaller than the top-quark coupling at the
scale m, since the Yukawa couplings rise as p decreases
over the range from Mz down to m, . If one traces this

0

Yukawa coupling through to the final bound, one finds
that the bound has a strong dependence on its value:

1 /2

50 M~

mass of m, & 100—130 GeV. Looking at Figs. 6 and 4, we
can see how the constraint on h (Mz } combines with

0

that on mb to eliminate regions of parameter space. Al-
though the bound on rn, from the h„(M„)constraint

0

m, & 125 GV is itself not enough to cause concern, this
constraint on m, would require mb ~ 4. 5 GeV for
a3(Mz) =0.113, or conversely, would require a3(Mz)
&0.103 to obtain an acceptable mb. Thus the region of
parameter space illustrated by Figs. 6 and 4 just barely
qualifies as 10. allowed.

Extending this sort of analysis over the whole of the
parameter space we find that for a3(Mz ) )0. 123 both the
one-Higgs-doublet and two-Higgs-doublet cases are ruled
out. For a3(Mz ) ~ 0. 113 the model is confined to the re-
gion Mz )8X10' GeV. Notice that the model is not

0

completely ruled out, as one might have guessed by the
dimensional analysis where one sets h„=1.Consider the
consequences of this result for the MSW mixing solution
of the solar-neutrino problem. Using our expression for
m„ in (4.4), we have

h
m„&7X10 eV

P
C

(7.2)

VIII. CONCLUSION

If we run a one-generation Yukawa-coupling evolution
for the second generation, we find h /h, =0.4. As we

noted previously, we expect this ratio to be less than 1,
and from experience with the heavy-generation Yukawa-
coupling evolution a value =—,

' is sensible. Thus, we find

m, &10 eV, and the MSW mixing solution of the

solar-neutrino problem is in grave jeopardy.
The constraint which we have derived here is, of

course, somewhat speculative. A multigenerational
analysis is required, both to understand the low-energy
mixing angles and to estimate the muon-neutrino mass
more accurately.

o.s

50 100 150 200

m (GeV)

FIG. 6. h (MR ) vs m, for the same fixed parameters as in
0

Fig. 4.

We have seen how Yukawa-coupling-constant
unification together with the known bounds on fermion
masses in the heavy generation are used to constrain the
SO(10) model. The one-Higgs-doublet case is already
severely constrained, and strenthening of these con-
straints can be foreseen for the near future, via improved
measurements of sin 8~ and especially of a3(Mz). The
two-Higgs-doublet case is less constrained, and it seems
from the analysis that progress in this case will be more
difficult since what is really required here is an improve-
ment in the estimate of mb, something which is farther
from us now than improvements in measurements of
gauge-coupling constants.

The implications of SO(10) for neutrino physics have
been very attractive for a number of years. However, as
we saw in the last speculative section, it may be that the
basic attractive feature of the model, naturally light
seesaw masses from the breaking of intermediate
U(1)I XU(1)z I, will prove to scar another attractive

3R

feature, the ability to generate neutrino masses appropri-
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ate for MSW mixing. This issue can be settled by the cal-
culation of flavor mixing in the lepton sector; one need
only know whether or not the mixing is sufficient to drive
intercon version among neutrino species with a high
enough rate in the early Universe, so that the analysis
may not be as complicated as could be a detailed study.
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APPENDIX A: HIGGS REPRESENTATIONS
AND GAUGE-COUPLING EVOLUTION

In this Appendix we collect the quadratic Casimir con-
stants for the intermediate Higgs representations as well
as the equations for the evolution exponents which ap-
pear in Sec. III. Let SG(i) denote the quadratic Casimir
constant for the Higgs representations occurring in the
intermediate theory 6, with respect to the gauge coupling
a;. Then the p and q exponents of Sec. III are given by
the following.

Case Mz &M, .
+

p„=~ [S224(L)+S224(R ) —2S224(4) ],

Case Mz & M, .
+

p„=4'4 [S224(L)+S224(R ) —2S224(4) ],
p+ = ~ [ S2,4(L)—S224(L)+S2]4(Ro)

S224(R ) +2S224(4) 2S224(4) ]

pp= 44 [ S213(L) S2113(L)+S213(Y)

S2113(Ro) T'S2]]3(BL)]

p, =
—,', [ S2113(L)—S214(L)+S2113(R]])—S214(Rp)

+—', S2113(BL)+S2,4(4)],
q„=4'4 [3S224(R ) +2S224(4) —5S224(L)],
q+ =

—,', [ 3S»4(R, }—3S224(R )+2S»4(4}

—2S224(4) —5S2,4(L)+ 5S224(L }],
qp= —[ 3S2]3(Y) 5S2]3(L) 3S2]]3(Rp)

—
2S2113 (BL)+5S21]3(L)],

q, =
—,', [ 3S2„3(Rp)—3S2]4(Ro)+2S2„3(BL)

—2S2,4(BL)—5S2]]3(L)+5S214(L)),

(A2}

S2]3(Y)=2ND, S2,3(L)= HAND,

S2]]3(BL)=1, S2„3(Ro)—1, S2]]3(L)——',ND

S2213(BL}=3, S22»(R)= —', +—,', S22]3(L}=—,',
S2,4(4) =

—,'„S2]4(Ro) = 10, S2,4(L) = ', ND, —

S224(4)=3+ —,'„S224(R)=—", +4) S224(L) ——,',

(A3)

The quadratic Casimirs for the theories with D parity
broken at the uni6cation scale are

p+ =
—,', [ S2113(L}—S2213«)+S2113( o) 2»3(

+—', S21,3(BL)——', S22, 3 (BL)],

po =—'. [ S2»(L }—S2»3(L)+S»3( Y)

S2]]3(Ro ) S3]]2(B3L)]

p, =
4'4 [ S2213(L) S224(L )+S2213(R ) —S224(R)—

+TS2213(BL +S224(4) ] &

q„=—'[3S224(R )+2S224(4) —5S224(L)],
[ 3S2]]3(Ro) 3S22]3(R)+2S2]]3(BL )

2S2213(BL) 5S2, 13(L}+5S2213(L)]~

qo =
44 [ 3S2]3(Y) 5S2]3(L) 3S2]]3(Rp )

—2S2]]3(BL)+5S21,3(L)],

q, =—'[ 3S2213(R ) —3S224(R )+2S2213 (BL}

2S224(BL ) 5S2213(L ) +5S224(L ) ]

(A1)

where ND is the number of Higgs doublets in the low-

energy theory (the standard model). For the theories
with unbroken D parity above the right-handed breaking
scale we have

S224 (L ) =S224 (R ) =
&

+—

2213(L } S2213
(A4)

APPENDIX B: THE YUKAWA-COUPLING
RG EQUATIONS

X)=16m. p (B1)
dp

Also, as an illustrative example of the Yukawa-

In this Appendix we collect the RG equations for the
Yukawa couplings of all the intermediate theories in the
cases that interest us. We also discuss analytical approxi-
mation of the solutions, as mentioned in the text. The
normalization of the Yukawa couplings was chosen such
that "mass"="Yukawa" X174 GeV. We use the abbre-

viated notation
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coupling evolution, we include Fig. 7. This shows the
evolution in the two-Higgs-doublet case for two values of
the initial Yukawa coupling and illustrates the mecha-
nism of the triviality bound as well as the behavior of mb
as a function of m, for fixed m, .

1. 6»3y one Higgs doublet

These are the usual Yukawa-coupling RG equations
for the standard model with one Higgs doublet [39]. The
couplings are as defined in Sec. IV:

I
s ssssE I sss~ s 1 sssR s sssss s s ssIIR s s sssss

/
1 q,

nh =h (9h +3h +2h —2A„),
2)h =h (9h +3h +2h —2Ad),

nh =h (5h +6h +6h —2A/),

A„=4m(—,'aL + —,",az+8a3),

Ad =4sr( —,'aL + —,', a„+8a3),
AL =4sr( —', aL+ —",ar) .

2. 6»», one Higgs doublet

0.4

r r
r rrrrrrrr

I s sssm I s sssa I s sssm I s sash I s sssm I sssssss

p, (GeV)

s s ssss s ssss s s s sly s s sssR s s sssw s s sss%

~%re rrrr ~ rr r
~&

~ rr
~

rr
~ W r'r

~ rrr rf
~r

~ W
rr

~ r
rr

~ rrrr rrr
r~ rrrr

10 10 10 10 10 10

2)h =h (9h +3h +2h +2h —2A„'),

nh =h (9h +3h +2h +2h —2Ad),

2)h =h (5h —h +6h +6h —2AI'),

=h~(5h —h +6h +6h +2h2 —2A' )

2)h~ =h~(3h~+4h„—2A@, ),
A„'=4sr( —,'aL + —,Oaz + —,OassL +8a3),

Ad =4sr( —,'aL + ,'ass + ,'assi—+8a3)—,

AI'=4sr( —', a&+ —,'ass + —,'ass& ),
A '„=4sr(—', aL + ', ass + 2ajsL ), ——
A q,

=4sr( ,'a~L +—', ass )—.

3. 6»3 two Higgs doublets

(B3)

0.4 I s ssua I s sssa I s sssm I s ssua I s sssm I s ssua

p, (GeV)

10 10 10 10 10 10

2)h =h (9h +h +2h —2A ),
Sh =h (h +9h +2h —2Ag),

(5h +6h —2AI) .

(B4)

FIG. 7. Evolution of the Yukawa couplings for the two-
doublet case, with Mz =10' GeV and Mz =10" GeV. (a)+ 0
Evolution beginning with a unified coupling h„=0.5; (b) Evolu-
tion beginning with a unified coupling h„=1.0. Notice in par-
ticular the different qualitative behavior of the evolution for the
large and small initial couplings; the saddle-shaped behavior in
the second plot shows the mechanism for the triviality bound,
near its onset as a function of the initial coupling. The curve la-
bels in the second plot have been suppressed, being understood
to be the same as in the first plot. The ratio h /hb has been
shown in each plot in order to follow the evolution of the
bottom-quark-Yukawa coupling at fixed m, . The endpoints of
this family of curves generate the plots of mb vs m, for fixed m,
which are seen in the analysis of Secs. V and VI.

4. Gz»3, two Higgs doublets

Sh =h (9h +h +2h —2A„'),
g)h =h (h +9h +2h, —2Ad),

2)h =h (6h +Sh +h —2AI'),

2)h =h (6h +h +5h +2h —2A'„) .

(B5)

h@, A„', Ad, AI', and A@ are as in the 62»3 one-Higgs-
doublet case.

Here A„, Ad, and AI are as in the G2&3 one-Higgs-
doublet case.
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622&3

nh =h ( loh +2h —2A ),
2)h =h (6h +6h +6h —2A(),

glh @ =h c, (5h q +4h( 2A q )

A =4m. ( —,'al + —,",a((+ —,",a((1 +8a3),

A( =4m( 9ai +——9a(( +—
32 a((L ),

A4, =41r( —", a((+ —',a((L, ) .

(B6)

factor in parentheses in Eq. (B7}remains.
The RG equations for the remaining theories are less

amenable to solution, since there is no obviously good ap-
proximation which decouples them. As an example of
how to proceed we will analyze the equations for the
standard model with two Higgs doublets. This will illus-
trate all the generic difficulties with this type of RG sys-
tem and will illustrate our systematic approximation
scheme for solutions. Let Y(t) be a given (arbitrary)
function. Consider the equations

—lny, = [9y, +y&+2Y+2ri(y, —Y)—2A„],d 1

6. Analytic approximation

F213(() y, (&0)
y, (&)=

F"'(&0) 9 F'"(t)
1 y, ((,)—

1677 fp y to

(B7}

where

F213(r)—a (r)8/7a (&)27/40a (r)
—17/80—Q3 CXy (B8)

The remaining equations are easily integrated by using
the first equation to eliminate h, . Their solutions are
then given by

( )
' 16/21

a3(ro)

( )
1/120

ar(to)

y, (&)
yb(&) = y6((0)

y, (to)
9/20ai (t)

X
aL (to)

( )
'2/3 '

( )

' —16/21

y, (()= y, ((0)
y, to} a3(to}

( )
9/40 '

( )
' —101/240

X
aL(to) ar(to }

(B10)

Notice that the e3 dependence of y, is canceled by the
leading factor in y„but the dependence on the nontrivial

It is possible to introduce a systematic approximation
scheme for these Yukawa-coupling RG equations which,
at zeroth order, provides solutions which are good to
within about 5% or better, as long as highly nonlinear re-
gions of the evolution are avoided. These are regions
where the p functions become positive due to domination
by the Yukawa-coupling terms over the gauge terms.
This does not mean that Yukawa couplings must be
small; it means only that they must be smaller than those
values which will make the p functions positive. For ex-
ample, such values occurred in the low-Mz allowed re-

0

gion for the one-Higgs-doublet model discussed in Sec. V
above.

Let y, =h, As a first step we note that the RG equa-
tions for the standard model with one Higgs doublet can
be reduced to quadratures by the (excellent) approxima-
tion that hb and h, are much smaller than h, . With this
approximation, the top RG equation decouples, and its
solution is

d 1—lny, =,[y, +9y, +2Y+29)(y, —Y)
16m

—2A„—29l( Ag —A„)],
—lny, = (5y, +6y&+y, —2A() .

1

(Bl 1)

F(t)=exp —I dt A„+I Y
8~ '0 'o

(B12)

Also, let s(t)= jI F(t). Then after a little algebra the

coupled system becomes

When g = 1 this system is the RG system given above for
G2&3 with two Higgs doublets. When g=O the first two
equations decouple from the third. Notice that the driv-
ing gauge terms have been modified also, so that for g =0
the y, and yb equations are driven by the same function.
This is an excellent approximation since A„and Ad
differ only in their a~ terms, which are much smaller
than the e3 and ai terms. The real problem with the
g=O equations is the replacement of y, with the given
function Y(t) Y(t) can. be anything, but we are wise to
choose something which looks like y, . The simplest is to
choose a constant such as Y(t)=y, (to). Since y, runs
relatively slowly (absence of coupling to QCD), this
works reasonably well. However, one could in principle
do much better by choosing some more accurate approxi-
mation, such as Y(t) =y, (to)+(t to)y, (t—o)+
which is easily implemented since it requires no global in-
formation about y, . We find that with the constant
choice, the solutions to the approximate system at zeroth
order in g are good to 5% or better over a range of ap-
proximately 13 decades in energy, or 0( t & 30. This is as
long as one does not attempt to use the equations in the
regions where p functions become large and positive;
when this happens it means that the evolution is dom-
inated by the nonlinear damping term, and the subse-
quent behavior is not modeled well by the zeroth-order
approximant. However, note that this behavior can only
occur over short intervals in t because of the damping
effect as we flow towards the infrared.

At zeroth order in g it is straightforward to solve the
reduced coupled system for y, and yb. Let y, =F(t)z„
yb =F(t)z&, where
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d lnzt

dlnzb

9z, +zb
7

zg +zb
(813)

10

v'
(815)

zt zb zt
ln

ds zb 2' zb

Introducing v =z, /zb, these become

dv u —1=8v
lnzb 9+v

zb
lnv = (v —1) .

ds

The first can be integrated, giving

(814)

where we assumed without loss of generality that v ) 1.
The second is reduced to a quadrature giving v (s), and
this combined with the definition of s gives the nearly
complete reduction to quadratures. To complete the
solution we can eliminate y, and yb from the y, equation
and integrate that directly. Of course, evaluation of the
quadratures can be subtle. All the integrals are expressi-
ble in terms of hypergeometric functions, but one must be
careful that the requisite accuracy is maintained in the
evaluation of these functions.
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